
Developing a Stemmer for German Based
on a Comparative Analysis of Publicly

Available Stemmers

Leonie Weissweiler(B) and Alexander Fraser

Center for Information and Language Processing,
LMU Munich, Munich, Germany

{weissweiler,fraser}@cis.lmu.de

Abstract. Stemmers, which reduce words to their stems, are important
components of many natural language processing systems. In this paper,
we conduct a systematic evaluation of several stemmers for German using
two gold standards we have created and will release to the community. We
then present our own stemmer, which achieves state-of-the-art results,
is easy to understand and extend, and will be made publicly available
both for use by programmers and as a benchmark for further stemmer
development.

1 Introduction

1.1 The Stemming Task

In Information Retrieval (IR), an important task is to not only return documents
that contain the exact query string, but also documents containing semanti-
cally related words or different morphological forms of the original query word
(Manning et al. 2008, p. 57).

This is achieved by a stemming algorithm.

A stemming algorithm is a computational procedure which reduces all
words with the same root (or, if prefixes are left untouched, the same stem)
to a common form, usually by stripping each word of its derivational and
inflectional suffixes (Lovins 1968).

Thus, the purpose of a stemmer is not to find the morphologically correct
root for a word, but merely to reduce it to a form it shares with all words that
are sufficiently semantically related to be considered relevant to a search engine
query for one of them. The exact nature of that form is irrelevant.

1.2 Motivation

Stemming for German is naturally a task that attracts less attention then stem-
ming for English. There are, however, a number of different available stemmers

c© The Author(s) 2018
G. Rehm and T. Declerck (Eds.): GSCL 2017, LNAI 10713, pp. 81–94, 2018.
https://doi.org/10.1007/978-3-319-73706-5_8



82 L. Weissweiler and A. Fraser

for German, the most popular of which are the Snowball German stemmer, devel-
oped by the team of Martin Porter, and the stemmer developed by Caumanns
(1999). Available stemmers are fairly different in terms of their algorithms and
their approaches to stemming, with solutions ranging from recursive stripping
of just a few characters to identifying prefixes and suffixes from a pre-compiled
list. Of all the stemmers presented here the Snowball stemmer is the only one
for which an official implementation is available. For the others, the implemen-
tations that are used in NLP toolkits are by third parties, and, as we will show,
sometimes contain flaws not intended by the original authors.

At the same time, we are not aware of any comprehensive evaluation of stem-
mer performance for German. The main goal of this paper is therefore to supply
such a study in order to enable NLP programmers to make an informed choice
of stemmer. We also want to improve existing stemmers and therefore present a
new state-of-the-art stemmer, which we will make freely available in Perl, Python
and Java. So a secondary goal is to make a clean and simple implementation of
our stemmer available for programmers. Finally, we will release the two gold
standards we have developed, which can act as a benchmark for future stemmer
development work.

1.3 Summary of Work

We looked at five available stemmers for German and compared their algorithms.
We then automatically compiled two different gold standards from the mor-

phological information in the CELEX2 data (Baayen et al. 1995) for German.
They aim to represent two slightly different opinions on what stemming should
be. One was compiled by stripping away morphemes that had not been assigned
their own wordclass and the other using the wordform to lemma matching in
the CELEX2 data.

We then evaluate the stemmers on the two gold standards, computing pre-
cision, recall and f-measure in a cluster-based evaluation that evaluated perfor-
mance based on which words were stemmed to the same stem (and not how the
stems actually looked, which is not relevant in most applications of stemming,
as we discussed above).

Based on the results of our evaluation, we developed a new stemmer called
CISTEM which is simpler and more aggressive than the previously existing
stemmers. We show that CISTEM performs better than the previously existing
stemmers.

2 Existing Stemmers for German and Related Work

2.1 German Stemmers

In this section we provide an overview of the German stemmers that we studied,
briefly outlining their availability and the algorithms used. We show the differ-
ences between them with the example shown in Fig. 1, where we stemmed the



Developing a Stemmer for German Based on a Comparative Analysis 83

Fig. 1. Comparison of all stemmers using the words “Adler” (eagle),“Adlers” (eagle,
genitive case), “Adlern” (eagles, dative case), “adle” (inflected form of “to ennoble”)

word “Adler” (eagle). We show the stem produced and the other words reduced
to the same stem for each stemmer. All stemmers except Text::German have the
same preprocessings steps which are lowercasing the word and replacing umlauts
with their normalized vowel versions (e.g., ü is replaced with ue). These steps
will therefore not be mentioned below.

