Skip to main content

Bone Health in Adolescents with Multiple Fractures

  • Chapter
  • First Online:
  • 463 Accesses

Abstract

Multiple fractures can be a common occurrence in adolescence, especially in the active teenager. It is important to understand what is considered abnormal, the work-up for abnormal fractures, the mechanism of fracture healing, and the risk factors for re-fracture. A differential diagnosis is presented for abnormal fractures in the adolescent patient. Abnormal fractures are defined as two or more long bone fractures by age 10, three of more long bone fractures by age 19, or one or more vertebral compression fractures with greater than 20% vertebral height loss in the absence of local disease or severe trauma. The work-up includes a thorough history and physical exam, laboratory testing, and baseline imaging. The imaging should include a standing lateral spine radiograph and a determination of bone mineral density. Risks for re-fracture include inadequate immobilization, incomplete bony union, inadequate reduction, middle or proximal one-third forearm fractures, age, and level of activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cooper C, Dennison EM, Leufkens HG, Bishop N, van Staa TP. Epidemiology of childhood fractures in Britain: a study using the general practice research database. J Bone Miner Res. 2004;19(12):1976–81. https://doi.org/10.1359/jbmr.040902.

    Article  PubMed  Google Scholar 

  2. Hedström EM, Svensson O, Bergström U, Michno P. Epidemiology of fractures in children and adolescents. Acta Orthop. 2010;81(1):148–53. https://doi.org/10.3109/17453671003628780.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Landin LA. Fracture patterns in children. Analysis of 8,682 fractures with special reference to incidence, etiology and secular changes in a Swedish urban population 1950–1979. Acta Orthop Scand Suppl. 1983;202:1–109. http://www.ncbi.nlm.nih.gov/pubmed/6574687. Accessed 1 June 2017.

  4. Bailey DA, Wedge JH, McCulloch RG, Martin AD, Bernhardson SC. Epidemiology of fractures of the distal end of the radius in children as associated with growth. J Bone Joint Surg Am. 1989;71(8):1225–31. http://www.ncbi.nlm.nih.gov/pubmed/2777851

  5. Parfitt AM. The two faces of growth: benefits and risks to bone integrity. Osteoporos Int. 1994;4(6):382–98. http://www.ncbi.nlm.nih.gov/pubmed/7696836

  6. Rauch F, Neu C, Manz F, Schoenau E. The development of metaphyseal cortex--implications for distal radius fractures during growth. J Bone Miner Res. 2001;16(8):1547–55. https://doi.org/10.1359/jbmr.2001.16.8.1547.

    Article  CAS  PubMed  Google Scholar 

  7. Bailey DA, Mckay HA, Mirwald RL, Crocker PRE, Faulkner RA. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the University of Saskatchewan Bone Mineral Accrual Study. J Bone Miner Res. 1999;14(10):1672–9. https://doi.org/10.1359/jbmr.1999.14.10.1672.

    Article  CAS  PubMed  Google Scholar 

  8. Faulkner RA, Davison KS, Bailey DA, Mirwald RL, Baxter-Jones ADG. Size-corrected BMD decreases during peak linear growth: implications for fracture incidence during adolescence. J Bone Miner Res. 2006;21(12):1864–70. https://doi.org/10.1359/jbmr.060907.

    Article  PubMed  Google Scholar 

  9. Currey JD. How well are bones designed to resist fracture? J Bone Min Res. 2003;18(4):591–8. https://doi.org/10.1359/jbmr.2003.18.4.591.

    Article  Google Scholar 

  10. Cheng JC, Shen WY. Limb fracture pattern in different pediatric age groups: a study of 3,350 children. J Orthop Trauma. 1993;7(1):15–22. http://www.ncbi.nlm.nih.gov/pubmed/8433194

  11. Goulding A, Cannan R, Williams SM, Gold EJ, Taylor RW, Lewis-Barned NJ. Bone mineral density in girls with forearm fractures. J Bone Miner Res. 1998;13(1):143–8. https://doi.org/10.1359/jbmr.1998.13.1.143.

    Article  CAS  PubMed  Google Scholar 

  12. Taylor RW, Mcauley KA, Williams SM, Barbezat W, Nielsen G, Mann JI. Reducing weight gain in children through enhancing physical activity and nutrition: the APPLE project. Int J Pediatr Obes. 2006;1(3):146–52. http://www.ncbi.nlm.nih.gov/pubmed/17899632

  13. Clark EM, Ness AR, Tobias JH. Bone fragility contributes to the risk of fracture in children, even after moderate and severe trauma. J Bone Miner Res. 2008;23(2):173–9. https://doi.org/10.1359/jbmr.071010.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Khosla S, Melton LJ, Dekutoski MB, Achenbach SJ, Oberg AL, Riggs BL. Incidence of childhood distal forearm fractures over 30 years: a population-based study. JAMA. 2003;290(11):1479–85. https://doi.org/10.1001/jama.290.11.1479.

