Skip to main content

Superhydrophobic Coatings for the Protection of Natural Stone

  • Chapter
  • First Online:
Book cover Advanced Materials for the Conservation of Stone

Abstract

Superhydrophobic and water-repellent coatings can have numerous applications including the protection of monuments and other stone objects of the cultural heritage. In this study, the fundamental observations, concepts, and equations provided by T. Young, R.N. Wenzel, A.B.D. Cassie, S. Baxter, and other researchers on the wettability of solid surfaces are briefly described. Moreover, some interesting methods which were devised to induce enhanced hydrophobicity and water repellency to natural stone are briefly reviewed. Finally, a case study is described in detail: siloxane-nanoparticle dispersions are sprayed on sandstone and marble specimens. Using nanoparticles (NPs) in appropriate concentration, the deposited polysiloxane-nanoparticle composite coatings exhibit superhydrophobic and water-repellent properties. It is demonstrated that superhydrophobicity and water repellency can be (1) achieved using exclusively aqueous products, (2) achieved using inherent hydrophilic materials, and (3) accompanied by superoleophobicity and oil repellency. The effects of the coatings on the color, vapor permeability, and water absorption by capillarity of the treated sandstone and marble are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manoudis P, et al. Fabrication of super-hydrophobic surfaces for enhanced stone protection. Surf Coat Technol. 2009;203(10):1322–8.

    Article  Google Scholar 

  2. Manoudis P, et al. Polymer-silica nanoparticles composite films as protective coatings for stone-based monuments. J Phys Conf Ser. 2007;61:1361. IOP Publishing

    Article  Google Scholar 

  3. Cappelletti G, Fermo P. 15—Hydrophobic and superhydrophobic coatings for limestone and marble conservation A2. In: Montemor MF, editor. Smart composite coatings and membranes. Cambridge: Woodhead Publishing; 2016. p. 421–52.

    Chapter  Google Scholar 

  4. Chiantore O, Lazzari M. Photo-oxidative stability of paraloid acrylic protective polymers. Polymer. 2001;42(1):17–27.

    Article  Google Scholar 

  5. Doherty B, et al. Efficiency and resistance of the artificial oxalate protection treatment on marble against chemical weathering. Appl Surf Sci. 2007;253(10):4477–84.

    Article  Google Scholar 

  6. Poli T, Toniolo L, Chiantore O. The protection of different Italian marbles with two partially fluorinated acrylic copolymers. Appl Phys A Mater Sci Process. 2004;79(2):347–51.

    Article  Google Scholar 

  7. Manoudis P, et al. Superhydrophobic films for the protection of outdoor cultural heritage assets. Appl Phys A Mater Sci Process. 2009;97(2):351–60.

    Article  Google Scholar 

  8. Young T. An essay on the cohesion of fluids. Philos Trans R Soc Lond. 1805;95:65–87.

    Article  Google Scholar 

  9. Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem Res. 1936;28(8):988–94.

    Article  Google Scholar 

  10. Cassie A, Baxter S. Wettability of porous surfaces. Trans Faraday Soc. 1944;40:546–51.

    Article  Google Scholar 

  11. Good RJ. A thermodynamic derivation of Wenzel’s modification of Young’s equation for contact angles; together with a theory of hysteresis1. J Am Chem Soc. 1952;74(20):5041–2.

    Article  Google Scholar 

  12. Johnson RE Jr, Dettre RH. Contact angle hysteresis. III. Study of an idealized heterogeneous surface. J Phys Chem. 1964;68(7):1744–50.

    Article  Google Scholar 

  13. Öner D, McCarthy TJ. Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir. 2000;16(20):7777–82.

    Article  Google Scholar 

  14. Chen W, et al. Ultrahydrophobic and ultralyophobic surfaces: some comments and examples. Langmuir. 1999;15(10):3395–9.

    Article  Google Scholar 

  15. Feng L, et al. Petal effect: a superhydrophobic state with high adhesive force. Langmuir. 2008;24(8):4114–9.

    Article  Google Scholar 

  16. Bhushan B, Her EK. Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal. Langmuir. 2010;26(11):8207–17.

    Article  Google Scholar 

  17. Teisala H, Tuominen M, Kuusipalo J. Adhesion mechanism of water droplets on hierarchically rough superhydrophobic rose petal surface. J Nanomater. 2011;2011:33.

    Article  Google Scholar 

  18. Manoudis PN, Gemenetzis D, Karapanagiotis I. A comparative study of the wetting properties of a superhydrophobic siloxane material and rose metal. Sci Cult. 2017;3(2):7–12.

    Google Scholar 

  19. Karapanagiotis I, Aifantis KE, Konstantinidis A. Capturing the evaporation process of water drops on sticky superhydrophobic polymer-nanoparticle surfaces. Mater Lett. 2016;164(Supplement C):117–9.

    Article  Google Scholar 

  20. Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta. 1997;202(1):1–8.

    Article  Google Scholar 

  21. Zorba V, et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf. Adv Mater. 2008;20(21):4049–54.

    Article  Google Scholar 

  22. Manoudis PN, et al. Superhydrophobic composite films produced on various substrates. Langmuir. 2008;24(19):11225–32.

    Article  Google Scholar 

  23. Chatzigrigoriou A, Manoudis PN, Karapanagiotis I. Fabrication of water repellent coatings using waterborne resins for the protection of the cultural heritage. Macromol Symp. 2013;331–332(1):158–65.

    Google Scholar 

  24. Manoudis PN, Karapanagiotis I. Modification of the wettability of polymer surfaces using nanoparticles. Prog Org Coat. 2014;77(2):331–8.

    Article  Google Scholar 

  25. Aslanidou D, Karapanagiotis I, Panayiotou C. Superhydrophobic, superoleophobic coatings for the protection of silk textiles. Prog Org Coat. 2016;97:44–52.

    Article  Google Scholar 

  26. Aslanidou D, Karapanagiotis I, Panayiotou C. Tuning the wetting properties of siloxane-nanoparticle coatings to induce superhydrophobicity and superoleophobicity for stone protection. Mater Des. 2016;108:736–44.

    Article  Google Scholar 

  27. Wheeler G. Alkoxysilanes and the consolidation of stone. Los Angeles, CA: Getty Publications; 2005.

    Google Scholar 

  28. Mosquera MJ, de los Santos DM, Rivas T. Surfactant-synthesized ormosils with application to stone restoration. Langmuir. 2010;26(9):6737–45.

    Article  Google Scholar 

  29. de Ferri L, et al. Study of silica nanoparticles–polysiloxane hydrophobic treatments for stone-based monument protection. J Cult Herit. 2011;12(4):356–63.

    Article  Google Scholar 

  30. Facio DS, Mosquera MJ. Simple strategy for producing superhydrophobic nanocomposite coatings in situ on a building substrate. ACS Appl Mater Interfaces. 2013;5(15):7517–26.

    Article  Google Scholar 

  31. Pedna A, et al. Synthesis of functionalized polyolefins with novel applications as protective coatings for stone cultural heritage. Prog Org Coat. 2013;76(11):1600–7.

    Article  Google Scholar 

  32. Li D, et al. The effect of adding PDMS-OH and silica nanoparticles on sol–gel properties and effectiveness in stone protection. Appl Surf Sci. 2013;266:368–74.

    Article  Google Scholar 

  33. Fermo P, et al. Hydrophobizing coatings for cultural heritage. A detailed study of resin/stone surface interaction. Appl Phys A. 2014;116(1):341–8.

    Article  Google Scholar 

  34. Esposito Corcione C, Striani R, Frigione M. Hydrophobic photopolymerizable nanostructured hybrid materials: an effective solution for the protection of porous stones. Polym Compos. 2015;36(6):1039–47.

    Article  Google Scholar 

  35. Luo Y, Xiao L, Zhang X. Characterization of TEOS/PDMS/HA nanocomposites for application as consolidant/hydrophobic products on sandstones. J Cult Herit. 2015;16(4):470–8.

    Article  Google Scholar 

  36. Liu Y, Liu J. Synthesis of TEOS/PDMS-OH/CTAB composite coating material as a new stone consolidant formulation. Constr Build Mater. 2016;122:90–4.

    Article  Google Scholar 

  37. Kapridaki C, Maravelaki-Kalaitzaki P. TiO2–SiO2–PDMS nano-composite hydrophobic coating with self-cleaning properties for marble protection. Prog Org Coat. 2013;76(2):400–10.

    Article  Google Scholar 

  38. D’Amato R, et al. Development of nanocomposites for conservation of artistic stones. Proc Inst Mech Eng N J Nanoeng Nanosyst. 2014;228(1):19–26.

    Google Scholar 

  39. Ugur I. Surface characterization of some porous natural stones modified with a waterborne fluorinated polysiloxane agent under physical weathering conditions. J Coat Technol Res. 2014;11(4):639–49.

    Article  Google Scholar 

  40. D’Orazio L, Grippo A. A water dispersed titanium dioxide/poly (carbonate urethane) nanocomposite for protecting cultural heritage: preparation and properties. Prog Org Coat. 2015;79:1–7.

    Article  Google Scholar 

  41. Cappelletti G, Fermo P, Camiloni M. Smart hybrid coatings for natural stones conservation. Prog Org Coat. 2015;78:511–6.

    Article  Google Scholar 

  42. Kronlund D, et al. Hydrophobization of marble pore surfaces using a total immersion treatment method–product selection and optimization of concentration and treatment time. Prog Org Coat. 2015;85:159–67.

    Article  Google Scholar 

  43. Gherardi F, et al. Efficient self-cleaning treatments for built heritage based on highly photo-active and well-dispersible TiO2 nanocrystals. Microchem J. 2016;126:54–62.

    Article  Google Scholar 

  44. La Russa MF, et al. Nano-TiO2 coatings for cultural heritage protection: the role of the binder on hydrophobic and self-cleaning efficacy. Prog Org Coat. 2016;91:1–8.

    Article  Google Scholar 

  45. Tiwari MK, et al. Highly liquid-repellent, large-area, nanostructured poly (vinylidene fluoride)/poly (ethyl 2-cyanoacrylate) composite coatings: particle filler effects. ACS Appl Mater Interfaces. 2010;2(4):1114–9.

    Article  Google Scholar 

  46. Basu BJ, Dinesh Kumar V. Fabrication of superhydrophobic nanocomposite coatings using polytetrafluoroethylene and silica nanoparticles. ISRN Nanotechnol. 2011;2011:803910.

    Google Scholar 

  47. Tserepi A, Vlachopoulou M, Gogolides E. Nanotexturing of poly (dimethylsiloxane) in plasmas for creating robust super-hydrophobic surfaces. Nanotechnology. 2006;17(15):3977.

    Article  Google Scholar 

  48. Morra M, Occhiello E, Garbassi F. Contact angle hysteresis in oxygen plasma treated poly (tetrafluoroethylene). Langmuir. 1989;5(3):872–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ioannis Karapanagiotis or Majid Hosseini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karapanagiotis, I., Hosseini, M. (2018). Superhydrophobic Coatings for the Protection of Natural Stone. In: Hosseini, M., Karapanagiotis, I. (eds) Advanced Materials for the Conservation of Stone. Springer, Cham. https://doi.org/10.1007/978-3-319-72260-3_1

Download citation

Publish with us

Policies and ethics