Snowball. In 1996, Martin Porter developed the Snowball stemmer for English
(Porter 1980). It became by far the most widely used stemmer for English. The
Snowball team has developed stemmers for many European languages, which
are included as a set in important natural language processing toolkits such as
NLTK (Bird et al. 2009) for Python or Lingua::Stem for Perl.

The Snowball German stemmer is an adaptation of the original English ver-
sion and thus restrains itself to suffix-stripping. It defines two regions R1 and
R2, where R1 “is the region after the first non-vowel following a vowel, or is
the null region at the end of the word if there is no such non-vowel” and R2 is
defined in the same way, with the difference that the definition is applied inside
of R1. After defining R1 and R2 Snowball deletes a number of suffixes if they
appear in R1 or R2. It does not do this recursively but instead in three steps,
in each of which at most one suffix can be stripped. The first two steps strip
fairly common suffixes like “ern” or “est”, while the third step strips derivational
suffixes, e.g., “isch” or “keit”, which are fairly uncommon.

In our example, the Snowball stemmer correctly places “Adlers” (eagle, gen-
itive case), “Adlern” (eagles, dative case) and “Adler” (eagle) together in the
stem “adl”. However, it also incorrectly stems “adle”, which is the first person
singular of “adeln” (to ennoble) to “adl”. This is because the length restriction
on how short stems can become is defined in terms of R1 and R2, as explained
above, and in this example, R1 for all four words is the part after “adl”.

Text::German. The stemmer in the Perl CPAN Module Text::German was,
as far as we could find out, developed in 1996 at the Technical University of



84 L. Weissweiler and A. Fraser

Darmstadt by Ulrich Pfeifer, following work by Gudrun Putze-Meier for which no
reference is available. It is not currently actively supported. We made a number
of efforts to contact both scientists but were unsuccessful.

What sets Text::German apart from the other stemmers examined here is
the fact that it strips prefixes, and that it uses small lists of prefixes, suffixes
and roots to identify the different parts of a word. Although the implementation
in CPAN has significant flaws, the idea is novel and produced good results, as
can be seen in Sect. 3.3.

While the behaviour of Text::German is at times difficult to understand due
to its binary-encoded rules, we think that its performance on our example is
primarily due to two factors. One is that “ers” is not in its list of suffixes, which
is why “Adlers” is stemmed to itself. The other is that it does not lowercase
stems, which results in “adle” (correctly) being stemmed seperately.

Caumanns. The stemmer proposed by Caumanns (1999) is unique in two ways.
One is that it uses recursive suffix stripping of the character sequences “e”,
“s”, “n”, “t”, “em”, “er” and “nd”, which are the letters out of which every
declensional suffix for German is built. The other is that it strips “ge” before
and after the word, which makes it one of the two stemmers that stem prefixes.
It also substitutes “sch”, “ch”, “ei” and “ie” with special characters so they are
not separated and replaces them back at the end of the stemming process.

In our example, the Caumanns stemmer conflates all four words to the same
stem “adl”. This is because of the recursive suffix stripping and because its
length constraint is not producing words shorter than three characters, which is
why “adle” was stemmed to “adl” which is exactly three characters long.

UniNe. The UniNE stemmer, developed by Savoy (2006) from the University
of Neuchatel in 2006, has an aggressive and a light stemming option.

Light Option. The light option merely attempts to strip plural morphemes. After
the standard Umlaut substitutions, it strips one of “nen”, “se”, “e” before one
of “n”, “r” and “s” or one of “n”, “r” and “s” at the end of the word. As only
one of these options can take effect, it is a very conservative stemmer.

In the “Adler” example, the stemmer stems “Adlers” and “Adlern” to “adler”
and “Adler” and “adle” to “adle”. It does not go further because it removes at
most two letters and doesn’t strip suffixes recursively.

Aggressive Option. The aggressive option goes through a number of suffix strip-
ping steps, which always depend on the length of the word. The difference with
the other stemmers is that UniNE has two groups of stripping operations and
at most one out of each group is executed. Also, its conditions for stripping “s”
and “st” are very similar to those of the Snowball stemmer, which defines a list
of consonants that are valid s- and st-endings respectively and have to occur
before the “s” or “st” so that the consonant in question is stripped.



Developing a Stemmer for German Based on a Comparative Analysis 85

This stemmer’s main problem in our example is that it stems “Adlers” to
itself because “r” is not included in its list of valid s-endings which have to occur
before “s” for it to be stripped.

2.2 Evaluation Studies

The literature on the comparative evaluation of stemmers for German is rel-
atively sparse. Braschler and Ripplinger (2003) compared the NIST stemmer
and the commercial Spider stemmer with two baselines of simply not stemming
and morphological segmentation based on unsupervised machine learning and
morpho-syntactic analysis. They found precision improvements of up to 23%
points and recall improvements of up to 12% points for the NIST stemmer over
no stemming compared to 20% points improvement in precision and 30% points
in recall for the commercial Spider Stemmer. Savoy (2006) tested their UniNE
stemmer and the Snowball German stemmer in an information retrieval sys-
tem and found that the UniNE stemmer improved the Mean Average Precision
(MAP) by 8.4% points while the Snowball stemmer improved it by 12.4% points
against a baseline without any stemming.

Our evaluation is based on two gold standards which we will make publicly
available, allowing them to act as a benchmark for future work on German
stemming.

3 Evaluation

3.1 Runtime Analysis

The runtimes that can be seen in Table 2 are averaged over 10 runs of each
stemmer. The Snowball implementation used was our own implementation in
Perl which we did in order to better compare the Snowball stemmer to the
others (it should be noted that the official implementation of the stemmer is
in Martin Porter’s own programming language Snowball, compiled to C code,
which will therefore, in practice, be much faster than implementations in Perl).
For the UniNE stemmer, we used the implementation in the CPAN module
Lingua::Stem::UniNE::DE, with slight modifications of our own with regards to
the use of a module, and for the Caumanns Stemmer we used our own Perl
implementation, which was fairly difficult to implement because the paper of
Caumanns (1999) doesn’t clearly state a definitive algorithm, instead describing
main ideas and then making suggestions for improvements (Fig. 2).

To assess average runtime, we then stemmed a corpus of 624029 words on
each stemmer using a single threaded Perl 5.8.18 program on a Xeon ×7560
2,26 GHz running openSUSE ten times and computed the mean runtime. As
can be seen in the table, the runtimes of the Caumanns, UniNE and CISTEM
stemmers are fairly similar, while Snowball takes about twice and Text::German
nearly three times as long.



86 L. Weissweiler and A. Fraser

R
un

tim
e 

in
 s

ec
on

ds
 

0

5

10

15

20

25

30

35

40

Snowball Text::German

UniNe Light UniNe Agressive
Caumanns CISTEM

Fig. 2. A comparison of stemmer runtimes. 624029 words were stemmed by each stem-
mer using a single threaded Perl 5.8.18 program on a Xeon ×7560 2,26 GHz Processor
running openSUSE

3.2 Gold Standard Development

We compiled two different gold standards. The reason for this is that exactly
which words belong to the same stem is something that is difficult for people to
agree on. The question of whether, for example, “billig” (cheap) belongs together
with “billigen” (to approve) seen from an IR perspective, is a difficult one because
the adjective “billig” also exists in the sense of “something worthy of approval”.
Therefore, our hope is that the two gold standards will capture the different ends
of this spectrum where one end, when in doubt, puts words in a cluster together
and the other doesn’t. Having two gold standards capturing this distinction
enables us to be more objective in our evaluation.

For the first gold standard, we used the morphological information in
CELEX 2. It gives the flat segmentation into morphemes and annotates each
morpheme with its word class, and X if no word class applies. This should be
equivalent to the distinction between lexical and grammatical morphemes. We
then stripped the morphemes annotated with X to form the stem. For the sec-
ond gold standard, we simply used the fact that every wordform in CELEX2 is
assigned a lemma, and used that lemma as the wordform’s stem. In each case,
we then grouped the wordforms by stem according to the principle that the
exact stem is irrelevant as long as the cluster makes sense. The resulting gold
standards are 30951 stems large in the case of gold standard 1 and 47852 stems
for gold standard 2. From each, we took a random sample of 1000 stems and
used those as gold standards for our evaluation. To avoid overfitting, we changed
the samples several times while developing CISTEM, including after the end of
development for the final evaluation.

As you can see in Fig. 1, there are differences between the gold standards. For
the “absurd” example, gold standard 2 classified “absurd” as a different lemma



Developing a Stemmer for German Based on a Comparative Analysis 87

than “absurditäten” (absurdities) and thus put them in two seperate stems while
gold standard 1 sees them as having the same stem. The difference is even more
pronounced in the second example, where the first gold standard has one stem for
“relativier” (relative), one for “Relativismus” (a theory in philosophy), one for
“Relativität” (the general noun for relative) and one for “relativistisch” (relative,
but only in the context of Einstein’s theory of relativity).

From an information retrieval point of view, one would consider “Relativis-
mus” and “relativistisch” as belonging in one stem that relates to the theory of
Relativity, and the other two stems as belonging in another stem. Overall, gold
standard 2 is much more likely to seperate words into several different stems
while gold standard 1 is more likely to group them into a single stem. This
makes sense considering gold standard 2 thinks in lemmata, e.g., in a dictionary
one would like to have seperate entries for “Relativismus” and “Relativität”
while gold standard 1 groups them together because neither “ismus” nor “tät”
are lexical stems that can be assigned a word class.

This confirms our hopes that the two gold standards would capture two
ways of looking at stemming. Gold standard 1 represents a more aggressive-
stemming-friendly view and gold standard 2 a more conservative one. Personally,
we consider gold standard 1 on the whole to be more suitable for stemmer
evaluation, but arguments could also be made for the opposite point of view.
For this reason, both gold standards are included in the following evaluation
(Table 1).

Table 1. Two examples for the differences between the two gold standards

Gold standard 1 Gold standard 2

– absurderen absurdestem [...]
absurditäten absurdität

– absurderen absurdestem absurder
absurden [...]

– absurditäten absurdität

– relativem relatives [...]
relativistischerer [...] relativität
relativitäten

– relativieret relativiertest [...]

– relativität relativitäten

– Relativismus

– relativistischsten relativistischen [...]

3.3 Evaluation

We stemmed the Celex2 corpus. We then went through each of the stems from
the gold standard (1000 stems large) and matched them with a stem from the
stemmed corpus depending on how many of the words belonging to these two
stems matched. For each stem of the gold standard, we computed precision,
recall and f1-measure and then computed the average of each of those metrics
to form the overall evaluation results for that gold standard. The results can be
seen in Table 2 and are illustrated in Figs. 3a, b and 4.



88 L. Weissweiler and A. Fraser

Table 2. Evaluation results of different stemmers using our two gold standards, each
of which is for the same 1000 stems (note that CISTEM is our new stemmer which will
be introduced later in the paper)

Gold standard 1

Stemmer Snowball Text::German Caumanns UniNE Light UniNE Aggressive CISTEM

Precision 96.17% 97.56% 96.76% 98.39% 97.37% 96.83%

Recall 83.78% 79.29% 9.43% 67.69% 80.29% 89.73%

F1 89.55% 87.48% 92.95% 80.20% 88.01% 93.15%

Gold standard 2

Stemmer Snowball Text::German Caumanns UniNE Light UniNE Aggressive CISTEM

Precision 85.89% 96.00% 92.26% 96.43% 94.50% 92.43%

Recall 86.61% 86.97% 96.17% 70.91% 83.81% 96.45%

F1 86.25% 91.27% 94.17% 81.72% 88.83% 94.40%

Pr
ec

is
io

n

60 %

70 %

80 %

90 %

100 %

Recall

60 % 70 % 80 % 90 % 100 %

CISTEM
UniNE AgressiveUniNE Light

CaumannsText::German Snowball

(a) Gold standard 1

Pr
ec

is
io

n

60 %

70 %

80 %

90 %

100 %

Recall

60 % 70 % 80 % 90 % 100 %

CISTEM
UniNE Agressive

UniNE Light

Caumanns

Text::German

Snowball

(b) Gold standard 2

Fig. 3. Precision - recall values on the two gold standards

3.4 Results

The most surprising result of our evaluation was that the difference between
the two gold standards was not as pronounced as we expected, considering that
they represent the two ends of the spectrum of what one wants a stemmer to do.
The two gold standards agree on the best stemmer and the worst stemmer in
terms of precision, recall and f-measure. As can be seen in Fig. 4, these measures
differ for the three middle ranked stemmers Snowball, Text::German and UniNE
Aggressive.

The difference between the two gold standards is shown most clearly in their
assessment of the Snowball stemmer. This is to be expected as the stripping of
clearly derivational suffixes like “lich” or “ung” matches the stemming concept
of gold standard 1 quite closely, where suffixes like these suffixes are removed.
This explains why, while Snowball achieved the lowest precision on both gold
standards, the gap to the next best precision is much lower in gold standard 1



Developing a Stemmer for German Based on a Comparative Analysis 89

50%

60%

70%

80%

90%

100%

Sn
ow

ba
ll

Te
xt

::G
er

m
an

C
au

m
an

ns

U
ni

N
e 

L
ig

ht

U
ni

N
e 

A
gr

es
si

ve

C
IS

T
E

M

Gold Standard 1 Gold Standard 2

Fig. 4. F1-measures on both gold standards

(just 0.59% points) than in gold standard 2 (6.37% points), where Snowball’s
aggressive stemming is much more likely to affect precision negatively.

Being one of the more conservative stemmers, Text::German scores signifi-
cantly higher on gold standard 2. On gold standard 1, it achieves fourth place in
both recall and f-measure and third place in precision of the existing stemmers.
We attribute this mainly to the fact that Text::German stems at most one suffix
from a small list which doesn’t include derivational suffixes, which is guaranteed
to hurt recall on gold standard 1 because gold standard 1 requires more than
just very conservative suffix stripping. This same fact results in a relatively good
score on gold standard 2, achieving the second place (when compared with pre-
viously existing stemmers) in all metrics. We think that the main problem that
hurts its performance on both gold standards should be that Text::German iden-
tifies prefixes from a list, nearly all of which are clearly lexical, and strips them
according to a complicated set of rules. From an IR standpoint, the stripping of
lexical prefixes which clearly change the word’s meaning is suboptimal.

The Caumanns stemmer achieves first place (with respect to already exist-
ing stemmers) in both gold standards in recall and f-measure. The gap to the
other stemmers’ values is about 3% points on both gold standards. An inter-
esting point here is that while precision is significantly higher than recall on
gold standard 1, the opposite is true for gold standard 2. This points to the
Caumanns stemmer having achieved a middle line between both gold standards’
concepts of stemming. The stemmer is more conservative than gold standard
1 and more radical than gold standard 2. This, together with the large gap in
performance to the competitors, makes the Caumanns stemmer the best stem-
mer for German we have seen so far.



90 L. Weissweiler and A. Fraser

The light option of the UniNE stemmer, as expected, scores last in recall and
f-measure while having the highest precision on both gold standards. The gap
between precision and recall is larger in gold standard 1 (more than 30% points)
than in gold standard 2 (more than 25% points). As the express goal of the light
option is to merely strip affixes denoting plural, the lack of recall is naturally
more pronounced in gold standard 1 because it requires stemmers to be more
radical in order to score well. The overall bad performance is not surprising, as
stemming entails more than just stripping plural suffixes.

The agressive option of the same stemmer, on the other hand, achieves
mediocre results, coming in third place in f-measure on both gold standards.
While it does strip suffixes in several steps, it doesn’t do so recursively, which
is why it makes sense that the performance is about as good as the Snowball
stemmer, which has a similar approach. It also explains that the performance
is somewhere in the middle of all the existing stemmers as we have seen that
recursive suffix stripping in general performs best and one-time stripping worst,
because UniNE Aggressive’s approach is located in between these two ideas.

The clearest lesson to be drawn from this analysis is that the problem of exist-
ing stemmers is in recall. Precision is relatively similar for every stemmer, only
varying by 2.22% points while recall varies by 21.04% points in gold standard
1. The discrepancy is similarly pronounced in gold standard 2, where precision
varies by 10.54% points and recall by 25.54% points. Because of the nature of
f1-measure, recall therefore decides the stemmer’s f-measure ranking: in gold
standard 1, the recall order from best to worst exactly mirrors that of f-measure
and in gold standard 2, only the positions of Snowball and UniNE Aggressive,
the two middle stemmers, are reversed. The mean precision in gold standard 1
is 97.13% and the mean recall is 82.04%. The mean precision in gold standard 2
is 92.62% and the mean recall is 87.45%. Not only does recall vary much more,
it is also consistently much lower than precision.

4 Development

4.1 CISTEM Development

Following the insight that recall is the most promising area for stemmer develop-
ment, we focused on improving recall over existing stemmers with CISTEM. As
starting point, we used the Caumanns stemmer, as it was the best performing
stemmer of our evaluation, and tried to improve on it. We tried several changes
and evaluated each of them seperately to improve f-measure. One feature of the
Caumanns stemmer that we deleted was the substitution of “z” for “x”, which
improved precision slightly in gold standard 1 and changed no other metrics.
We also found that stripping “ge” before and after the word after the suffix
stripping, as proposed by Caumanns, didn’t work well. The version of this that
delivered the best performance was stripping “ge” as a prefix, before the suffix



Developing a Stemmer for German Based on a Comparative Analysis 91

stripping and only if the remaining word is at least four characters long. This is
consistent with the requirement for suffix stripping that the resulting word needs
to be at least four characters long, while the Caumanns stemmer undercuts that
requirement by removing “ge” after the suffix stripping without checking the
length of the result. Interestingly, introducing a new variable that measures true
length (necessary because substitutions of multiple characters by one character,
e.g., “ei” by “%” make the word shorter than it actually is) hurt performance
quite clearly. We also deleted the substitution of “ch” by “§” because we found
it hurt recall on gold standard 2 and changed nothing on gold standard 1. The
length constraint on the stripping of “nd”, which was at least five remaining
characters in the Caumanns stemmer, was changed to at least six, which doesn’t
only improve performance but also makes the algorithm simpler as “nd” is now
stripped in the same step as “em” and “er”. Our other contribution was to give
the steps a definitive order, which had not been clear in the Caumanns paper
and led to subtle flaws in third-party implementations we tried.

The resulting algorithm, which can be seen in Fig. 5, is simpler than the
Caumanns stemmer and easy to understand and implement. We will also offer
a context-insensitive version which ignores case for “t”-stripping because the
original Caumanns stemmer’s performance is drastically worse when using a
corpus of only lowercase words, which might be necessary in some contexts, but
would lead to the stemmer never stripping “t”.

4.2 Final Evaluation

CISTEM shows slight improvements over the Caumanns stemmer in both preci-
sion and recall. The difference in recall is more pronounced, which is consistent
with our goal of removing some constraints of the Caumanns stemmer to improve
recall.

If we look back to the example in Fig. 1, we can see that CISTEM stems
the four words correctly. It stems “adle” to “adl”, which is the same stem that
Caumanns assigned it, but stems the other three words to “adler” because the
length requirement for stripping “er” is that the resulting stem will be longer
than five characters (not four characters).

The main advantage of CISTEM over other stemmers available is that we
have a definitive algorithm shown in Fig. 5. The algorithm is bug free, the order
is fixed and we will make it available in a range of programming languages to
prevent flawed third-party implementations.

We hope that our new stemmer CISTEM will be useful in a wide range of
applications. In addition, stemming-based segmentation of German has recently
been shown to be effective in reducing vocabulary in neural machine translation
(Huck et al. 2017). So we will additionally provide a version of the algorithm
which segments words, rather than stemming them.



92 L. Weissweiler and A. Fraser

Fig. 5. The CISTEM algorithm

5 Conclusion

We presented two gold standards for stemming which represent two different
views on stemming. We then evaluated five existing stemmers for German on
those gold standards and discussed the results. Finally, we presented our own
stemmer, which improves on the stemmer of Caumanns and achieves state-of-
the-art results on both gold standards.

One of the main problems in stemmer development is the divide between the
stemmers that are published and those that are actually used in NLP applica-
tions. The Snowball stemmer continues to be most widely used because it is the
default stemmer for most NLP libraries and offers stemmers for a wide range of
European languages.



Developing a Stemmer for German Based on a Comparative Analysis 93

For this reason, we will publish official implementations in a range of pro-
gramming languages, starting with Perl, Python and Java. We are also planning
to release our gold standards in the hope that they will be used in further work
on stemming for German. The code and gold standards will be made available at
https://www.github.com/LeonieWeissweiler/CISTEM, and we hope to also be
included in some standard NLP packages in the future. Other future work would
be to find other ways of building a gold standard for stemming in order to have
one definitive gold standard where words are clustered exactly as they should be
for information retrieval. We were often obstructed in our development by hav-
ing to show improvements in both gold standards for every change, which could
be avoided by having just one gold standard. Another more unconventional idea
would be implementing a small rule-learning system that suggests new rules for
the stemmer based on their effectiveness in matching a gold standard or when
used actively in a working IR system.

Acknowledgments. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No. 644402
(HimL). This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No. 640550).

References

Baayen, R.H., Piepenbrock, R., Gulikers, L.: The CELEX Lexical Database (Release
2) on [CD-ROM]. Linguistic Data Consortium, University of Pennsylvania, Philadel-
phia, PA (1995)

Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python. O’Reilly
Media, Sebastopol (2009). ISBN 0596516495, 9780596516499

Braschler, M., Ripplinger, B.: Stemming and decompounding for German text retrieval.
In: Sebastiani, F. (ed.) ECIR 2003. LNCS, vol. 2633, pp. 177–192. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36618-0 13. http://dl.acm.org/
citation.cfm?id=1757788.1757806. ISBN 3-540-01274-5

Caumanns, J.: A fast and simple stemming algorithm for German words. Technical
report Nr. tr-b-99-16. Fachbereich Mathematik und Informatik, Freie Universität
Berlin, Oktober 1999

Huck, M., Riess, S., Fraser, A.: Target-side word segmentation strategies for neural
machine translation. In: Proceedings of the Second Conference on Machine Transla-
tion (WMT), Copenhagen, Denmark, September 2017

Lovins, J.B.: Development of a stemming algorithm. Mech. Transl. Comput. Linguist.
11(1), 22–31 (1968)

Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cam-
bridge University Press, Cambridge (2008). http://nlp.stanford.edu/IR-book/pdf/
irbookprint.pdf

https://www.github.com/LeonieWeissweiler/CISTEM
https://doi.org/10.1007/3-540-36618-0_13
http://dl.acm.org/citation.cfm?id=1757788.1757806
http://dl.acm.org/citation.cfm?id=1757788.1757806
http://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf
http://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf


94 L. Weissweiler and A. Fraser

Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
Savoy, J.: Light stemming approaches for the French, Portuguese, Germanand hungar-

ian languages. In: Proceedings of the 2006 ACM Symposium on Applied Computing,
pp. 1031–1035. ACM, New York (2006). http://doi.acm.org/10.1145/1141277.1141
523. ISBN 1-59593-108-2

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://doi.acm.org/10.1145/1141277.1141523
http://doi.acm.org/10.1145/1141277.1141523
http://creativecommons.org/licenses/by/4.0/

	Developing a Stemmer for German Based on a Comparative Analysis of Publicly Available Stemmers
	1 Introduction
	1.1 The Stemming Task
	1.2 Motivation
	1.3 Summary of Work

	2 Existing Stemmers for German and Related Work
	2.1 German Stemmers
	2.2 Evaluation Studies

	3 Evaluation
	3.1 Runtime Analysis
	3.2 Gold Standard Development
	3.3 Evaluation
	3.4 Results

	4 Development
	4.1 CISTEM Development
	4.2 Final Evaluation

	5 Conclusion
	References