    Article  CAS  PubMed  Google Scholar 

  15. Jones IE, Williams SM, Dow N, Goulding A. How many children remain fracture-free during growth? A longitudinal study of children and adolescents participating in the Dunedin Multidisciplinary Health and Development Study. Osteoporos Int. 2002;13(12):990–5. https://doi.org/10.1007/s001980200137.

    Article  CAS  PubMed  Google Scholar 

  16. Mäyränpää MK, Viljakainen HT, Toiviainen-Salo S, Kallio PE, Mäkitie O. Impaired bone health and asymptomatic vertebral compressions in fracture-prone children: a case-control study. J Bone Miner Res. 2012;27(6):1413–24. https://doi.org/10.1002/jbmr.1579.

    Article  PubMed  Google Scholar 

  17. Simonelli C, Chen Y-T, Morancey J, Lewis AF, Abbott TA. Evaluation and management of osteoporosis following hospitalization for low-impact fracture. J Gen Intern Med. 2003;18(1):17–22. http://www.ncbi.nlm.nih.gov/pubmed/12534759

  18. Donaldson AA, Gordon CM. Bone health in adolescents. Contemp Pediatr. 2013;30:14–23.

    Google Scholar 

  19. Ma D, Jones G. Television, computer, and video viewing; physical activity; and upper limb fracture risk in children: a population-based case control study. J Bone Miner Res. 2003;18(11):1970–7. https://doi.org/10.1359/jbmr.2003.18.11.1970.

    Article  PubMed  Google Scholar 

  20. Goulding A, Grant AM, Williams SM. Bone and body composition of children and adolescents with repeated forearm fractures. J Bone Miner Res. 2005;20(12):2090–6. https://doi.org/10.1359/JBMR.050820.

    Article  PubMed  Google Scholar 

  21. Clark EM, Tobias JH, Ness AR. Association between bone density and fractures in children: a systematic review and meta-analysis. Pediatrics. 2006;117(2):e291–7. https://doi.org/10.1542/peds.2005-1404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matković V, Kostial K, Simonović I, Buzina R, Brodarec A, Nordin BE. Bone status and fracture rates in two regions of Yugoslavia. Am J Clin Nutr. 1979;32(3):540–9. http://www.ncbi.nlm.nih.gov/pubmed/420146

  23. Goulding A, Rockell JE, Black RE, Grant AM, Jones IE, Williams SM. Children who avoid drinking cow’s milk are at increased risk for prepubertal bone fractures. J Am Diet Assoc. 2004;104(2):250–3. https://doi.org/10.1016/j.jada.2003.11.008.

    Article  PubMed  Google Scholar 

  24. Goulding A, Jones IE, Taylor RW, Manning PJ, Williams SM. More broken bones: a 4-year double cohort study of young girls with and without distal forearm fractures. J Bone Miner Res. 2000;15(10):2011–8. https://doi.org/10.1359/jbmr.2000.15.10.2011.

    Article  CAS  PubMed  Google Scholar 

  25. Harrington J, Sochett E. The child with multiple fractures, what next? Pediatr Clin N Am. 2015;62(4):841–55. https://doi.org/10.1016/j.pcl.2015.04.006.

    Article  Google Scholar 

  26. Bishop N, Braillon P, Burnham J, et al. Dual-energy X-ray aborptiometry assessment in children and adolescents with diseases that may affect the skeleton: the 2007 ISCD pediatric official positions. J Clin Densitom. 2008;11(1):29–42. https://doi.org/10.1016/j.jocd.2007.12.004.

    Article  PubMed  Google Scholar 

  27. Harel Z, Johnson CC, Gold MA, et al. Recovery of bone mineral density in adolescents following the use of depot medroxyprogesterone acetate contraceptive injections. Contraception. 2010;81(4):281–91. https://doi.org/10.1016/j.contraception.2009.11.003.

    Article  CAS  PubMed  Google Scholar 

  28. Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–30. https://doi.org/10.1210/jc.2011-0385.

    Article  CAS  PubMed  Google Scholar 

  29. Carey DE, Golden NH. Bone health in adolescence. Adolesc Med State Art Rev. 2015;26(2):291–325. http://www.ncbi.nlm.nih.gov/pubmed/26999874

  30. Mehler PS, Andersen AE. Eating disorders: a guide to medical care and complications. 2nd ed. Baltimore, MD: Johns Hopkins University Press; 2010.

    Google Scholar 

  31. Crabtree NJ, Arabi A, Bachrach LK, et al. Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: the revised 2013 ISCD pediatric official positions. J Clin Densitom. 2014;17(2):225–42. https://doi.org/10.1016/j.jocd.2014.01.003.

    Article  PubMed  Google Scholar 

  32. Adams JE. Quantitative computed tomography. Eur J Radiol. 2009;71(3):415–24. https://doi.org/10.1016/j.ejrad.2009.04.074.

    Article  PubMed  Google Scholar 

  33. van Staa TP, Cooper C, Leufkens HGM, Bishop N. Children and the risk of fractures caused by oral corticosteroids. J Bone Miner Res. 2003;18(5):913–8. https://doi.org/10.1359/jbmr.2003.18.5.913.

    Article  PubMed  Google Scholar 

  34. Alsufyani KA, Ortiz-alvarez O, Cabral DA, et al. Bone mineral density in children and adolescents with systemic lupus erythematosus, juvenile dermatomyositis, and systemic Vasculitis: relationship to disease duration, cumulative corticosteroid dose, calcium intake, and exercise. J Rheumatol. 2005;32(4):30–5.

    Google Scholar 

  35. Weitzmann MN. Endogenous TNFα lowers maximum peak bone mass and inhibits osteoblastic smad activation through NF-κB. J Bone Miner Res. 2007;22(5):646–55. https://doi.org/10.1359/JBMR.070121.

    Article  PubMed  Google Scholar 

  36. Caplan AI. Bone development and repair. BioEssays. 1987;6(4):171–5. https://doi.org/10.1002/bies.950060406.

    Article  CAS  PubMed  Google Scholar 

  37. Einhorn TA. The cell and molecular biology of fracture healing. Clin Orthop Relat Res. 1998;355(Suppl):S7–21. http://www.ncbi.nlm.nih.gov/pubmed/9917622

  38. McKibbin B. The biology of fracture healing in long bones. J Bone Joint Surg Br. 1978;60-B(2):150–62. http://www.ncbi.nlm.nih.gov/pubmed/350882

  39. Perren SM. Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop Relat Res. 1979;138:175–96. http://www.ncbi.nlm.nih.gov/pubmed/376198

  40. Ozaki A, Tsunoda M, Kinoshita S, Saura R. Role of fracture hematoma and periosteum during fracture healing in rats: interaction of fracture hematoma and the periosteum in the initial step of the healing process. J Orthop Sci. 2000;5(1):64–70. http://www.ncbi.nlm.nih.gov/pubmed/10664441

  41. Champagne CM, Takebe J, Offenbacher S, Cooper LF. Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2. Bone. 2002;30(1):26–31. https://doi.org/10.1016/S8756-3282(01)00638-X.

  42. Cho T-J, Gerstenfeld LC, Einhorn TA. Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res. 2002;17(3):513–20. https://doi.org/10.1359/jbmr.2002.17.3.513.

    Article  CAS  PubMed  Google Scholar 

  43. Kloen P, Doty SB, Gordon E, Rubel IF, Goumans M-J, Helfet DL. Expression and activation of the BMP-signaling components in human fracture nonunions. J Bone Joint Surg Am. 2002;84-A(11):1909–18. http://www.ncbi.nlm.nih.gov/pubmed/12429748

  44. Onishi T, Ishidou Y, Nagamine T, et al. Distinct and overlapping patterns of localization of bone morphogenetic protein (BMP) family members and a BMP type II receptor during fracture healing in rats. Bone. 1998;22(6):605–12. http://www.ncbi.nlm.nih.gov/pubmed/9626398

  45. Schmitt JM, Hwang K, Winn SR, Hollinger JO. Bone morphogenetic proteins: an update on basic biology and clinical relevance. J Orthop Res. 1999;17(2):269–78. https://doi.org/10.1002/jor.1100170217.

  46. Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury. 2005;36(12):1392–404. https://doi.org/10.1016/j.injury.2005.07.019.

    Article  PubMed  Google Scholar 

  47. Flynn JM, Skaggs DL, Waters PM. Rockwood and Wilkins’ fractures in children. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2014.

    Google Scholar 

  48. Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42(6):551–5. https://doi.org/10.1016/j.injury.2011.03.031.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hofman M, Koopmans G, Kobbe P, Poeze M, Andruszkow H, Brink PR, Pape HC. Improved fracture healing in patients with concomitant traumatic brain injury: proven or not? Mediat Inflamm. 2015. https://doi.org/10.1155/2015/204842. Epub 2015 Mar 22.51.

