Skip to main content

Tactile Sensing and Machine Learning for Human and Object Recognition in Disaster Scenarios

  • Conference paper
  • First Online:
ROBOT 2017: Third Iberian Robotics Conference (ROBOT 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 694))

Included in the following conference series:

Abstract

This paper presents the application of machine learning to tactile sensing for rescue robotics. Disaster situations often exhibit low-visibility scenarios where haptic feedback provides a valuable information for the search of potential victims. To extract haptic information from the environment, a tactile sensor attached to a lightweight robotic arm is used. Then, methods based on the SURF descriptor, support vector machines (SVM), Deep Convolutional Neural Networks (DCNN) and transfer learning are implemented to classify the data. Besides, experiments have been carried out, to compare those procedures, using different contact elements, such as human parts and objects that could be found in catastrophe scenarios. The best achieved accuracy of \(92.22\%\), results from the application of the transfer learning procedure using a pre-trained DCNN and fine-tuning the classification layer of the network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelrahman, W., Wei, L., Mullins, J., Nahavandi, S.: Wireless haptic rendering for mobile platforms. In: Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, pp. 2213–2217. IEEE (2012). https://doi.org/10.1109/ICSMC.2012.6378069

  2. Ang, Q.Z., Horan, B., Nahavandi, S.: Multipoint haptic mediator interface for robotic teleoperation. IEEE Syst. J. 9(1), 86–97 (2015). https://doi.org/10.1109/JSYST.2013.2283955

    Article  Google Scholar 

  3. Baishya, S.S., Bauml, B.: Robust material classification with a tactile skin using deep learning. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8–15. IEEE (2016). https://doi.org/10.1109/IROS.2016.7758088

  4. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014

    Article  Google Scholar 

  5. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1007/BF00994018

    MATH  Google Scholar 

  6. Espes, D., Pistea, A.M., Canaff, C., Iordache, I., Parc, P.L., Radoi, E.: New method for localization and human being detection using UWB technology: helpful solution for rescue robots. arXiv preprint arXiv:1312.4162 (2013)

  7. García-Cerezo, A., Mandow, A., Martínez, J.L., Gómez-de Gabriel, J., Morales, J., Cruz, A., Reina, A., Serón, J.: Development of ALACRANE: a mobile robotic assistance for exploration and rescue missions. In: SSRR2007 - IEEE International Workshop on Safety, Security and Rescue Robotics Proceedings, pp. 1–6. IEEE (2007). https://doi.org/10.1109/SSRR.2007.4381269

  8. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe. In: Proceedings of the ACM International Conference on Multimedia - MM 2014, vol. 1436, pp. 675–678 (2014). https://doi.org/10.1145/2647868.2654889

  9. Khasnobish, A., Jati, A., Singh, G., Bhattacharyya, S., Konar, A., Tibarewala, D., Kim, E., Nagar, A.K.: Object-shape recognition from tactile images using a feed-forward neural network. In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2012). https://doi.org/10.1109/IJCNN.2012.6252593

  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)

    Google Scholar 

  11. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time series. Handb. Brain Theor. Neural Networks 3361(10), 1995 (1995)

    Google Scholar 

  12. Likas, A., Vlassis, N., Verbeek, J.J.: The global k-means clustering algorithm. Pattern Recogn. 36(2), 451–461 (2003)

    Article  Google Scholar 

  13. Liu, H., Guo, D., Sun, F.: Object recognition using tactile measurements: kernel sparse coding methods. IEEE Trans. Instrum. Measur. 65(3), 656–665 (2016). https://doi.org/10.1109/TIM.2016.2514779

    Article  Google Scholar 

  14. Liu, H., Song, X., Nanayakkara, T., Seneviratne, L.D., Althoefer, K.: A computationally fast algorithm for local contact shape and pose classification using a tactile array sensor. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 1410–1415. IEEE (2012). https://doi.org/10.1109/ICRA.2012.6224872

  15. Liu, Y., Nejat, G.: Robotic urban search and rescue: a survey from the control perspective. J. Intell. Robot. Syst. 72(2), 147–165 (2013). https://doi.org/10.1007/s10846-013-9822-x

    Article  Google Scholar 

  16. Luo, S., Liu, X., Althoefer, K., Liu, H.: Tactile object recognition with semi-supervised learning. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9245, pp. 15–26. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22876-1_2

  17. Luo, S., Mou, W., Althoefer, K., Liu, H.: Novel Tactile-SIFT descriptor for object shape recognition. IEEE Sens. J. 15(9), 5001–5009 (2015). https://doi.org/10.1109/JSEN.2015.2432127

    Article  Google Scholar 

  18. Luo, S., Mou, W., Althoefer, K., Liu, H.: Iterative closest labeled point for tactile object shape recognition. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2016). https://doi.org/10.1109/IROS.2016.7759485

  19. Madry, M., Bo, L., Kragic, D., Fox, D.: ST-HMP: Unsupervised Spatio-Temporal feature learning for tactile data. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2262–2269. IEEE (2014). https://doi.org/10.1109/ICRA.2014.6907172

  20. Murphy, R.R., Tadokoro, S., Nardi, D., Jacoff, A., Fiorini, P., Choset, H., Erkmen, A.M.: Search and rescue robotics. In: Springer Handbook of Robotics, pp. 1151–1173. Springer (2008). https://doi.org/10.1007/978-3-540-30301-5_51

  21. Navarro, S.E., Gorges, N., Wörn, H., Schill, J., Asfour, T., Dillmann, R.: Haptic object recognition for multi-fingered robot hands. In: Haptics Symposium 2012, HAPTICS 2012 - Proceedings, pp. 497–502. IEEE (2012). https://doi.org/10.1109/HAPTIC.2012.6183837

  22. Nowak, E., Jurie, F., Triggs, B.: Sampling strategies for bag-of-features. Eccv 3954, 490–503 (2006). https://doi.org/10.1007/11744085_38

    Google Scholar 

  23. Pan, S.J., Yang, Q.: A Survey on Transfer Learning (2010). https://doi.org/10.1109/TKDE.2009.191

  24. Ranasinghe, A., Sornkarn, N., Dasgupta, P., Althoefer, K., Penders, J., Nanayakkara, T.: Salient feature of haptic-based guidance of people in low visibility environments using hard reins. IEEE Trans. Cybern. 46(2), 568–579 (2016). https://doi.org/10.1109/TCYB.2015.2409772

    Article  Google Scholar 

  25. Schmitz, A., Bansho, Y., Noda, K., Iwata, H., Ogata, T., Sugano, S.: Tactile object recognition using deep learning and dropout. In: 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 1044–1050 (2014). https://doi.org/10.1109/HUMANOIDS.2014.7041493

  26. Serrano-Cuerda, J., Lopez, M.T., Fernández-Caballero, A.: Robust human detection and tracking in intelligent environments by information fusion of color and infrared video. In: Proceedings - 2011 7th International Conference on Intelligent Environments, IE 2011, pp. 354–357. IEEE (2011). https://doi.org/10.1109/IE.2011.21

  27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  28. Vidal-Verdú, F., Barquero, M.J., Castellanos-Ramos, J., Navas-González, R., Sánchez, J.A., Serón, J., García-Cerezo, A.: A large area tactile sensor patch based on commercial force sensors. Sensors 11(5), 5489–5507 (2011). https://doi.org/10.3390/s110505489

    Article  Google Scholar 

Download references

Acknowledgment

This work was partially supported by the Spanish project DPI2015-65186-R and the European Commission under grant agreement BES-2016-078237.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Gandarias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gandarias, J.M., Gómez-de-Gabriel, J.M., García-Cerezo, A.J. (2018). Tactile Sensing and Machine Learning for Human and Object Recognition in Disaster Scenarios. In: Ollero, A., Sanfeliu, A., Montano, L., Lau, N., Cardeira, C. (eds) ROBOT 2017: Third Iberian Robotics Conference. ROBOT 2017. Advances in Intelligent Systems and Computing, vol 694. Springer, Cham. https://doi.org/10.1007/978-3-319-70836-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70836-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70835-5

  • Online ISBN: 978-3-319-70836-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics