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Abstract. In the classification of multichannel electroencephalograph (EEG)
based BCI studies, the spatial and spectral information related to brain activities
associated with BCI paradigms are usually pre-determined as default without
speculation, which can lead to loses effects in practical applications due to indi‐
vidual variability across different subjects. Recent studies have shown that feature
combination of each specifically tailored for different physiological phenomena
such as Readiness Potential (RP) and Event Related Desynchronization (ERD)
might benefit BCI making it robust against artifacts. Hence, the objective is to
design a CSSBP with combined feature vectors, where the signal is divided into
several sub bands using a band pass filter, and this channel and frequency config‐
urations are then modeled as preconditions before learning base learners and
introducing a new heuristic of stochastic gradient boost for training the base
learners under these preconditions. Results showed that Boosting approach using
feature combination clearly outperformed the state-of-the-art algorithms, and
improved the classification performance, resulting in increased robustness.
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1 Introduction

Brain-computer interfaces (BCIs) provide a communication channel for a user to control
an external device using only one’s brain neural activity. They can be used as a reha‐
bilitation tool for patients with severe neuromuscular disabilities [7], and also a range
of other applications including neural prosthesis, Virtual Reality (VR), internet access
etc. Among different types of neuroimaging techniques, electroencephalogram (EEG)
is among one of the non-invasive methods exploited mostly in BCI experiments. And,
among them event related desynchronization (ERD), visually evoked potential (VEP),
slow cortical potential (SCP), and P300 evoked potentials are widely used for BCI
studies.
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In accordance with the topographic patterns of brain rhythm modulations, feature
extraction using Common Spatial Patterns (CSP) algorithm [17] provides subject-
specific and discriminant spatial filters. However, CSP has some limitations, as it is
sensitive to frequency bands related to neural activity, because of that the frequency
band are manually selected or set to a broad band filter. Apart from that, it also results
in overfitting problem when dealt with large number of channels. Hence, the problem
of overfitting the classifier and spatial filter rises due to trivial channel configuration.
Henceforth, a simultaneous optimization of spatial and spectral filter is highly desirable
in BCI studies.

Recent years, motor imagery (MI) based BCI has proven to be an independent system
with high classification accuracy. Most of the MI based BCI use brain oscillations at mu
(8–12 Hz) and beta (13–26 Hz) rhythms, which displays particular areas of event related
desynchronization (ERD) [16] each corresponding to respective MI states (such as right
hand or right foot motion). Apart from that, Readiness-potential (RP) [18] which is a
slow negative event-related potential that appears before a movement is initiated can
also be used as input to BCI to predict future movements. RP is mainly divided into
early RP and late RP. Early RP is slow negative potential that begins 1.5 s before action,
which is immediately followed by late RP that occurs 500 ms before the movement. In
MI based BCI, combining of features vectors [5] i.e., ERD and RP have shown a signif‐
icant boost in the classification performance.

In the literature, several number of sophisticated CSP based algorithms have been
witnessed especially in the BCI study. A brief review has been presented here. Taking
into account of avoid overfitting and selection of optimal frequency bands for CSP
algorithm, various methods were proposed. To avoid overfitting problem, Regularized
CSP (RCSP) [13] was proposed, in which the regularization information was added into
the CSP learning procedure. The Common Spatio-Spectral Pattern (CSSP) [11] is an
extension of CSP algorithm with time delayed sample. However, due to flexibility issues
the Common Sparse Spectral-Spatial Pattern (CSSSP) [6] was presented, where its FIR
filter consists of single time delay parameter. Since, these methods were computationally
expensive, a Spectrally-weighted Common Spatial Pattern (SPEC-CSP) [19] was
designed which alternatively optimizes the temporal filter in frequency domain and then
the spatial filter in the iteration process. To improve the performance of SPEC-CSP,
Iterative Spatio-Spectral Pattern Learning (ISSPL) [22] was proposed which does not
rely on statistical assumptions and optimizes all temporal filters under a common opti‐
mization framework.

Despite of various studies and advanced algorithm, it is still a challenge to extract
optimal spatial spectral filters for BCI studies, so as to be used as a rehabilitation tool
especially for disabled subjects. The spatial and spectral information related to brain
activities associated with BCI paradigms are usually pre-determined as default in EEG
analysis without speculation, which can lead to loses effects in practical applications
due to individual variability across different subjects. Hence, to solve this issue, a CSSBP
[12] with combined feature vectors is designed for BCI based paradigms, since the
combination of features each corresponding to different physiological phenomena such
as Readiness Potential (RP) and Event Related Desynchronization (ERD) can benefit
BCI making it more robust against artifacts from non-Central Nervous System (CNS)
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activity such as eye blinks (EOG) and muscle movements (EMG) [5]. At first, the EEG
signal is first divided into several sub bands using a band pass filter, then the channel
and frequency bands are modeled as preconditions before classifying and a heuristic of
stochastic gradient boost is used to train the base learners under these preconditions.
The effectiveness and robustness of the designed algorithm along with feature combi‐
nation is evaluated on widely used benchmark dataset BCI competition IV (IIa). The
remaining part of the paper is organized as follows; a detailed design of proposed
Boosting Algorithm is given in Sect. 2, performance comparison results shown in
Sect. 3. Finally, conclusion is given in Sect. 4.

2 Proposed Algorithm

Under this section, a combination model of CSSBP (common spatial spectral boosting
pattern) with feature combination is given in detail; it includes modeling the problem,
and learning algorithm for the model. The model consists of five stages, data prepro‐
cessing which includes multiple spectral filtering by decomposing the signal into several
sub bands using a band pass filter and spatial filtering, feature extraction using common
spatial pattern (CSP), feature combination, training the weak classifiers, and pattern
recognition with the help of a combinational model. The architecture of the designed

Fig. 1. Block diagram of proposed boosting pattern
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algorithm is shown in Fig. 1. The EEG data is firstly spatial filtered and band pass filtered
under multiple spatial-spectral preconditions.

Afterwards, the CSP algorithm is applied to extract features of the EEG training
dataset and combine these feature vectors, then the weak classifiers {fm}

M
m=1, are trained

and combined to a weighted combination model. Lastly, a new test sample x̂ is classified
using this combination model.

2.1 Problem Design

During BCI studies, the two main concerns are the channel configuration and frequency
band, which are predefined as default for implementing EEG analysis. But, predefining
these conditions without deliberations leads to poor performance while executing it in
a real scenario due to subject variability in EEG patterns. Hence, an efficient and robust
configuration is desirable in case of practical applications.

To model this problem, let us denote the training dataset as Etrain = (xi, yi)
N
i=1, where

Ei is the ith sample and yi is its corresponding label. The main aim is to find a subset
ω c ν, by using a set of all probable preconditions ν, which generates a combination
model F by incorporating all sub models trained under condition WM (WM ϵ ω) and
reducing the misclassification rate on the train dataset Etrain, given by,

ω = arg minω

1
N

|
|
|
Ei : F

(

xi,ω
)

≠ yi
N

i=1
|
|
|

(1)

In the following part of this section, 2 homogeneous problems are modeled in detail
and then an adaptive boosting algorithm is designed to solve them.

Spatial Channel and Frequency Band Selection. For channel selection, the aim is to
select an optimal channel set S(S ⊂ U), where U is the universal set including all possible
channel subsets for set of channels C so that each subset Um in U satisfies |Um| ≤ |C|
(here |.| is used to represent the size of the corresponding set), which produces an optimal
combination classifier F on the training data by combining base classifiers learned under
different channel set preconditions. Therefore, we get,

F
(

Etrain;S
)

=
∑

Sm∈S
𝛼mfm

(

Etrain;Sm

)

(2)

Where F is the optimal combination model, fm is mth sub model learned with channel
set precondition Sm, Etrain is the training dataset, and 𝛼m is combination parameter. The
original EEG Ei is multiplied with the obtained spatial filter, to obtain a projection of Ei

on channel set Sm, which is the alleged channel selection. In the simulation work, 21
channels were selected, denoted as universal set of all channels, C = (CP6, CP4, CP2,
C6, C4, C2, FC6, FC4, FC2, CPZ, CZ, FCZ, CP1, CP3, CP5, C1, C3, C5, FC1, FC3,
FC5), where each one indicates an electrode channel.

For frequency band selection, the spectra denoted as G is simplified as a closed
interval, where the elements are all integer points (e.g., G is Hz). Here G is split into
various sub-bands B and D as given in [12, 14], which denotes a universal set composed
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of all possible sub-bands. While selection of optimal frequency band, the objective is to
obtain an optimal band set B (B ⊂ D), so that an optimal combination classifier on the
training data is produced.

F
(

Etrain;B
)

=
∑

Bm∈B
𝛼mfm

(

Etrain;Bm

)

(3)

Where fm is mth weak classifier learned by sub-band Bm. In the simulation study, a fifth
order zero phase forward/reverse FIR filter was used to filter the raw EEG signal Ei into
sub bands Bm.

2.2 Model Learning Algorithm

Here, the models of channel selection and frequency selection are combined to form a
two-tuple, ϑm = (Sm, Bm), it is used to denote a spatial-spectral precondition, and ν is
represented as a universal set including all these spatial-spectral preconditions. Lastly,
the combination function can be computed as

F
(

Etrain;ϑ
)

=
∑

ϑm∈ϑ
𝛼mfm

(

Etrain;ϑm
)

(4)

Hence, for each spatial-spectral precondition ϑm ∈ ϑ, the training dataset Etrain is
filtered under ϑm. The CSP features are obtained by the filtered training dataset Etrain and
these features of individual physiological nature were combined using PROB method
[1]. Let us denote the N features by random variables Xi, i = 1,… , N having class labels
as Y ∈ {±1}. An optimal classifier fi is defined for each feature i on the single feature
space Di hence reducing the misclassification rate. Let gi,y denote the density of
fi
(

Xi|Y = y
)

 for each i and labels say y = +1 or −1. Then f is the optimal classifier on
the combined feature space D = (D1, D2,… , DN), and X is the combined random vari‐
able X = (X1, X2,… , XN), densities of f (X |Y = y) is given by gy, hence under the
assumption of equal class prior for x =

(

x1, x2,… , xN
)

∈ D,

fi

(

xi;𝛾(𝜗i)
)

= 1 ↔ f̂i

(

xi,𝛾(𝜗i)
)

:= log

(

gi,1
(

xi

)

gi,−1
(

xi

)

)

> 0 (5)

Where γ is the model parameter determined by 𝜗i and Etrain, and incorporating inde‐
pendence between the features to the above equation results in an optimal decision
function given by,

f (x;𝛾(𝜗)) = 1 ↔ f̂ (x;𝛾(𝜗)) =
∑N

i=1
f̂i

(

xi,𝛾(𝜗i)
)

> 0 (6)

In this, the assumption is that, for each class the features are Gaussian distributed
with equal covariance, i.e., Xi|Y = yN

(

𝜇i,y,
∑

i
)

, with wi: =
∑−1

i
(𝜇i,1 + 𝜇i,−1), then the

classifier,
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f (x;𝛾(𝜗)) = 1 ↔ f̂ (x;𝛾(𝜗)) =
∑N

i=1
[wT

i
xi −

1
2
(

𝜇i,1 + 𝜇i,−1
)T

wi] > 0 (7)

Then obtained weak classifier can be rewritten as fm

(

Etrain;ϑm
)

, which is trained
using the boosting algorithm. Thus, the classification error defined earlier can be
formulated as,

{𝛼, 𝜗}M

0 = min{𝛼,𝜗}M
0

∑N

i=1
L

(

yi,
∑M

m=0
𝛼mfm

(

xi;γ(ϑm)
)
)

(8)

A Greedy approach [8] is used to solve (8), which is given in detail below,

F
(

Etrain, 𝛾 , {𝛼, 𝜗}M

0

)

=
∑M−1

m=0
𝛼mfm

(

Etrain;γ
(

ϑm
))

+ 𝛼MfM

(

Etrain;γ
(

ϑM
))

(9)

Transforming the Eq. (9) into a simple recursion formula we get,

Fm

(

Etrain

)

= Fm−1
(

Etrain

)

+ 𝛼mfm

(

Etrain;γ
(

ϑm
))

(10)

We suppose, Fm−1
(

Etrain

)

 is known, then fm and 𝛼m can be determined by,

Fm

(

Etrain

)

= Fm−1
(

Etrain

)

+ arg minf

∑N

i=1 L
(

yi,
[

Fm−1
(

xi

)

+ 𝛼mfm

(

xi;𝛾(𝜗m)
)])

(11)

The problem in (11) is solved by using a steepest gradient descent [9], and the pseudo-
residuals are given by,

r𝜋(i)m = −∇FL
(

y𝜋(i), F(x𝜋(i))
)

= −[
𝜕L

(

y𝜋(i), F(x𝜋(i))
)

F(x𝜋(i))
]F(x𝜋(i))=Fm−1(x𝜋(i))

(12)

Here, the first N̂ elements of a random permutation of {i}N
i=1 are given by {𝜋(i)}N̂

i=1.
Henceforth, a new set {(x𝜋(i), r𝜋(i)m)}

N
i=1, which signifies a stochastically partly best

descent step direction, is produced and employed to learn γ(ϑm) given by,

γ(ϑm) = arg min𝛾 ,𝜌

∑N̂

i=1

[

r𝜋(i)m − 𝜌f
(

x𝜋(i);𝛾m(ϑm)
)]

(13)

The combination coefficient 𝛼m is obtained with 𝛾m(ϑm) as,

𝛼m = arg min𝛼

∑N

i=1
L
(

yi,
[

Fm−1
(

xi

)

+ 𝛼fm

(

xi;γ
(

ϑm
))])

(14)

Here, each weak classifier fm is trained under a random subset {𝜋(i)}N
i=1 (without

replacement) from the full training data set. This random subset is used instead of the
full sample, to fit the base learner as shown in Eq. (13) and the model update is computed
using Eq. (14) for the current iteration. During the iteration, a self-adjusted training data
pool P is maintained at background, given in detail in Algorithm 1. Then, the number
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of copies is computed using local classification error and these copies of incorrectly
classified samples are then added to the training data pool.

2.3 Algorithm 1: Architecture of Proposed Boosting Algorithm

Input: The EEG training dataset given by {xi, yi}
N
i=1, L(y, x) is the squared error loss

function, number of weak learners denoted by M, and ν is the set of all preconditions.

(1) Initialize the training data pool Po = Etrain = {xi, yi}
N
i=1,

(2) for m = 1 to M.
(3) Generate a random permutation

{π(i)}|Pm−1|

i=1 = randperm(i)|Pm−1|

i=1

(4) Select the first N̂ elements {π(i)}N̂
i=1 as (xi, yi)

N̂
i=1, from Po.

(5) Use this {π(i)}N̂
i=1 elements to optimize new learner fm and its related parameters is

obtained in output as,

Output: F is the optimal combination classifier, weak learners obtained as {fm}
M
m=1,

where {αm}
M
m=1 is the weights of weak learners and {ϑm}

M
m=1 is the preconditions under

which these weak learners are learned.

(6) Input (xi, yi)
N
i=1, and ϑ into a classifier using CSP, extract features and combine

these feature vectors to generate family of weak learners.

(7) Initialize P, F0(Etrain) = arg minα

∑N
i=1 L(yi, α)

(8) Optimalize fm
(

Etrain;γ(ϑm)
)

 as defined in Eq. (10).
(9) Optimalize αm as defined in Eq. (11).

(10) Update Pm using the following steps,

A. Use current local optimal classifier Fm to split the original training set Etrain = (xi, yi)
N
i=1

into two parts TTrue = {xi, yi}i:yi
= Fm(xi), and TFalse = {xi, yi}i:yi

≠ Fm(xi)

Re-adjust the training data pool:

B. For each 
(

xi, yi
)

∈ TFalse do.
C. Select out all 

(

xi, yi
)

∈ Pm−1 as {xn(k), yn(k)}
K
k=1.

D. Copy {xn(k), yn(k)}
K
k=1 with d(d ≥ 1) times so that we get total (d + 1)K duplicated

samples.
E. Return these (d + 1) K samples into Pm−1 and we get a new adjusted pool Pm. And

Fm
(

Etrain
)

= Fm−1
(

Etrain
)

+ αmfm
(

Etrain;γ(ϑm)
)

F. end for.
(11) end for.
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(12) for each fm
(

Etrain;γ(ϑm)
)

, use mapping F ↔ 𝜗, to obtain its corresponding precon‐
dition ϑm.

(13) Return F, 
{

fm
}M

m=1, 
{

αm
}M

m=1, and 
{

ϑm
}M

m=1.

With the help of Early stopping strategy [23], the iteration time M is determined to

avoid overfitting, using N̂ = N, doesn’t introduce randomness, hence smaller N̂
N

 fraction,

incorporates more overall randomness into the process. In this work, N̂
N

= 0.9 and a
comparably satisfactory performance is obtained for the above approximation. While
adjusting P, the copies of incorrectly classified samples, d is computed by the local

classification error, e =
|
|TFalse

|
|

N
 is given by,

d = max(1,
⌊ 1 − e

e+ ∈

⌋

) (15)

Here, the parameter ∈ is called as accommodation coefficient, and e is always less
than 0.5, and decreases during the iterations, so that large weights on samples will be
given which were incorrectly classified by strong learners.

3 Result

The robustness of the designed algorithm was assessed on dataset obtained from BCI
competition IV (IIa) dataset [2]. In order to remove artifacts obtained from eye and
muscle movements, FastICA was employed [15]. For comparing the performance and
efficiency of the designed algorithm, Regularized CSP (RCSP) [13] was used for
feature extraction. In this, model parameter λ for RCSP, were chosen on the training
set using a Hold Out validation procedure. In case of the four-class motor imagery
classification task for dataset II, one-versus-rest (OVR) [21] strategy was employed
for CSP. PROB method [1] was utilized for feature combination which incorporates
independence between ERD and LRP features. Feature selection was done to select
relevant features, since as more features cannot improve the training accuracy. Here

feature selection was done using Fisher score (a variant, J =
‖
‖μ+ − μ−

‖
‖

2

σ+ + σ−

) [10], it

makes selection by measuring the discrimination of individual feature in the feature
vector for classification. Then the features with largest fisher score are selected as
most discriminative features. Linear Discriminant Analysis (LDA) [4] which mini‐
mizes the expected risk of misclassification rate was utilized for classification.

Here, the most optimal channel using [20] for all four MI movements i.e., left hand,
right hand, foot and tongue were CP4, Cz, FC2, and C1. The 2-D topoplot maps of peak
amplitudes of boosting based CSSP filtered EEG in each electrode for subject S1 is
shown in Fig. 2.
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Fig. 2. 2-D topoplot maps of peak amplitude of Boosting based CSSP filtered EEG in each
channel for subject S1 in BCI competition IV (II a) dataset.

To compute the spatial weight for each channel, the quantitative vector,
L =

∑

Si∈S αiSi [17] was used where Si is the channel sets and αi are their weights. The
spectral weights were computed as given in [12] and then projected onto the frequency
bands. In addition, the temporal information were also obtained and visualized. The
training dataset are preprocessed under the spatial-spectral pre-condition ϑm ∈ ϑ, which
results in a new dataset on which spatial filtering is done using CSP to obtain the spatial
patterns. Then the first two components obtained by CSP are projected onto the space
yielding the CSP filtered signal Em. The peak amplitude PmCi for Em and each channel
Ci ∈ C. Then the PmCi is averaged over all set of preconditions ϑm ∈ ϑ, computed as
PCi

= (
1
|𝜗|

)
∑

ϑm∈ϑ
αmPmCi

 where αm is the corresponding weight for the mth condition,

which is then visualized using a 2-D topoplot map. From the topoplot, it can be observed
that the left hand and right hand movement resulted in activation over the right and left
hemisphere of the brain, the foot movement activated the central cortical area and tongue
showed activation in the motor cortex region.

The classification results of the test dataset for the proposed method and the other
competing method i.e., Regularized CSP (RCSP) is detailed as follows. In all the subjects
the maximum number of iterations, M of the boosting algorithm was set to 180, which
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was computed using early stopping strategy so as to avoid overfitting, and ϵ was set to
0.05. The cohen’s kappa values for all 9 subjects in the BCI IV(IIa) dataset is shown in
Fig. 3. In case of dataset 2, the CSSBP outperformed the RCSP algorithm and showed
highest average cohen’s kappa value [3]. From the kappa values, it can be seen that when
feature vectors are combined in RCSP algorithm, there was a significant improvement
in kappa values in all subjects (except for subjects S4 and S6).

Fig. 3. Cohen’s kappa values for all the 9 subjects in BCI IV (II a) dataset, where A is RCSP, B
is RCSP with combined feature vectors, C is Boosting based CSSP (CSSBP), and D is Boosting
based CSSP (CSSBP) with combined feature vectors.

Whereas the proposed method improved the kappa values compared to the above
algorithm and moreover when feature vectors were combined, it outperformed CSSBP
with single feature when compared with combined feature vectors. The statistical anal‐
ysis was done using IBM SPSS ver. 23., it showed significant difference between
designed method and the other methods used for comparison in a Mann-Whitney U test.
For all the cases, the designed method outperformed for level of significance p < 0.05,
as shown in Fig. 4.
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Fig. 4. Boxplots of RCSP and Boosting Approach, where A is RCSP, B is RCSP with combined
feature vectors, C is CSSBP, and D is CSSBP with combined feature vectors for BCI IV (IIa)
dataset (p < 0.05).

4 Conclusion

In this work, a boosting based common spatial-spectral pattern (CSSBP) algorithm with
feature combination has been designed for multichannel EEG classification. Here, the
channel and frequency configurations are divided into multiple spatial-spectral precon‐
ditions by using a sliding window strategy. Under these preconditions, the weak learners
are trained using a boosting approach. The motive is to select the most contributed
channel groups and frequency bands related to neural activity. From the results, it can
be seen that the CSSBP clearly outperformed the other method use for comparison. In
addition, combining the widely used feature vectors ERD and readiness potentials (RP)
significantly improved the classification performance compared to CSSBP and resulted
in increased robustness.

The PROB method was utilized which incorporates independence between ERD and
LRP features enhanced the performance. This can also be used to better explore the
neurophysiological mechanism of underlying brain activities. Feature combination of
different brain tasks in feedback environment, where the subject is trying to adapt with
the feedback scenario might cause the learning process complex and time consuming,
so for that this process needs to investigate further in future online BCI experiments.
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