  50. Brinker MR, O’Connor DP, Monla YT, Earthman TP. Metabolic and endocrine abnormalities in patients with nonunions. J Orthop Trauma. 2007;21(8):557–70. https://doi.org/10.1097/BOT.0b013e31814d4dc6.

    Article  PubMed  Google Scholar 

  51. Donigan JA, Fredericks DC, Nepola JV, Smucker JD. The effect of transdermal nicotine on fracture healing in a rabbit model. J Orthop Trauma. 2012;26(12):724–7. https://doi.org/10.1097/BOT.0b013e318270466f.

    Article  PubMed  Google Scholar 

  52. Depeter KC, Blumberg SM, Becker SD, Meltzer JA. Does the use of ibuprofen in children with extremity fractures increase their risk for bone healing complications? J Emerg Med. 2017;52(4):426–32. https://doi.org/10.1016/j.jemermed.2016.09.027.

    Article  PubMed  Google Scholar 

  53. Marquez-lara A, Hutchinson ID, Smith TL, Miller AN, Carolina N. Nonsteroidal anti-inflammatory drugs and bone-healing. J Bone Joint Surg Br. 2016;4(3):1–14.

    Google Scholar 

  54. Landin LA. Epidemiology of children’s fractures. J Pediatr Orthop B. 1997;6(2):79–83. http://www.ncbi.nlm.nih.gov/pubmed/9165435

  55. Baitner AC, Perry A, Lalonde FD, Bastrom TP, Pawelek J, Newton PO. The healing forearm fracture: a matched comparison of forearm fractures. J Pediatr Orthop. 2007;27(7):743–7.

    Google Scholar 

  56. Bould M, Bannister GC. Refractures of the radius and ulna in children. Injury. 1999;30(9):583–6. https://doi.org/10.1016/S0020-1383(99)00151-5.

    Article  CAS  PubMed  Google Scholar 

  57. Schwarz N, Pienaar S, Schwarz AF, Jelen M, Styhler W, Mayr J. Refracture of the forearm in children. J Bone Joint Surg Br. 1996;78:740–4. https://doi.org/10.1097/01241398-199703000-00075.

    CAS  PubMed  Google Scholar 

  58. Fiala M, Carey TP. Paediatric forearm fractures: an analysis of refracture rates. Orthop Trans. 1994;18:1265–6.

    Google Scholar 

  59. Litton LO, Adler F. Refracture of the forearm in children: a frequent complication. J Trauma. 1963;3:41–51. http://www.ncbi.nlm.nih.gov/pubmed/13930996

  60. Ferrari SL, Chevalley T, Bonjour J-P, Rizzoli R. Childhood fractures are associated with decreased bone mass gain during puberty: an early marker of persistent bone fragility? J Bone Miner Res. 2006;21(4):501–7. https://doi.org/10.1359/jbmr.051215.

    Article  PubMed  Google Scholar 

  61. Tisosky AJ, Werger MM, McPartland TG, Bowe JA. The factors influencing the refracture of pediatric forearms. J Pediatr Orthop. 2015;35(7):677–81. https://doi.org/10.1097/BPO.0000000000000355.

    Article  PubMed  Google Scholar 

  62. Fung EB, Humphrey ML, Gildengorin G, Goldstein N, Hoffinger SA. Rapid remineralization of the distal radius after forearm fracture in children. J Pediatr Orthop. 2011;31(2):138–43. https://doi.org/10.1097/BPO.0b013e3182093ddd.

    Article  PubMed  PubMed Central  Google Scholar 

  63. White AA, Panjabi MM, Southwick WO. The four biomechanical stages of fracture repair. J Bone Joint Surg Am. 1977;59(2):188–92. http://www.ncbi.nlm.nih.gov/pubmed/845202

  64. Park HW, Yang IH, Joo SY, Park KB, Kim HW. Refractures of the upper extremity in children. Yonsei Med J. 2007;48(2):255–60. https://doi.org/10.3349/ymj.2007.48.2.255.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Blount WP, Schaefer AA, Johnson JH. Fractures of the forearms in children. JAMA. 1942;120:11–6.

    Article  Google Scholar 

  66. Masnovi ME, Mehlman CT, Eismann EA, Matey DA. Pediatric refracture rates after angulated and completely displaced clavicle. J Bone Jt Surg Am. 2014;96(8):674–81. https://doi.org/10.1097/bot.0000000000000135.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Rice Denning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nathe, K.M., Denning, J.R. (2018). Bone Health in Adolescents with Multiple Fractures. In: Pitts, S., Gordon, C. (eds) A Practical Approach to Adolescent Bone Health . Springer, Cham. https://doi.org/10.1007/978-3-319-72880-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72880-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72879-7

  • Online ISBN: 978-3-319-72880-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics