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Abstract  In our efforts to identify molecular mediators of the benefits of exercise 
to human health, we have uncovered a biochemical pathway in skeletal muscle that 
positively impacts mental health. This mechanism is activated by endurance train-
ing and controlled by the transcriptional coactivator PGC-1α1, which induces tran-
scription of several kynurenine aminotransferase (KAT) genes in muscle. KAT 
enzymes catabolize the neuroinflammatory tryptophan metabolite kynurenine, 
which can accumulate in the brain and lead to alterations associated with stress-
induced depression (among other psychiatric diseases). Here, we discuss our find-
ings in the context of what is known about the kynurenine pathway of tryptophan 
degradation and how its many metabolites can directly affect the brain. These find-
ings provide a mechanism for how physical exercise can improve mental health and 
offers potential therapeutic targets for future antidepressant medications.

�Introduction

The many benefits of physical exercise to human health are widely recognized. 
Depending on their type, intensity, duration, and frequency, different exercise 
modalities can be used to improve diverse physiological parameters (Hawley et al. 
2014). These include cardiovascular fitness, strength, energy metabolism, and resis-
tance to fatigue, among others. Importantly, exercise training can be used as a pro-
phylactic or therapeutic intervention for a variety of pathologies ranging from 
obesity and diabetes to cancer and mental health disorders (Cooper et  al. 2017; 
Hawley 2004). Indeed, maintaining an active lifestyle continues to be the best way 
to promote healthy longevity. However, the molecular mechanisms that allow the 
human body to adapt to exercise challenges are still poorly understood. This is true 
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for individual tissues and organs but even more so for the network of inter-organ 
communication events that coordinates whole-body adaptation to the multitude of 
stimuli that exercise training entails. Skeletal muscle plays a central role in this 
process and has been the most studied tissue in this context. From this work, we 
have learned valuable information about key players in the regulation of muscle 
function, such as the peroxisome proliferator-activated receptor (PPAR)-γ 
coactivator-1α (PGC-1α) proteins (Correia et al. 2015). This still expanding family 
of transcriptional coactivators is composed of several splicing variants with differ-
ent biological activities and discrete regulation, important for the many effects of 
physical exercise (Martínez-Redondo et al. 2015). By understanding these mecha-
nisms, we have also started to elucidate how myokines (muscle-derived factors with 
local and/or distal effects) communicate to the rest of the body the changes in skel-
etal muscle elicited by exercise (Giudice and Taylor 2017). For example, exercise 
training can reduce the levels of several mediators of chronic low-grade inflamma-
tion (Handschin and Spiegelman 2008), which increase with sedentary habits. This 
kind of sustained, unresolved, low-grade sterile inflammation has been linked to the 
etiology of many diseases such as diabetes, cancer, and depression. In this context, 
the discovery that trained muscle can actively participate in the catabolism of neu-
rotoxic tryptophan metabolites with known deleterious effects on mental health 
(Agudelo et al. 2014) has added another layer of complexity to the many functions 
of exercised muscle.

�The PGC-1α Family of Transcriptional Coactivators 
in Skeletal Muscle

Although our understanding of the mechanisms that regulate skeletal muscle adap-
tation to different exercise challenges remains incomplete, PGC-1α coactivators 
have been shown to play important roles in this process. These proteins are expressed 
in energy-demanding tissues such as heart, skeletal muscle, adipose tissue, and 
brain (Correia et al. 2015). Interestingly, the PGC-1α gene can be transcribed from 
alternative promoters and its transcripts can be spliced to generate several PGC-1α 
variants with different biological activities (Martínez-Redondo et  al. 2015; Ruas 
et  al. 2012). The expression of PGC-1α1 [the founding member of the family 
(Puigserver et  al. 1998)] is increased by aerobic exercise and regulates genes 
involved in mitochondrial biogenesis, adaptive thermogenesis, lipid and glucose 
homeostasis, and fiber-type switching, among others (Correia et al. 2015). For these 
reasons, reduced PGC-1α1 expression in different tissues has been linked to obesity, 
diabetes, sarcopenia, and neurodegeneration. Conversely, it has been shown that 
sustained PGC-1α1 expression in mouse skeletal muscle has several beneficial 
effects. PGC-1α4 is induced by resistance exercise training and promotes skeletal 
muscle growth and strength. Importantly, transgenic animals with elevated PGC-1α4 
levels in skeletal muscle show increased exercise performance and resistance to 
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atrophy and to cancer-induced cachexia (Ruas et  al. 2012). Of the many other 
PGC-1α isoforms (Martínez-Redondo et  al. 2015), PGC-1α2 and α3 have been 
shown to be involved in alternative splicing of their target genes (Martinez-Redondo 
et al. 2016), but their main biological roles in skeletal muscle remain unknown.

In addition to helping us understand local adaptations in skeletal muscle, PGC-1α 
coactivators have been used as tools to investigate the distal actions of exercise-
induced myokines. This research has been greatly helped by the use of mouse 
genetic models with tissue-specific gain or loss of PGC-1α function developed to 
mimic the physiological and pathophysiological situations associated with altered 
PGC-1α expression (Rowe and Arany 2014). From these efforts, PGCs have been 
found to regulate the expression of several myokines involved in inflammation 
(Handschin and Spiegelman 2008), angiogenesis (VEGF; Arany et  al. 2008; 
Chinsomboon et al. 2009), non-shivering thermogenesis (Fndc5/Irisin, Meteorin-
like 1, and β-aminoisobutyric acid; Boström et al. 2012; Rao et al. 2014; Roberts 
et al. 2014), and muscle mass regulation (Myostatin; Ruas et al. 2012). Similarly, 
the observation that muscle-specific PGC-1α1 transgenic mice (MKC-PGC-1α; Lin 
et al. 2002) are resistant to developing depressive-like behaviors when exposed to 
chronic mild stress resulted in the identification of skeletal muscle as an important 
site for kynurenine (Kyn) detoxification (Agudelo et al. 2014). Kyn and some of its 
metabolites are known neurotoxic compounds linked to mental health disorders, 
such as depression and schizophrenia (Cervenka et al. 2017).

�The Kyn Pathway of Tryptophan Degradation

Tryptophan (TRP) is an essential amino acid that cannot be synthesized by the 
human body and must be acquired from diet. TRP is taken up through the large 
neutral amino acid transporter (LAT) isoforms 1 to 4, which are also responsible for 
the uptake of other amino acids such as phenylalanine, tyrosine, and cysteine, and 
others. However, with the exception of the blood-brain barrier (BBB), LATs have 
sufficient capacity to avoid significant competition between TRP and other amino 
acids. A large fraction of plasma TRP circulates bound to albumin and is thus not 
available for cellular uptake and usage, since only free TRP is taken up by LATs. 
Under normal circumstances, only about 1% of absorbed TRP is used in protein 
synthesis, 4–5% is used in the production of the neurotransmitter serotonin and the 
hormone melatonin, and about 95% is catabolized by the Kyn pathway of TRP deg-
radation (KP). The KP generates NAD+ as an end-product (mainly in liver and kid-
ney; Houtkooper et  al. 2010) and a collection of intermediary metabolites with 
diverse biological activities (Fig. 1), which have been mainly studied in the context 
of psychiatric disease.

There are two isozymes that catalyze the first step of TRP degradation: trypto-
phan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO). TDO is spe-
cific for TRP and has a more restricted expression pattern (highest in the liver; Yu 
et al. 2016), whereas IDO is more ubiquitous and metabolizes any compound with 
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an indol ring structure. The expression and activity of TDO are regulated by cues 
that include tryptophan, glucocorticoid, and estrogen levels (Yu et al. 2016) and are 
inhibited under pro-inflammatory conditions. Under those conditions, liver TDO 
ceases to be the main isozyme responsible for TRP metabolism (normally account-
ing for 90%), and the extra-hepatic IDO takes on a more prominent role. This shift 
in TRP metabolism causes an increase of Kyn produced by immune cells that 
express high levels of IDO in an attempt to control the inflammatory environment. 
Indeed, as pro-inflammatory cytokines stimulate IDO activity, rising Kyn levels 
activate the aryl hydrocarbon receptor (AhR) in discrete immune populations and 
reduce the activity of natural killer cells (NKT), dendritic cells (DC), and T-cells 
while allowing for Treg proliferation. The net result of this process is an increase in 
immune tolerance. In line with this, some tumor cells express high IDO/TDO levels 
as a strategy for escaping the immune system (Platten et al. 2015). Importantly, not 
all cells possess the complete enzymatic machinery to fully convert TRP to NAD+. 
In general, the metabolites generated by the KP depend on which enzymes are 
expressed in each cell type. For example, Kyn aminotransferases (KATs), of which 
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there are four genes in the human genome, are responsible for metabolizing Kyn to 
kynurenic acid (Kyna) and 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA) 
(Fig. 1). This is particularly important in the brain, as both Kyna or XA have neuro-
protective properties as opposed to several of the downstream metabolites of the KP.

�KP Metabolites and Mental Health

The link between the KP and central nervous system (CNS) toxicity has been appre-
ciated for a long time (Lapin 1978). However, it was only in the early 1980s that 
quinolinic acid (QA) was shown to be a NMDAR agonist (Stone and Perkins 1981), 
thus providing the first mechanism for KP-induced CNS toxicity. The majority of 
Kyn reaches the brain from the periphery, as it can easily cross the BBB. However, 
Kyn can also be produced locally from TRP by astrocytes and microglial cells 
(Guillemin et  al. 2001; Stone and Darlington 2002). Interestingly, although Kyn 
accumulation in the CNS is consistently associated with neuroinflammation and 
negative outcomes, its precise mechanism of action remains elusive. In fact, activa-
tion of astrocytic AhR (for which Kyn is an agonist) has been shown to be anti-
inflammatory in the context of multiple sclerosis (Rothhammer et al. 2016). To date, 
KP-associated toxicity is mostly understood as the balance between the excitotoxic 
actions of QA and the neuroprotective effect of Kyna as a NMDAR and α7-nicotinic 
acetylcholine receptor (α7-nAChR) antagonist. Microglial cells can produce QA 
whereas astrocytes preferentially generate Kyna (although they can produce QA 
from extracellular 3-HK, which increases with neuroinflammation). Interestingly, 
elevated Kyna levels have been found in the cerebrospinal fluid of schizophrenic 
patients (Linderholm et al. 2012). Conversely, reducing brain Kyna levels in pre-
clinical studies (using a KAT2 inhibitor) resulted in improved cognitive function 
during chemically induced challenges to working and spatial memory tasks (Kozak 
et al. 2014). In this situation, the pathological consequences of high Kyna concen-
trations are likely to manifest due to hypoglutamatergic function. 3-HK induces 
neuronal apoptosis through free-radical generation (Okuda et al. 1998; Polyzos and 
Ketelhuth 2015). Several metabolites of the pathway have also been linked to neu-
rodegenerative diseases such as Alzheimer’s disease, Huntington’s disease, 
Parkinson’s disease, among others.

�Crosstalk Between Physical Exercise and KP Metabolites

The importance of TRP in exercise has been extensively investigated (Newsholme 
and Blomstrand 2006), not only due to its critical role in protein synthesis but also 
in efforts to understand the development of central fatigue and the interplay between 
diet, exercise, and mood disorders. For example, the increase in circulating free 
fatty acids that occurs during endurance exercise displaces TRP from albumin and 

Tryptophan-Kynurenine Metabolites in Exercise and Mental Health



88

increases free TRP levels, resulting in higher TRP uptake and metabolism in differ-
ent tissues, with direct impact on the KP.  Accordingly, an increase in free TRP 
plasma levels is followed by an increase in TRP and some of its metabolites in 
several brain regions associated with the control of mood and fatigue (Blomstrand 
et al. 1989; Newsholme and Blomstrand 2006).

High TRP uptake during exercise could lead to higher NAD+ production, which 
is indeed increased in tissues such as the liver (which is able to fully catabolize 
TRP). However, the risk of accumulating KP metabolites that can cross the BBB 
(e.g., Kyn and 3-HK) could have detrimental effects. Recently, it has been shown 
that exercise increases the expression of KAT enzymes in skeletal muscle (Agudelo 
et  al. 2014; Schlittler et  al. 2016), promoting the conversion of Kyn into Kyna, 
which does not cross the BBB (Agudelo et al. 2014). Peripheral Kyn catabolism 
prevents its accumulation in the brain and the associated deleterious effects. This is 
particularly relevant in the context of stress-induced depression, which is character-
ized by high Kyn levels. This work has provided a mechanism for how physical 
exercise can improve mental health. Exercise training activates muscle KAT expres-
sion and Kyn detoxification by inducing the expression of PGC-1α1 and the 
PPARα/δ transcription factors, which offers potential therapeutic targets for future 
antidepressant medications. Interestingly, elevated NAD+ levels could further pro-
mote this mechanism, as NAD+ is a positive regulator of Sirtuin1, which in turn 
activates PGC-1α1 through lysine deacetylation (Rodgers et al. 2005). Sirtuins have 
multiple effects on the regulation of cellular energy metabolism, metabolic enzymes 
and oxidative stress responses in mitochondria (Cantó et al. 2015). Therefore, alter-
ations in the KP may ultimately affect skeletal muscle metabolism and function 
through multiple concurrent mechanisms.

�Future Perspectives and Considerations

TRP is without doubt an important player in many critical functions of a living 
organism. In addition to being a building block for protein synthesis, TRP plays a 
role in mental health, energy homeostasis, and immune regulation. It is exciting to 
see research in these different areas becoming more and more interdisciplinary.

Although we have focused here mainly on post-absorptive TRP metabolism, this 
amino acid can be sequestered by gut microbiota and converted to tryptamine 
(Williams et al. 2014) or other indole compounds such as indole-3-propionic acid 
and indole-3-aldehyde (Rothhammer et al. 2016). Indol compounds serve as impor-
tant signals between bacteria and between bacteria and their host. Indols are also 
AhR agonists involved in the local immunomodulation of host tolerance responses 
and, distally, in the regulation of CNS inflammation (Hubbard et  al. 2015). It is 
therefore critical to consider the effect of the microbiome on TRP metabolism and 
host physiology. For example, germ-free (GF) mice show reduced anxiety-like 
behavior, and this phenotype is reversed after colonization. This observation sug-
gests that gut-derived molecules can modulate mood and possibly cognition, and it 
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opens interesting challenges in the discovery of novel pathways of gut-brain com-
munication (Heijtz et  al. 2011). Physical exercise also has an impact on gut 
microbiome composition, but it remains to be explored if this directly impacts on 
gut TRP metabolism.

The KP is highly conserved evolutionarily, which allows for its study in simpler 
organisms to dissect its many functions. For example, Kyna has been shown to be 
involved in C. elegans feeding behavior in a NMDAR-dependent mechanism 
(Lemieux et al. 2015). It will be interesting to continue exploring the role of KP 
metabolites as possible mediators of inter-organ communication, which could inte-
grate nutrition, metabolism, and immune responses, with all the physiological and 
pathophysiological implications this could have.
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