
Chapter 19
Partition Logics, Finite Automata
and Generalized Urn Models

19.1 Modelling Complementarity by Finite Partitions

Complementarity was first encountered in quantum mechanics. It is a phenomenon
also understandable in classical terms; and although “it’s not a complicated idea
but it’s an idea that nobody would ever think of” in analogy to entanglement [287]
one might say what follows we shall present finite deterministic models featuring
complementarity. The type of complementarity discussed in this chapter grew out
of an attempt to understand quantum complementarity by some finite, deterministic,
quasi-classical (automaton) model [373].

We shall do this by sets of partitions L of a given set with more than two elements.
Suppose one identifies arbitrary elements {x1, . . . , xk} of some partition with the
proposition “The properties x1, or, . . ., or xk are true.” Then each partition in L can
be associated with a Boolean algebra or, synonymously, with a context, or block.
Arbitrary partitions of L can be intertwined or pasted together [249, 263, 300, 376]
in their common elements. This pasting construction yields a partition logic.

19.2 Generalized Urn and Automata Models

For the sake of getting a better intuition of partition logic and their relation to com-
plementarity, two quasi-classical models will be discussed: (i) generalized urn mod-
els [577, 578] or, equivalently [506, 511], (ii) the (initial) state identification problem
of finite deterministic automata [104, 184, 373, 446, 499] which are in an unknown
initial state.

Both quasi-classic examplesmimic complementarity to the extent that even quasi-
quantum cryptography can be performed with them [509] as long as one sticks to the
rules (limiting measurements to certain types), and as long as value indefiniteness is
not a feature of the protocol [38, 519], that is, for instance, the Bennett and Brassard
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1984 protocol [56] can be implemented with generalized urn models, whereas the
Ekert protocol [198] cannot.

19.2.1 Automaton Models

A (Mealy type) automaton A = 〈S, I, O, δ,λ〉 is characterized by the set of states
S, by the set of input symbols I , and by the set of output symbols O . δ(s, i) = s ′
and λ(s, i) = o, s, s ′ ∈ S, i ∈ I and o ∈ O represent the transition and the output
functions, respectively. The restriction to Mealy automata is for convenience only.

The (initial) state identification problem for finite deterministic (Mealy) automata
is the following: suppose one is presented with a (blackbox containing a) single copy
of a finite deterministic automaton whose specifications are completely given with
the exception of the state it is initially in: find that initial state by the input/output
analysis of experiments with that automaton.

Then, as already pointed out byMoore, “there exists a [[finite and deterministic]]
machine such that any pair of its states are distinguishable, but there is no simple
experiment which can determine what state the machine was in at the beginning of
the experiment” [373, Theorem 1, p. 138].

19.2.2 Generalized Urn Models

Wright’s generalized urn model can be sketched by considering black balls with
symbols in different colours drawn simultaneously on it. Perception of these colours
are all “exclusive” or “complementary” by assuming that one looks at the ball with
(coloured) glasses which are capable of transmitting only a single colour. Therefore,
only the symbol in the respective colour is visible; all the symbols in different colours
merge with the black background and are therefore unrecognizable. Suppose there
are a lot of balls of many types (with various colours and an equal number of symbols
per colour) in an urn. The question or task is this: Suppose one single ball is drawn
from that urn; what is this particular type of ball or “ball state?”

Formally, a generalized urn model U = 〈U, C, L ,Λ〉 is characterized as follows.
Consider an ensemble of balls with black background colour. Printed on these balls
are some colour symbols from a symbolic alphabet L . The colours are elements of
a set of colours C . A particular ball type is associated with a unique combination of
mono-spectrally (no mixture of wavelength) coloured symbols printed on the black
ball background. Let U be the set of ball types. We shall assume that every ball
contains just one single symbol per colour. (Not all conceivable types of balls; i.e.,
not all colour/symbol combinations, may be present in this ensemble, though.)

Let |U | be the number of different types of balls, |C | be the number of different
mono-spectral colours, |L| be the number of different output symbols.
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Consider the deterministic “output” or “lookup” function Λ(u, c) = v, u ∈ U ,
c ∈ C , v ∈ L , which returns one symbol per ball type and colour. One interpretation
of this lookup function Λ is as follows. Consider a set of |C | eyeglasses build from
filters for the |C | different colours. Let us assume that these mono-spectral filters are
“perfect” in that they totally absorb light of all other colours but a particular single
one. In that way, every colour can be associated with a particular eyeglass and vice
versa.

19.2.3 Logical Equivalence for Concrete Partition Logics

The following considerations (largely based on [506, 511]) apply only to partition
logics which have “enough” – that is, a separating set of – two-valued states. A
logic L has a separating set of two-valued states if for every a, b ∈ L with a �= b
there is a two-valued state s such that s(a) �= s(b); that is, different propositions are
distinguishable by some state [523].

The connection between those toy models and partition logics can be achieved by
“inverting” the set of two-valued states as follows.

1. In the first step, every atom of this lattice is indexed or labelled by some natural
number, starting from “1” to “n”, where n stands for the number of lattice atoms.
The set of atoms is denoted by A = {1, 2, . . . , n}.

2. Then, all two-valued states of this lattice are labelled consecutively by natural
numbers, starting from “v1” to “vr”, where r stands for the number of two-valued
states. The set of states is denoted by V = {v1, v2, . . . , vr }.

3. Now partitions are defined as follows. For every atom, a set is created whose
members are the index numbers or “labels” of the two-valued states which are
“true” or take on the value “1” on this atom. More precisely, the elements pi (a)

of the partition P j corresponding to some atom a ∈ A are defined by

pi (a) = {k | vk(a) = 1, vk ∈ V } .

The partitions are obtained by taking the unions of all pi which belong to the
same subalgebra P j . That the corresponding sets are indeed partitions follows
from the properties of two-valued states: two-valued states (are “true” or) take on
the value “1” on just one atom per subalgebra and (“false” or) take on the value
“0” on all other atoms of this subalgebra.

4. Let there be t partitions labelled by “1” through “t”. The partition logic is obtained
by a pasting of all partitions P j , 1 ≤ j ≤ t .

5. In the following step, a corresponding generalized urn model or automaton model
is obtained from the partition logic just constructed.

a. A generalized urn model is obtained by the following identifications (see
also [577, p. 271]).
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i. Take as many ball types as there are two-valued states; i.e., r types of
balls.

ii. Take as many colours as there are subalgebras or partitions; i.e., t
colours.

iii. Take as many symbols as there are elements in the partition(s) with
the maximal number of elements; i.e., max1≤ j≤t |P j | ≤ n. To make
the construction easier, we may just take as many symbols as there are
atoms; i.e., n symbols. (In most cases, much less symbols will suffice).
Label the symbols by sl . Finally, take r “generic” balls with black back-
ground. Now associate with every measure a different ball type. (There
are r two-valued states, so there will be r ball types.)

iv. The i th ball type is painted by coloured symbols as follows: Find the
atoms for which the i th two-valued state vi is 1. Then paint the symbol
corresponding to every such lattice atom on the ball, thereby choosing
the colour associated with the subalgebra or partition the atom belongs
to. If the atom belongs to more than one subalgebra, then paint the same
symbol in as many colours as there are partitions or subalgebras the
atom belongs to (one symbol per subalgebra).

This completes the construction.
b. A Mealy automaton is obtained by the following identifications (see also

[499, pp. 154–155]).
i. Take as many automaton states as there are two-valued states; that is, r

automaton states.
ii. Take as many input symbols as there are subalgebras or partitions; i.e.,

t symbols.
iii. Take as many output symbols as there are elements in the partition(s)

with the maximal number of elements (plus one additional auxiliary
output symbol “∗”, see below); i.e., max1≤ j≤t |P j | ≤ n + 1.

iv. The output function is chosen tomatch the elements of the state partition
corresponding to some input symbol. Alternatively, let the lattice atom
aq ∈ A must be an atom of the subalgebra corresponding to the input
il . Then one may choose an output function such as

λ(vk, il) =
{

aq if vk(aq) = 1
∗ if vk(aq) = 0

with 1 ≤ k ≤ r and 1 ≤ l ≤ t . Here, the additional output symbol “∗”
is needed.

v. The transition function is r–to–1 (e.g., by δ(s, i) = s1, s, s1 ∈ S, i ∈ I ),
i.e., after one input the information about the initial state is completely
lost.

This completes the construction.
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19.3 Some Examples

The universe of possible partition logics [184, 446, 499, 511] is huge; and so are the
conceivable probability measures [521] on them. In what followswe shall restrict our
attention to partition logics containing partitions with equal numbers of elements.

19.3.1 Logics of the “Chinese Lantern Type”

Let us, for the sake of illustration, just mention as an example a set of partitions of
the set {1, 2, 3}:

L = {{{1}, {2, 3}}, {{1, 3}, {2}}, {{1, 2}, {3}}} . (19.1)

The term “{1}” corresponds to the proposition “1 is true.” Every partition forms a
2-atomic Boolean subalgebra. It results in three Boolean algebras “spanned” by the
atoms {1}, not({1}) = {2, 3}, {2}, not({2}) = {1, 3}, and {3}, not({3}) = {1, 2}, which
are not intertwined and thus form a horizontal sum of three Boolean subalgebras 23.
This is equivalent to a quantum logic of, say, spin- 12 particles whose spin is measured
along three distinct directions [501].

Complementarity is obtained by realizing that one has to make choices: each
choice of a particular partition corresponds to a type of measurement made. The
set of (sometimes intertwined) partitions represents the “universe of conceivable
measurements.”

19.3.2 (Counter-)Examples of Triangular Logics

The propositional structure depicted in Fig. 19.1(i) has no two-valued (admissible [3,
5, 6]) state: The supposition that one element is “1” forces the remaining two to be
“0,” thus leaving the “adjacent” block without a “1” (there cannot be only zeroes in a
context). This means that it has no representation as a quasi-classical partition logic.

The logic depicted in Fig. 19.1(ii) has sufficiently many (indeed four) two-valued
measures to be representable by a partition logic [519]. Indeed, a concrete partition
logic obtained by the earlier construction based on the inversion of the 4 two-valued
states is

L = {{{1}, {2, 4}, {3}}, {{2}, {3, 4}, {1}}, {{3}, {1, 4}, {2}}} . (19.2)

The propositional structure depicted in Fig. 19.1(iii) is too tightly interlinked to be
representable by a partition logic – it allows only one two-valued state and thus has
no separating set of two-valued states.
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(i) (ii) (iii)

Fig. 19.1 Orthogonality diagrams representing tight triangular pastings of two- and three-atomic
contexts

a3 = {10, 11, 12, 13, 14} a4 = {2, 6, 7, 8} a5 = {1, 3, 4, 5, 9}

a2 = {4, 5, 6, 7, 8, 9} a6 = {2, 6, 8, 11, 12, 14}

a1 = {1, 2, 3} a7 = {7, 10, 13}
a13 =
{1, 4, 5, 10, 11, 12}

a12 = {4, 6, 9, 12, 13, 14} a8 = {3, 5, 8, 9, 11, 14}

a11 = {5, 7, 8, 10, 11} a10 = {3, 9, 13, 14} a9 = {1, 2, 4, 6, 12}

Fig. 19.2 Greechie diagram of automaton partition logic with a nonfull set of dispersion-free
measures

19.3.3 Generalized Urn Model of the Kochen–Specker “Bug”
Logic

Another example [506, 507, 511] is a logic which is already mentioned by Kochen
and Specker [314] (this is a subgraph of their Γ1 discussed in Sect. 12.9.8.4) whose
automaton partition logic is depicted in Fig. 19.2. There are 14 dispersion-free states
which are listed in Table12.4. The associated generalized urn model is listed in
Table19.1.

19.3.4 Kochen–Specker Type Logics

With regards to quantum logic, partition logics share some common features but lack
others. For instance, not all partition logics can be represented as sublogics of some
quantum logic: as a counterexample take the partition logic depicted in Fig. 19.1(ii),
which has no representation inR3. The central concern here is representability: since
atoms in quantum logics can be identified with nonzero vectors or their associated
projectors, the partition logic needs to have a geometric interpretation (embedding
in vector space) preserving or rather representing the partition logical structure.

http://dx.doi.org/10.1007/978-3-319-70815-7_12
http://dx.doi.org/10.1007/978-3-319-70815-7_12
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Nevertheless, all finite sublogics of quantum logics with a separating set of two-
valued states are equivalent to partition logics [139].

On the other hand, the Kochen–Specker theorem (cf. Sect. 12.9.8.7 on p. 97;
in particular, the quantum sublattice depicted in Fig. 12.6) asserts that there exist
sublogics of quantum logics which have no two-valued state at all. As has already
been noted earlier, in a very precise and formal way, this can be identified with either
contextuality [517, 518] or with value indefiniteness [286, 401].

This is all “bad news for partition logics” because although these quantum
mechanical sublogics can be embedded in some (even low-dimensional) vector space,
they have no two-valued state at all – alas, a separating set of two-valued state would
be needed for a construction or characterization of any partition logics. Indeed it is
even possible to show that, with reasonable side assumptions such as noncontextual-
ity, there exist constructive proofs demonstrating that there is no value definiteness
– that is, no two-valued state – beyond a single proposition and its negation [3, 5, 6]
(cf. Sect. 12.9.8.7 on p. 97). Whether or not partition logics have empirical relevance
remains an open question.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://dx.doi.org/10.1007/978-3-319-70815-7_12
http://dx.doi.org/10.1007/978-3-319-70815-7_12
http://dx.doi.org/10.1007/978-3-319-70815-7_12
http://creativecommons.org/licenses/by/4.0/

	19 Partition Logics, Finite Automata  and Generalized Urn Models
	19.1 Modelling Complementarity by Finite Partitions
	19.2 Generalized Urn and Automata Models
	19.2.1 Automaton Models
	19.2.2 Generalized Urn Models
	19.2.3 Logical Equivalence for Concrete Partition Logics

	19.3 Some Examples
	19.3.1 Logics of the ``Chinese Lantern Type''
	19.3.2 (Counter-)Examples of Triangular Logics
	19.3.3 Generalized Urn Model of the Kochen–Specker ``Bug'' Logic
	19.3.4 Kochen–Specker Type Logics



