
Quantum Resource Estimates for Computing
Elliptic Curve Discrete Logarithms

Martin Roetteler(B), Michael Naehrig, Krysta M. Svore, and Kristin Lauter

Microsoft Research, Redmond, USA
martinro@microsoft.com

Abstract. We give precise quantum resource estimates for Shor’s algo-
rithm to compute discrete logarithms on elliptic curves over prime fields.
The estimates are derived from a simulation of a Toffoli gate network for
controlled elliptic curve point addition, implemented within the frame-
work of the quantum computing software tool suite LIQUi|〉. We deter-
mine circuit implementations for reversible modular arithmetic, includ-
ing modular addition, multiplication and inversion, as well as reversible
elliptic curve point addition. We conclude that elliptic curve discrete
logarithms on an elliptic curve defined over an n-bit prime field can be
computed on a quantum computer with at most 9n + 2�log2(n)� + 10
qubits using a quantum circuit of at most 448n3 log2(n)+4090n3 Toffoli
gates. We are able to classically simulate the Toffoli networks corre-
sponding to the controlled elliptic curve point addition as the core piece
of Shor’s algorithm for the NIST standard curves P-192, P-224, P-256,
P-384 and P-521. Our approach allows gate-level comparisons to recent
resource estimates for Shor’s factoring algorithm. The results also sup-
port estimates given earlier by Proos and Zalka and indicate that, for
current parameters at comparable classical security levels, the number
of qubits required to tackle elliptic curves is less than for attacking RSA,
suggesting that indeed ECC is an easier target than RSA.

Keywords: Quantum cryptanalysis · Elliptic curve cryptography ·
Elliptic curve discrete logarithm problem

1 Introduction

Elliptic Curve Cryptography (ECC). Elliptic curves are a fundamental
building block of today’s cryptographic landscape. Thirty years after their intro-
duction to cryptography [27,32], they are used to instantiate public key mech-
anisms such as key exchange [11] and digital signatures [17,23] that are widely
deployed in various cryptographic systems. Elliptic curves are used in applica-
tions such as transport layer security [5,10], secure shell [47], the Bitcoin digital
currency system [34], in national ID cards [22], the Tor anonymity network [12],
and the WhatsApp messaging app [53], just to name a few. Hence, they play a
significant role in securing our data and communications.

c© International Association for Cryptologic Research 2017
T. Takagi and T. Peyrin (Eds.): ASIACRYPT 2017, Part II, LNCS 10625, pp. 241–270, 2017.
https://doi.org/10.1007/978-3-319-70697-9_9

242 M. Roetteler et al.

Different standards (e.g., [8,50]) and standardization efforts (e.g., [13,36])
have identified elliptic curves of different sizes targeting different levels of secu-
rity. Notable curves with widespread use are the NIST curves P-256, P-384,
P-521, which are curves in Weierstrass form over special primes of size 256, 384,
and 521 bits respectively, the Bitcoin curve secp256k1 from the SEC2 [8] stan-
dard and the Brainpool curves [13]. More recently, Bernstein’s Curve25519 [54],
a Montgomery curve over a 255-bit prime field, has seen more and more deploy-
ment, and it has been recommended to be used in the next version of the TLS
protocol [29] along with another even more recent curve proposed by Hamburg
called Goldilocks [20].

The security of elliptic curve cryptography relies on the hardness of comput-
ing discrete logarithms in elliptic curve groups, i.e. the difficulty of the Elliptic
Curve Discrete Logarithm Problem (ECDLP). Elliptic curves have the advantage
of relatively small parameter and key sizes in comparison to other cryptographic
schemes, such as those based on RSA [41] or finite field discrete logarithms [11],
when compared at the same security level. For example, according to NIST rec-
ommendations from 2016, a 256-bit elliptic curve provides a similar resistance
against classical attackers as an RSA modulus of size 3072 bits1. This advantage
arises from the fact that the currently known best algorithms to compute elliptic
curve discrete logarithms are exponential in the size of the input parameters2,
whereas there exist subexponential algorithms for factoring [9,30] and finite field
discrete logarithms [18,24].

The Quantum Computer Threat. In his famous paper [44], Peter Shor
presented two polynomial-time quantum algorithms, one for integer factorization
and another one for computing discrete logarithms in a finite field of prime order.
Shor notes that the latter algorithm can be generalized to other fields. It also
generalizes to the case of elliptic curves. Hence, given the prerequisite that a
large enough general purpose quantum computer can be built, the algorithms in
Shor’s paper completely break all current crypto systems based on the difficulty
of factoring or computing discrete logarithms. Scaling up the parameters for such
schemes to sizes for which Shor’s algorithm becomes practically infeasible will
most likely lead to highly impractical instantiations.

Recent years have witnessed significant advances in the state of quantum
computing hardware. Companies have invested in the development of qubits,
and the field has seen an emergence of startups, with some focusing on quantum
hardware, others on software for controlling quantum computers, and still others
offering consulting services to ready for the quantum future. The predominant
approach to quantum computer hardware focuses on physical implementations
that are scalable, digital, programmable, and universal. With the amount of

1 Opinions about such statements of equivalent security levels differ, for an overview
see https://www.keylength.com. There is consensus about the fact that elliptic curve
parameters can be an order of magnitude smaller than parameters for RSA or finite
field discrete logarithm systems to provide similar security.

2 For a recent survey, see [16].

https://www.keylength.com

Quantum Resource Estimates 243

investment in quantum computing hardware, the pace of scaling is increasing
and underscoring the need to understand the scaling of the difficulty of ECDLP.

Language-Integrated Quantum Operations: LIQUi|〉. As quantum hard-
ware advances towards larger-scale systems of upwards of tens to hundreds of
qubits, there is a critical need for a software architecture to program and con-
trol the device. We use the LIQUi|〉 software architecture [52] to determine the
resource costs of solving the ECDLP. LIQUi|〉 is a high-level programming lan-
guage for quantum algorithms embedded in F#, a compilation stack to translate
and compile quantum algorithms into quantum circuits, and a simulator to test
and run quantum circuits3. LIQUi|〉 can simulate roughly 32 qubits in 32 GB
RAM, however, we make use of the fact that reversible circuits can be simulated
efficiently on classical input states for thousands of qubits.

Gate Sets and Toffoli Gate Networks. The basic underlying fault-tolerant
architecture and coding scheme of a quantum computer determine the universal
gate set, and hence by extension also the synthesis problems that have to be
solved in order to compile high-level, large-scale algorithms into a sequence of
operations that an actual physical quantum computer can then execute. A gate
set that arises frequently and that has been studied often in the literature, but
by no means the only conceivable gate set, is the so-called Clifford+T gate set
[35]. This gate set consists of the Hadamard gate H = 1√

2

[
1 1
1 −1

]
, the phase

gate P = diag(1, i), and the controlled NOT (CNOT) gate which maps (x, y) �→
(x, x⊕y) as generators of the Clifford group, along with the T gate given by T =
diag(1, exp(πi/4)). The Clifford+T gate set is known to be universal [35]. This
means that it can be used to approximate any given target unitary single qubit
operation to within precision ε using sequences of length 4 log2(1/ε) [26,43],
and using an entangling gate such as the CNOT gate, the Clifford+T gate set
can approximate any unitary operation. When assessing the complexity of a
quantum circuit built from Clifford+T gates, often only T -gates are counted as
many fault-tolerant implementations of the Clifford+T gate set at the logical
gate level require much more resources for T -gates than for Clifford gates [15].

In this paper, we base reversible computations entirely on the Toffoli gate.
The Toffoli gate |x, y, z〉 �→ |x, y, z ⊕ xy〉 is known to be universal for reversible
computing [35] and can be implemented exactly over the Clifford+T gate set,
see [42] for a T -depth 1 implementation using a total of 7 qubits and [1] for
a T -depth 3 realization using a total of 3 qubits. As discussed in [21, Sect. 5],
there are two main reasons for focusing on Toffoli gate networks as our preferred
realization of quantum circuits. The first is that because the Toffoli gate can
be implemented exactly over the Clifford+T gate set, Toffoli networks do not
have gate synthesis overhead. The second is testability and debugging. Toffoli
gate networks can be simulated using classical reversible simulators. While a
fully functional simulation of a quantum circuit could be deemed feasible for

3 See http://stationq.github.io/Liquid/ and https://github.com/StationQ/Liquid.

http://stationq.github.io/Liquid/
https://github.com/StationQ/Liquid

244 M. Roetteler et al.

circuits on up to 50 qubits, classical simulation of Toffoli gate-based circuits
can deal with a lot more qubits. Also, for implementations on actual quantum
hardware, Toffoli gate circuits can be debugged efficiently and faults can be
localized through binary search [21].

Estimating Quantum Resources for Shor’s ECDLP Algorithm. Under-
standing the concrete requirements for a quantum computer that is able to run
Shor’s algorithm helps to put experimental progress in quantum computing into
perspective. Although it is clear that the polynomial runtime asymptotically
breaks ECC, constant factors can make an important difference when actually
implementing the algorithm.

In [39], Proos and Zalka describe how Shor’s algorithm can be implemented
for the case of elliptic curve groups. They conclude with a table of resource
estimates for the number of logical qubits and time (measured in “1-qubit addi-
tions”) depending on the bitsize of the elliptic curve. Furthermore, they compare
these estimates to those for Shor’s factoring algorithm and argue that computing
elliptic curve discrete logarithms is significantly easier than factoring RSA mod-
uli at comparable classical security levels. However, some questions remained
unanswered by [39], the most poignant of which being whether it is actually
possible to construct and simulate the circuits to perform elliptic curve point
addition in order to get confidence in their correctness. Another question that
remained open is whether it is possible to determine constants that were left
in terms of asymptotic scaling and whether some of the proposed circuit con-
structions to compress registers and to synchronize computations can actually
be implemented in code that can then be automatically generated for arbitrary
input curves.

Here we build on their work and fully program and simulate the underly-
ing arithmetic. We verify the correctness of our algorithms and obtain concrete
resource costs measured by the overall number of logical qubits, the number
of Toffoli gates and the depth of a quantum circuit for implementing Shor’s
algorithm.

Contributions. In this paper, we present precise resource estimates for quan-
tum circuits that implement Shor’s algorithm to solve the ECDLP. In particular,
our contributions are as follows:

– We describe reversible algorithms for modular quantum arithmetic. This
includes modular addition, subtraction, negation and doubling of integers
held in quantum registers, modular multiplication, squaring and inversion.

– For modular multiplication, we consider two different approaches, besides an
algorithm based on modular doublings and modular additions, we also give
a circuit for Montgomery multiplication.

– Based on our implementations it transpired that using Montgomery arith-
metic is beneficial as the cost for the multiplication can be seen to be lower
than that of the double-and-add method. The latter requires less ancillas,

Quantum Resource Estimates 245

however, in the given algorithm there are always enough ancillas available as
overall a relatively large number of ancillas must be provided.

– Our modular inversion algorithm is a reversible implementation of the Mont-
gomery inverse via the binary extended Euclidean (binary GCD) algorithm.
To realize this algorithm as a circuit, we introduce tools that might be of
independent interest for other reversible algorithms.

– We describe a quantum circuit for elliptic curve point addition in affine coor-
dinates and describe how it can be used to implement scalar multiplication
within Shor’s algorithm.

– We have implemented all of the above algorithms in F# within the framework
of the quantum computing software tool suite LIQUi|〉 [52] and have simulated
and tested all of these algorithms for real-world parameters of up to 521 bits4.

– Derived from our implementation, we present concrete resource estimates for
the total number of qubits, the number of Toffoli gates and the depth of
the Toffoli gate networks to realize Shor’s algorithm and its subroutines. We
compare the quantum resources for solving the ECDLP to those required in
Shor’s factoring algorithm that were obtained in the recent work [21].

Results. Our implementation realizes a reversible circuit for controlled elliptic
curve point addition on an elliptic curve defined over a field of prime order with
n bits and needs at most 9n + 2�log2(n)� + 10 qubits. An interpolation of the
data points for the number of Toffoli gates shows that the quantum circuit can
be implemented with at most roughly 224n2 log2(n) + 2045n2 Toffoli gates. For
Shor’s full algorithm, the point addition needs to be run 2n times sequentially
and does not need additional qubits. The overall number of Toffoli gates is
thus about 448n3 log2(n) + 4090n3. For example, our simulation of the point
addition quantum circuit for the NIST standardized curve P-256 needs 2330
logical qubits and the full Shor algorithm would need about 1.26 · 1011 Toffoli
gates. In comparison, Shor’s factoring algorithm for a 3072-bit modulus needs
6146 qubits and 1.86 ·1013 Toffoli gates5, which aligns with results by Proos and
Zalka showing that it is easier to break ECC than RSA at comparable classical
security.

Our estimates provide a data point that allows a better understanding of
the requirements to run Shor’s quantum ECDLP algorithm and we hope that
they will serve as a basis to make better predictions about the time horizon
until which elliptic curve cryptography can still be considered secure. Besides
helping to gain a better understanding of the post-quantum (in-) security of
elliptic curve cryptosystems, we hope that our reversible algorithms (and their
LIQUi|〉 implementations) for modular arithmetic and the elliptic curve group
law are of independent interest to some, and might serve as building blocks for
other quantum algorithms.

4 Our code will be made publicly available at http://microsoft.com/quantum.
5 These estimates are interpolated from the results in [21].

http://microsoft.com/quantum

246 M. Roetteler et al.

2 Elliptic Curves and Shor’s Algorithm

This section provides some background on elliptic curves over finite fields, the
elliptic curve discrete logarithm problem (ECDLP) and Shor’s quantum algo-
rithm to solve the ECDLP. Throughout, we restrict to the case of curves defined
over prime fields of large characteristic.

2.1 Elliptic Curves and the ECDLP

Let p > 3 be a prime. Denote by Fp the finite field with p elements. An elliptic
curve over Fp is a projective, non-singular curve of genus 1 with a specified base
point. It can be given by an affine Weierstrass model, i.e. it can be viewed as
the set of all solutions (x, y) to the equation E : y2 = x3 + ax + b with two
curve constants a, b ∈ Fp, together with a point at infinity O. The set of Fp-
rational points consists of O and all solutions (x, y) ∈ Fp × Fp and is denoted
by E(Fp) = {(x, y) ∈ Fp × Fp | y2 = x3 + ax + b} ∪ {O}. The set E(Fp) is an
abelian group with respect to a group operation “+” that is defined via rational
functions in the point coordinates with O as the neutral element. Similarly, for
a field extension F ⊇ Fp, one similarly defines the group of F-rational points
E(F) and if F is an algebraic closure of Fp, we simply denote E = E(F). For an
extensive treatment of elliptic curves, we refer the reader to [46].

The elliptic curve group law on an affine Weierstrass curve can be computed
as follows. Let P1, P2 ∈ E and let P3 = P1 + P2. If P1 = O then P3 = P2 and
if P2 = O, then P3 = P1. Now let P1 �= O �= P2 and write P1 = (x1, y1) and
P2 = (x2, y2) for x1, y1, x2, y2 ∈ F. If P2 = −P1, then x1 = x2, y2 = −y1 and
P3 = O. If neither of the previous cases occurs, then P3 = (x3, y3) is an affine
point and can be computed as

x3 = λ2 − x1 − x2, y3 = (x1 − x3)λ − y1,

where λ = y2 − y1
x2 − x1

if P1 �= P2, i.e. x1 �= x2, and λ = 3x2
1 + a
2y1

if P1 = P2. For a
positive integer m, denote by [m]P the m-fold sum of P , i.e. [m]P = P + · · ·+P ,
where P occurs m times. Extended to all m ∈ Z by [0]P = O and [−m]P =
[m](−P), the map [m] : E → E,P �→ [m]P is called the multiplication-by-
m map or simply scalar multiplication by m. Scalar multiplication (or group
exponentiation in the multiplicative setting) is one of the main ingredients for
discrete-logarithm-based cryptographic protocols. It is also an essential operation
in Shor’s ECDLP algorithm. The order ord(P) of a point P is the smallest
positive integer r such that [r]P = O.

Curves that are most widely used in cryptography are defined over large
prime fields. One works in a cyclic subgroup of E(Fp) of large prime order r,
where #E(Fp) = h · r. The group order can be written as #E(Fp) = p +
1 − t, where t is called the trace of Frobenius and the Hasse bound ensures
that |t| ≤ 2

√
p. Thus #E(Fp) and p are of roughly the same size. The most

efficient instantiations of ECC are achieved for small cofactors h. For example,
the above mentioned NIST curves have prime order, i.e. h = 1, and Curve25519

Quantum Resource Estimates 247

has cofactor h = 8. Let P ∈ E(Fp) be an Fp-rational point on E of order r and
let Q ∈ 〈P 〉 be an element of the cyclic subgroup generated by P . The Elliptic
Curve Discrete Logarithm Problem (ECDLP) is the problem to find the integer
m ∈ Z/rZ such that Q = [m]P . The bit security of an elliptic curve is estimated
by extrapolating the runtime of the most efficient algorithms for the ECDLP.

The currently best known classical algorithms to solve the ECDLP are based
on parallelized versions of Pollard’s rho algorithm [37,38,51]. When working
in a group of order n, the expected running time for solving a single ECDLP
is (

√
π/2 + o(1))

√
n group operations based on the birthday paradox. This is

exponential in the input size log(n). See [16] for further details and [6] for a
concrete, implementation-based security assessment.

2.2 Shor’s Quantum Algorithm for Solving the ECDLP

In [44], Shor presented two polynomial time quantum algorithms, one for fac-
toring integers, the other for computing discrete logarithms in finite fields. The
second one can naturally be applied for computing discrete logarithms in the
group of points on an elliptic curve defined over a finite field.

We are given an instance of the ECDLP as described above. Let P ∈ E(Fp)
be a fixed generator of a cyclic subgroup of E(Fp) of known order ord(P) = r,
let Q ∈ 〈P 〉 be a fixed element in the subgroup generated by P ; our goal is to
find the unique integer m ∈ {1, . . . , r} such that Q = [m]P . Shor’s algorithm
proceeds as follows. First, two registers of length n + 1 qubits6 are created and
each qubit is initialized in the |0〉 state. Then a Hadamard transform H is applied
to each qubit, resulting in the state 1

2n+1

∑2n+1−1
k,�=0 |k, �〉. Next, conditioned on the

content of the register holding the label k or �, we add the corresponding multiple
of P and Q, respectively, i.e., we implement the map

1
2n+1

2n+1−1∑

k,�=0

|k, �〉 �→ 1
2n+1

2n+1−1∑

k,�=0

|k, �〉|[k]P + [�]Q〉.

Hereafter, the third register is discarded and a quantum Fourier transform
QFT2n+1 on n + 1 qubits is computed on each of the two registers. Finally,
the state of the first two registers—which hold a total of 2(n + 1) qubits—is
measured. As shown in [45], the discrete logarithm m can be computed from
this measurement data via classical post-processing. The corresponding quan-
tum circuit is shown in Fig. 1.

Using Kitaev’s phase estimation framework [35], Beauregard [2] obtained a
quantum algorithm for factoring an integer N from a circuit that performs a
conditional multiplication of the form x �→ ax mod N , where a ∈ ZN is a
random constant integer modulo N . The circuit uses only 2n+3 qubits, where n
is the bitlength of the integer to be factored. An implementation of this algorithm
on 2n + 2 qubits, using Toffoli-gate-based modular multiplication is described

6 Hasse’s bound guarantees that the order of P can be represented with n + 1 bits.

248 M. Roetteler et al.

|0〉 H •

QFT2n+1

.

.

.
.
.
.

.

.

.
|0〉 H . . . • . . .

|0〉 H . . . • . . .

|0〉 H . . . • . . .

QFT2n+1

.

.

.
.
.
.

.

.

.
|0〉 H •

|0〉 H •

|O〉 /2n +P +[2]P . . . +[2n]P +Q +[2]Q . . . +[2n]Q

Fig. 1. Shor’s algorithm to compute the discrete logarithm in the subgroup of an elliptic
curve generated by a point P .

μ0 μ1 μ2n+1

|0〉 H • H |0〉 H • R1 H . . . |0〉 H • R2n+1 H

|O〉 /2n +P +[2]P . . . +[2n]Q

Fig. 2. Shor’s algorithm to compute the discrete logarithm in the subgroup of an elliptic
curve generated by a point P , analogous to the algorithms from [2,19,21]. The gates
Rk are phase shift gates given by diag(1, eiθk), where θk = −π

∑k−1
j=0 2k−jμj and the

sum runs over all previous measurements j with outcome μj ∈ {0, 1}.

in [21]. Following the semiclassical Fourier transform method [19], one can modify
Shor’s ECDLP algorithm, resulting in the circuit shown in Fig. 2. The phase
shift matrices Ri =

(
1 0
0 eiθk

)
, θk = −π

∑k−1
j=0 2k−jμj , depend on all previous

measurement outcomes μj ∈ {0, 1}, j ∈ {0, . . . , k − 1}.

3 Reversible Modular Arithmetic

Shor’s algorithm for factoring actually only requires modular multiplication of
a quantum integer with classically known constants. In contrast, the elliptic
curve discrete logarithm algorithm requires elliptic curve scalar multiplications
to compute [k]P + [�]Q for a superposition of values for the scalars k and �. These
scalar multiplications are comprised of elliptic curve point additions, which in
turn consist of a sequence of modular operations on the coordinates of the elliptic
curve points. This requires the implementation of full modular arithmetic, which
means that one needs to add and multiply two integers held in quantum registers
modulo the constant integer modulus p.

This section presents quantum circuits for reversible modular arithmetic on
n-bit integers that are held in quantum registers. We provide circuit diagrams
for the modular operations, in which black triangles on the right side of gate
symbols indicate qubit registers that are modified and hold the result of the

Quantum Resource Estimates 249

computation. Essential tools for implementing modular arithmetic are integer
addition and bit shift operations on integers, which we describe first.

3.1 Integer Addition and Binary Shifts

The algorithms for elliptic curve point addition as described below need integer
addition and subtraction in different variants: standard integer addition and
subtraction of two n-bit integers, addition and subtraction of a classical constant
integer, as well as controlled versions of those.

For adding two integers, we take the quantum circuit described by
Takahashi et al. [49]. The circuit works on two registers holding the input inte-
gers, the first of size n qubits and the second of size n + 1 qubits. It operates
in place, i.e. the contents of the second register are replaced to hold the sum
of the inputs storing a possible carry bit in the additionally available qubit. To
obtain a subtraction circuit, we implement an inverse version of this circuit. The
carry bit in this case indicates whether the result of the subtraction is negative.
Controlled versions of these circuits can be obtained by using partial reflection
symmetry to save controls, which compares favorably to a generic version where
simply all gates are controlled. For the constant addition circuits, we take the
algorithms described in [21]. Binary doubling and halving circuits are needed
for the Montgomery multiplication and inversion algorithms. They are imple-
mented essentially as cyclic bit shifts realized by sequences of symmetric bit
swap operations built from CNOT gates.

3.2 Modular Addition and Doubling

We now turn to modular arithmetic. The circuit shown in Fig. 3 computes a
modular addition of two integers x and y held in n-qubit quantum registers |x〉
and |y〉, modulo the constant integer modulus p. It performs the operation in
place |x〉|y〉 �→ |x〉|(x+y) mod p〉 and replaces the second input with the result.
It uses quantum circuits for plain integer addition and constant addition and
subtraction of the modulus. It uses two auxiliary qubits, one of which is used
as an ancilla qubit in the constant addition and subtraction and can be in an
unknown state to which it will be returned at the end of the circuit. The other
qubit stores the bit that determines whether a modular reduction in form of a
modulus subtraction actually needs to be performed or not. It is uncomputed
at the end by a strict comparison circuit between the result and the first input.
Modular subtraction is implemented by reversing the circuit.

The modular doubling circuit for a constant odd integer modulus p in Fig. 4
follows the same principle. There are two changes that make it more efficient
than the addition circuit. First of all it works in place on only one n-qubit input
integer |x〉, it computes |x〉 �→ |2x mod p〉. Therefore it uses only n + 2 qubits.
The first integer addition in the modular adder circuit is replaced by a more
efficient multiplication by 2 implemented via a cyclic bit shift as described in
the previous subsection. Since we assume that the modulus p is odd in this
circuit, the auxiliary reduction qubit can be uncomputed by checking whether

250 M. Roetteler et al.

|x〉 /n

+ �
�

>

�

|x〉
|y〉 /n

−p

�
�

+p � |(x + y) mod p〉
|0〉 • |0〉
|g〉 +p |g〉

Fig. 3. add modp: Quantum circuit for in-place modular addition |x〉|y〉 �→ |x〉|(x + y)
mod p〉. The circuit uses integer addition +, addition +p and subtraction −p of the
constant modulus p, and strict comparison of two n-bit integers in the registers |x〉 and
|y〉, where the output bit flips the carry qubit in the last register. The constant adders
use an ancilla qubit in an unknown state |g〉, which is returned to the same state at
the end of the circuit. To implement controlled modular addition ctrl add modp, one
simply controls all operations in this circuit.

|x0〉
·2

�

� −p

�
�

+p
�
�

|(2x mod p)0〉
|x1,...,n−1〉 /n−1

∣
∣(2x mod p)1,...,(n−1)

〉

|0〉 • |0〉
|g〉 +p |g〉

Fig. 4. dbl modp: Quantum circuit for in-place modular doubling |x〉 �→ |2x mod p〉
for an odd constant modulus p. The circuit uses a binary doubling operation ·2 and
addition +p and subtraction −p of the constant modulus p. The constant adders use
an ancilla qubit in an unknown state |g〉, which is returned to the same state at the
end of the circuit.

the least significant bit of the result is 0 or 1. A subtraction of the modulus has
taken place if, and only if this bit is 1.

For adding a classical constant to a quantum register modulo a classical
constant modulus, we use the in-place modular addition circuit described in [21,
Sect. 2]. The circuit operates on the n-bit input and requires only 1 ancilla qubit
initialized in the state |0〉 and n − 1 dirty ancillas that are given in an unknown
state and will be returned in the same state at the end of the computation.

3.3 Modular Multiplication

Multiplication by Modular Doubling and Addition. Modular multiplica-
tion can be computed by repeated modular doublings and conditional modular
additions. Figure 5 shows a circuit that computes the product z = x · y mod p
for constant modulus p as described by Proos and Zalka [39, Sect. 4.3.2] by using
a simple expansion of the product along a binary decomposition of the first mul-
tiplicand, i.e.

x · y =
n−1∑

i=0

xi2i · y = x0y + 2(x1y + 2(x2y + · · · + 2(xn−2y + 2(xn−1y)) . . .)).

Quantum Resource Estimates 251

|x0〉 . . . • |x0〉|x1〉 . . . • |x1〉.
.
.

.

.

.
.
.
.

.

.

.
.
.
.|xn−3〉 • . . . |xn−3〉|xn−2〉 • . . . |xn−2〉|xn−1〉 • . . . |xn−1〉

|y〉 /n

+ � + � + �
. . .

+ � + �
|y〉

|0〉 /n

dbl
�

dbl
�

dbl
� . . .

dbl
� |x · y mod p〉

|0g〉 /2 . . . |0g〉

Fig. 5. dbl modp: Quantum circuit for modular multiplication |x〉|y〉|0〉 �→ |x〉|y〉|x · y
mod p〉 built from modular doublings dbl ← dbl modp and controlled modular additions
+ ← ctrl add modp.

|0〉 • • . . . • |0〉
|x0〉

+ +

. . . •

+

• |x0〉
|x1〉 . . . • |x1〉
.
.
.

.

.

.
.
.
.

.

.

.

|xn−3〉 . . . |xn−3〉
|xn−2〉 • • . . . |xn−2〉
|xn−1〉 • • . . . |xn−1〉

|0〉 /n

dbl
�

dbl
� . . .

dbl
� ∣

∣x2 mod p
〉

|0g〉 /2 . . . |0g〉

Fig. 6. squ modp: Quantum circuit for modular squaring |x〉|0〉 �→ |x〉|x2 mod p〉
built from modular doublings dbl ← dbl modp and controlled modular additions
+ ← ctrl add modp.

The circuit runs on 3n + 2 qubits, 2n of which are used to store the inputs, n to
accumulate the result and 2 ancilla qubits are needed for the modular addition
and doubling operations, one of which can be dirty. The latter could be taken
to be one of the xi, for example x0 except in the last step, when the modular
addition gate is conditioned on x0. For simplicity, we assume it to be a separate
qubit.

Figure 6 shows the corresponding specialization to compute a square z = x2

mod p. It uses 2n + 3 qubits by removing the n qubits for the second input
multiplicand, and adding one ancilla qubit, which is used in round i to copy out
the current bit xi of the input in order to add x to the accumulator conditioned
on the value of xi.

Montgomery Multiplication. In classical applications, Montgomery multi-
plication [33] is often the most efficient choice for modular multiplication if the
modulus does not have a special shape such as being close to a power of 2. Here,
we explore it as an alternative to the algorithm using modular doubling and
addition as described above.

In [33], Montgomery introduced a representation for an integer modulo p he
called a p-residue that is now called the Montgomery representation. Let R > p

252 M. Roetteler et al.

be an integer radix coprime to p. An integer a modulo p is represented by the
Montgomery representation aR mod p. The Montgomery reduction algorithm
takes as input an integer 0 ≤ c < Rp and computes cR−1 mod p. Thus given
two integers aR mod p and bR mod p in Montgomery representation, applying
the Montgomery reduction to their product yields the Montgomery representa-
tion (ab)R mod p of the product. If R is a power of 2, one can interleave the
Montgomery reduction with school-book multiplication, obtaining a combined
Montgomery multiplication algorithm. The division operations usually needed
for computing remainders are replaced by binary shifts in each round of the
multiplication algorithm.

The multiplication circuit using modular doubling and addition operations
described in the previous subsection contains two modular reductions in each
round of the algorithm. Each of those is realized here by at least two integer
additions. In contrast, the Montgomery algorithm shown in Fig. 7 avoids these
and uses only one integer addition per round. This reduces the circuit depth
in comparison to the double-and-add approach. However, it comes at the cost
of requiring more qubits. The main issue is that the algorithm stores the infor-
mation for each round, whether the odd modulus p had to be added to the
intermediate result to make it even or not. This is done to allow divisions by 2
through a simple bit shift of an even number. These bits are still set at the end
of the circuit shown in Fig. 7. To uncompute these values, we copy the result
to another n-qubit register, and run the algorithm backwards, which essentially
doubles the depth of the algorithm. But this still leads to a lower overall depth
than the one of the double-and-add algorithm. Hence, switching to Montgomery

|x0〉 • . . . |x0〉|x1〉 • . . . |x1〉.
.
.

.

.

.
.
.
.

.

.

.
.
.
.|xn−1〉 . . . • |xn−1〉

|y〉 /

+
�
�
�

+
�
�
�

. . .

+
�
�
�

|y〉
|0〉

+p

�
�
�

/2

�
�
�

+p

�
�
�

/2

�
�
�

. . .

+p

�
�
�

/2

�
�
�

−p

�
�
�

• |c〉
|0..0〉 / . . .

+p

�
�

|z1,...,n−1〉
|0〉 • • . . . • |z0〉
|g〉 . . . |g〉
|0〉 • . . . |m0〉
|0〉 • . . . |m1〉

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.|0〉 . . . • |mn−1〉

Fig. 7. mul modp: Quantum circuit for the forward Montgomery modular multiplica-
tion |x〉|y〉|0〉 �→ |x〉|y〉|z = x · y mod p〉. The qubit |g〉 is a dirty ancilla qubit in an
unknown state. The qubit labeled |mi〉 holds the information whether the intermediate
result in round i was odd and thus whether p was added to it. The circuit uses integer
addition +, integer addition +p and subtraction −p of the constant modulus p and
a halving circuit /2 that performs a cyclic qubit shift. The last two gates reflect the
standard conditional subtraction of p. To uncompute the qubits |mi〉, one copies out
the result z and runs the circuit backwards.

Quantum Resource Estimates 253

multiplication presents a trade-off between the required number of qubits and
the multiplication circuit depth.

The same optimization as shown in the previous section allows to save n − 1
qubits when implementing a Montgomery squaring circuit that computes z = x2

mod p.

3.4 Modular Inversion

Performing the modular inversion on a quantum computer is by far the most
costly operation required in order to implement the affine group law of an elliptic
curve. We use a reversible circuit for the extended binary greatest common
divisor algorithm [48] that implements Kaliski’s algorithm [25] for inverting a
number xR mod p given in Montgomery representation for R = 2n; i.e. an
algorithm (i) which only uses elementary reversible operations such as Toffoli
gates, (ii) whose sequence of instructions does not depend on the given input
x2n mod p, and (iii) whose output is again in Montgomery form x−12n mod p.

We use the extended binary GCD algorithm to compute the representation
of the greatest common divisor between x and p, with the added requirement to
ensure property (ii), namely to make sure that the sequence of operations that
carries out the Euclidean algorithm is the same, independent of x. In particular,
an issue is that for different inputs x �= x′ the usual, irreversible Euclidean
algorithm can terminate in a different number of steps. To fix this, we include
a counter register which is incremented upon termination of the loop to ensure
the algorithm is run for 2n rounds, which is the worst-case runtime.

In the following algorithm to compute the Montgomery inverse the inputs
are a prime p and a value x where 0 ≤ x < p. The output is x−12n mod p.
In functional programming style (here, using F# syntax), Kaliski’s algorithm is
described as follows:

let MGinverse p x =
let rec xmg u v r s k =

match u, v, r, s with
| _,0,r,_ -> r
| u,_,_,_ when u\%2=0 -> xmg (u >>> 1) v r (s <<< 1) (k+1)
| _,v,_,_ when v\%2=0 -> xmg u (v >>> 1) (r <<< 1) s (k+1)
| u,v,_,d when u > v -> xmg ((u-v) >>> 1) v (r+s) (s <<< 1) (k+1)
| _,_,_,_ -> xmg u ((v-u) >>> 1) (r <<< 1) (r+s) (k+1)

xmg p x 0 1 0

The algorithm actually computes only the so-called “almost inverse” which
is of the form x−12k, i.e., there is a secondary step necessary to convert to the
correct form (not shown here). Note that here k depends on x, i.e., it is necessary
to uncompute k. Two example executions are shown in Fig. 8.

As shown in Fig. 8, the actual number of steps that need to be executed
until the gcd is obtained, depends on the actual input x: in the first example
the usual Kaliski algorithm terminates after k = 7 steps, whereas in the second
example the usual algorithm would terminate after k = 5 steps. To make the
algorithm reversible, we must find an implementation that carries out the same
operations, irrespective of the input. The two main ingredients to obtain such

254 M. Roetteler et al.

u 11 11 11 11 5 2 1 1 1
v 8 4 2 1 1 1 1 0 0
r 0 0 0 0 1 3 3 6 6
s 1 1 1 1 2 4 8 11 11
k 0 1 2 3 4 5 6 7 7
� 0 0 0 0 0 0 0 0 1

u 11 2 1 1 1 1 1 1 1
v 7 7 7 3 1 0 0 0 0
r 0 1 1 2 4 8 8 8 8
s 1 2 4 5 7 11 11 11 11
k 0 1 2 3 4 5 5 5 5
� 0 0 0 0 0 0 1 2 3

)b()a(

Fig. 8. Two example runs of the reversible extended binary Euclidean algorithm to
compute the Montgomery inverse modulo p = 11. Shown in (a) is the execution for
input x = 8 which leads to termination of the usual irreversible algorithm after k = 7
steps. The algorithm is always executed for 2n rounds, where n is the bit-size of p
which is an upper bound on the maximum number of steps required for general input
x. Once the final step v = 0 has been reached, a counter register � is incremented.
Shown in (b) is the execution for input x = 7 which leads to termination after 5 steps
after which the counter is incremented three times.

|u〉 /n

− �
�

+ �
�

/2
−

� /2
−

�

|u〉

|v〉 /n /2 /2 |v〉
|0〉 • |0〉
|s〉 /n ·2

+
�

·2
+

� |s〉
|r〉 /n ·2 ·2 • |r〉
|0〉 |0〉
|0〉 • • • • • |0〉

|mi〉 • • • • • |mi〉

|f〉 • |f〉
|k〉 /l • INC |k〉

Fig. 9. Quantum circuit for the Montgomery-Kaliski round function. The function is
repeated 2n times to obtain a reversible modular inversion algorithm. The n-qubit reg-
isters |u〉, |v〉, |r〉, |s〉 represent the usual coefficients in the binary Euclidean algorithm.
The circuit uses integer subtraction − and addition +, as well as multiplication and
division by 2 functions ·2 and /2 and an incrementer circuit INC. The circuits ·2 and
/2 are implemented as cyclic qubit shifts.

an implementation are (a) an upper bound of 2n steps that Kaliski’s algorithm
can take in the worst case [25] and (b) the introduction of a counter that ensures
that either the computation is propagated forward or, in case the usual Kaliski
algorithm has terminated, the counter is incremented. Such a counter can be
implemented using O(log(n)) qubits.

The circuit shown in Fig. 9 implements the Kaliski algorithm in a reversible
fashion. We next describe the various registers used in this circuit and explain
why this algorithm actually computes the same output as the Kaliski algorithm.
The algorithm uses n-bit registers for inputs u and v, where u is initially set to

Quantum Resource Estimates 255

the underlying prime p. As p is constant, the register can be prepared using bit
flips corresponding to the binary representation of p. Moreover, v is initially set
to the input x of which we would like to compute the inverse. Moving downward
from the top, the next line represents a single ancilla qubit which is used to store
an intermediate value which is the result of a comparison. Next is an n + 1-bit
register for r and likewise an n + 1-bit register for s, so that the loop invariant
p = rv + su holds at each stage of the algorithm. Eventually, when v = 0 is
reached, register r will hold the almost inverse and register s will be equal to
p. The next 2 lines represent ancilla qubits which are used as scratch space to
store an intermediate computation. The technically most interesting part is the
next register which consists of a single qubit labeled mi. This indicates that in
round i, where 1 ≤ i ≤ 2n, a fresh qubit is introduced, then acted upon by the
circuit and then kept around.

After the maximum number of 2n rounds is executed, hence 2n qubits have
been introduced and entangled in this way. The purpose of the qubit mi is to
remember which of the 4 branches in Kaliski’s algorithm was taken in step i. As
there are 4 branches, this choice could be naively encoded into 2 qubits, which
however would lead to a space overhead of 4n instead of 2n. The fact that one of
these two qubits is actually redundant is shown below. The next qubit, labeled f
in the figure, is part of a mechanism to unroll the entire algorithm which drives
precisely one of two processes forward: either the Kaliski algorithm itself, or a
counter, here represented as the “INC” operation. The flag f starts out in state
1 which indicates that the algorithm is in Kaliski-mode. Once the terminating
condition v = 0 is reached, the flag switches to 0, indicating that the algorithm
is in counter-mode. Finally, the register k holds the state of the counter. As the
counter can take values between n and 2n only [25], it can be implemented using
�log2(n) + 1� qubits only.

Having covered all registers that are part of the circuit, we next explain
how the circuit is actually unraveled to compute the almost inverse. Shown in
Fig. 9 is only one round. The circuit is applied over and over to the same set of
qubit registers, with the sole exception of qubit mi which depends on round i
and which is initialized, acted upon, and then stored. In each round there are 4
possible branches. These are dispatched using the gates inside the dashed box.
The first gate is a controlled NOT that acts only on the least significant bit of
u, checking whether u is even. The next gate does the same for v, which flips
the target bit in case u was odd and v was even. If both u and v are odd, the
difference u − v respectively v − u has to be computed, depending on whether
u > v or u ≤ v. To figure out which case actually holds, we use a subtractor
and store the most significant qubit in the mentioned ancilla. The sequences of 5
gates underneath the two subtractors/adders serve as an encoder that prepares
the following correspondence: ‘10’ for the case u even, ‘01’ for the case u odd,
v even, ‘11’ for the case both odd and u > v, and ‘00’ for the case both odd
and u ≤ v. Denote the two bits involved in this encoding as ‘ab’ we see that
b is the round qubit mi. The fact that a can be immediately uncomputed is a
consequence of the following observation.

256 M. Roetteler et al.

In each step of Kaliski’s algorithm, precisely one of r and s is even and
the other is odd. If the updated value of r is even, then the branch must be
the result of either the case v even or the case both u and v odd and u ≤ v.
Correspondingly, if the updated value of s is even, then the branch must have
been the result of either the case u even or the case both u and v odd and u > v.
Indeed, an even value of r arises only from the mentioned two branches v even
or u and v both odd and u ≤ v. Similarly, the other statement is obtained for
s. The invariant p = rv + su implies inductively that precisely one of r and s is
even and the other henceforth must be odd.

Coming back to the dashed circuit, the next block of 6 gates is to dispatch
the appropriate case, depending on the 2 bits a and b, which corresponds to the
4 branches in the match statement. Finally, the last CNOT gate between the
least significant bit of r (indicating whether r is even) is used to uncompute ‘a’.

The shown circuit is then applied precisely 2n times. At this juncture, the
computation of the almost inverse will have stopped after k steps where n ≤ k ≤
2n and the counter INC will have been advanced precisely 2n − k times. The
counter INC could be implemented using a simple increment x �→ x+1, however
in our implementation we chose a finite state machine that has a transition
function requiring less Toffoli gates.

Next, the register r which is known to hold −x−12k is converted to x−12n.
This is done by performing precisely n − k controlled modular doublings and
a sign flip. Finally, the result is copied out into another register and the entire
circuit is run backwards.

4 Reversible Elliptic Curve Operations

Based on the reversible algorithms for modular arithmetic from the previous
section, we now turn to implementing a reversible algorithm for adding two
points on an elliptic curve. Next, we describe a reversible point addition in
the generic case in which none of the exceptional cases of the simple affine
Weierstrass group law occurs. After that, we describe a reversible algorithm for
computing a scalar multiplication [m]P .

4.1 Point Addition

The reversible point addition we implement is very similar to the one described
in Sect. 4.3 of [39]. It uses affine coordinates. As was also mentioned in [39] (and
as we argue below), it is enough to consider the generic case of an addition. This
means that we assume the following situation. Let P1, P2 ∈ E(Fp), P1, P2 �= O
such that P1 = (x1, y1) and P2 = (x2, y2). Furthermore let, x1 �= x2 which
means that P1 �= ±P2. Recall that then P3 = P1 + P2 �= O and it is given
by P3 = (x3, y3), where x3 = λ2 − x1 − x2 and y3 = λ(x1 − x3) − y1 for
λ = (y1 − y2)/(x1 − x2).

As explained in [39], for computing the sum P3 reversibly and in place (replac-
ing the input point P1 by the sum), the algorithm makes essential use of the fact

Quantum Resource Estimates 257

that the slope λ can be re-computed from the result P3 via the point addition
P3 + (−P2) independent of P1 using the equation

y1 − y2

x1 − x2
= − y3 + y2

x3 − x2
.

Algorithm 1 depicts our algorithm for computing a controlled point addition. As
input it takes the four point coordinates for P1 and P2, a control bit ctrl, and
replaces the coordinates holding P1 with the result P3 = (x3, y3). Note that we
assume P2 to be a constant point that has been classically precomputed, because
we compute scalar multiples of the input points P and Q to Shor’s algorithm
by conditionally adding together precomputed 2-power multiples of these points
as shown in Fig. 1 above. The point P2 will thus always be one of these values.
Therefore, operations involving the coordinates x2 and y2 are implemented as
constant operations. Algorithm 1 uses two additional temporary variables λ and
t0. All the point coordinates and the temporary variables fit in n-bit registers
and thus the algorithm can be implemented with a circuit on a quantum register
|x1 y1 ctrl λ t0 tmp〉, where the register tmp holds auxiliary registers that are
needed by the modular arithmetic operations used in Algorithm1 as described
in Sect. 3.

The algorithm is given as a straight line program of (controlled) arithmetic
operations on the point coefficients and auxiliary variables. The comments at the
end of the line after each operation show the current values held in the variable
that is possibly changed. The notation [·]1 shows the value of the variable in
case the control bit is ctrl = 1, if it is ctrl = 0 instead, the value is shown with
[·]0. In the latter case, it is easy to check that the algorithm indeed returns the
original state of the register.

The functions in the algorithm all use the fact that the modulus p is known as
a classical constant. They relate to the algorithms described in Sect. 3 as follows:

– add const modp is a modular addition of a constant to a quantum state,
sub const modp is its reverse, a modular subtraction of a constant.

– ctrl add const modp is single qubit controlled modular addition of a con-
stant to a qubit register, i.e. the controlled version of the above. Its reverse
ctrl sub const modp performs the controlled modular subtraction.

– ctrl sub modp is a single qubit controlled modular subtraction on two qubit
registers, implemented as the reverse of the corresponding modular addition.

– ctrl neg modp is a single qubit controlled modular negation on a register.
– mul modp, squ modp, inv modp are the out-of-place modular multiplication,

squaring and inversion algorithms on two input qubit registers, respectively.

Figure 10 shows a quantum circuit that implements Algorithm 1. The quan-
tum registers |x1〉, |y1〉, |t0〉, |λ〉 all consist of n logical qubits, whereas |ctrl〉 is a
single logical qubit. For simplicity in the circuit diagram, we do not show the
register |tmp〉 with the auxiliary qubits. These qubits are used as needed by the
modular arithmetic operations and are returned to their original state after each
operation. The largest amount of ancilla qubits is needed by the modular inver-
sion algorithm, which determines that we require 5n qubits in the register |tmp〉.

258 M. Roetteler et al.

Algorithm 1. Reversible, controlled elliptic curve point addition. This algo-
rithm operates on a quantum register holding the point P1 = (x1, y1), a control
bit ctrl, and two auxiliary values λ and t0. In addition it needs auxiliary reg-
isters for the functions that are called as described for those functions. The
second point P2 = (x2, y2) is assumed to be a precomputed classical constant.
For P1, P2 �= O, P1 �= ±P2, if ctrl = 1, the algorithm correctly computes
P1 ← P1 + P2 in the register holding P1; if ctrl = 0 it returns the register
in the received state.
1: sub const modp x1 x2;
2: ctrl sub const modp y1 y2 ctrl;
3: inv modp x1 t0;
4: mul modp y1 t0 λ;
5: mul modp λ x1 y1;
6: inv modp x1 t0;
7: squ modp λ t0;
8: ctrl sub modp x1 t0 ctrl;
9: ctrl add const modp x1 3x2 ctrl;

10: squ modp λ t0;
11: mul modp λ x1 y1;
12: inv modp x1 t0;
13: mul modp t0 y1 λ;
14: inv modp x1 t0;
15: ctrl neg modp x1 ctrl;
16: ctrl sub const modp y1 y2 ctrl;
17: add const modp x1 x2;

// x1 ← x1 − x2

// y1 ← [y1 − y2]1, [y1]0
// t0 ← 1/(x1 − x2)t
// λ ← [y1−y2

x1−x2
]1, [

y1
x1−x2

]0
// y1 ← 0
// t0 ← 0
// t0 ← λ2

// x1 ← [x1 − x2 − λ2]1, [x1 − x2]0
// x1 ← [x2 − x3]1, [x1 − x2]0
// t0 ← 0
// y1 ← [y3 + y2]1, [y1]0
// t0 ← [1

x2−x3
]1, [

1
x1−x2

]0
// λ ← 0
// t0 ← 0
// x1 ← [x3 − x2]1, [x1 − x2]0
// y1 ← [y3]1, [y1]0
// x1 ← [x3]1, [x1]0

|x1〉/n−x2 inv mul inv − �+3x2 mul inv inv neg +x2 |x3〉
|ctrl〉 • • • • • |ctrl〉
|y1〉/n−y2 mul mul � mul � mul −y2 |y3〉

|t0 = 0〉/n
inv �mul inv �

squ
�−

squ
� inv �mul inv � |0〉

|λ = 0〉/n
mul �mul mul mul � |0〉

Fig. 10. Quantum circuit for controlled elliptic curve point addition. All operations
are modulo p and we use the abbreviations + ← add modp, − ← sub modp, mul ←
mul modp, squ ← squ modp, inv ← inv modp.

To avoid permuting the wires between gates, we have used a split gate notation
for some modular operations. For all gates, the black triangles mark the output
wire that contains the result. As described in Sect. 3, addition and subtraction
gates carry out their operations in place, meaning that one of the input registers
is overwritten with the result. Modular multiplication, squaring and inversion
operate out of place and store the result in a separate output register.

Quantum Resource Estimates 259

Remark 1 (Projective coordinates). As can be seen from Sect. 3, modular inver-
sion is by far the most complex and resource consuming part of the elliptic curve
point addition. The need for computing and uncomputing the slope λ leads to
four calls to the inversion in Algorithm1. In accordance with the observations
provided in [39], it accounts for the main cost of the algorithm.

Unsurprisingly, this situation resembles the one for classical modular arith-
metic. For example, in elliptic curve cryptography, a modular inversion can be
two orders of magnitudes more costly than a modular multiplication, depend-
ing on the specific prime field. A significant speed-up can be achieved by using
some form of projective coordinates7, which allow to avoid almost all modular
inversions in cryptographic protocols by essentially multiplying through with
all denominators. This comes at the relatively small cost of storing more coef-
ficients and a moderate increase in addition and multiplication operations and
has proved highly effective. It is thus a natural question to ask whether the use
of projective coordinates can also make Shor’s algorithm more efficient.

There are several obstacles that make it non-trivial to use projective coordi-
nates for quantum algorithms, such as the fact that each point is represented by
an equivalence class of coordinate vectors and the increased number of tempo-
rary variables, which need to be uncomputed [31]. In this work, we thus refrained
from investigating projective coordinate systems any further and leave it as an
open problem to explore their benefits in the context of Shor’s algorithm.

4.2 Scalar Multiplication

In order to compute a scalar multiplication [m]P of a known base point P ,
we also follow the approach outlined in [39]. Namely, by classically precomput-
ing all n 2-power multiples of P , the scalar multiple can be computed by a
sequence of n controlled additions of those constant points to an accumulator
in a quantum register along the binary representation of the scalar. Namely, let
m =

∑n−1
i=0 mi2i, mi ∈ {0, 1}, be the binary representation of the n-bit scalar

m. Then,

[m]P = [
n−1∑

i=0

mi2i]P =
n−1∑

i=0

mi([2i]P).

This has the advantage that all doubling operations can be carried out on a clas-
sical computer and the quantum circuit only requires the generic point addition,
which simplifies the overall implementation.

The latter has been argued by Proos and Zalka in [39, Sect. 4.2]. They say
that on average, for any addition step, the probability of an exceptional case is
negligibly low, and hence this will only have a negligible influence on the fidelity
of the algorithm. To prevent the addition with the point at infinity in the first
step, they suggest to initialize the register with a non-zero multiple of the point
P . For the purpose of estimating resources for Shor’s algorithm, we follow the

7 A collection of possible coordinate systems and the corresponding formulas to carry
out the group law is provided at https://www.hyperelliptic.org/EFD/.

https://www.hyperelliptic.org/EFD/

260 M. Roetteler et al.

approach by Proos and Zalka and only consider the generic group law. We will
have a closer look at the details next.

Counting Scalars with Exceptional Cases. As explained in Sect. 2, Shor’s
algorithm involves generating a superposition over all possible pairs of (n+1)-bit
strings k and �, i.e. the state 1

2n+1

∑2n+1−1
k,�=0 |k, �〉. Then over this superposition,

involving two additional n-qubit registers to hold an elliptic curve point, one
computes a double scalar multiplication 1

2n+1

∑2n+1−1
k,�=0 |k, �〉|[k]P + [�]Q〉 of the

input points given by the ECDLP instance.
Figure 1 depicts the additional elliptic curve point register to be initialized

with a representation of the neutral element O. But if we only consider the
generic case of the group law, the first addition of P would already involve an
exceptional case due to one of the inputs being O. Proos and Zalka [39] propose
to solve this issue by instead initializing the register with a uniform random
non-zero multiple of P , say [a]P for a random a ∈ {1, 2, . . . , r − 1}. Recall that
r is the order of P which we assume to be a large prime. Now, if a /∈ {1, r − 1},
the first point addition with P works as a generic point addition. With high
probability, this solves the issue of an exception in the first addition, but still
exceptions occur along the way for many of the possibilities for bit strings k
and �. Whenever a bit string leads to an exceptional case in the group law, it
produces a wrong result for the double scalar multiplication and pollutes the
quantum register. We call such a scalar invalid. For Shor’s algorithm to work,
the overall number of such invalid scalars must be small enough. In the following
we count these scalars, similar to the reasoning in [39].

Exceptional Additions of a Point to Itself. Let a ∈ {1, 2, . . . , r − 1} be
fixed and write k =

∑n
i=0 ki2i, ki ∈ {0, 1}. We first consider the exceptional case

in which both input points are the same, which we call an exceptional doubling.
If a = 1, this occurs in the first iteration for k0 = 1, because we attempt to add
P to itself. This means that for a = 1, all scalars k with k0 = 1 lead to a wrong
result and therefore half of the scalars are invalid, i.e. in total 2n.

For a = 2, the case k0 = 1 is not a problem since the addition [2]P + P is a
generic addition, but (k0, k1) = (0, 1) leads to an exceptional doubling operation
in the second controlled addition. This means that all scalars (0, 1, k2, . . . , kn)
are invalid. These are one quarter of all scalars, i.e. 2n−1.

For general a, assume that k is a scalar such that the first i − 1 additions, i ∈
{1, . . . , n}, controlled on the bits k0, . . . , ki−1 do not encounter any exceptional
doubling cases. The i-th addition means the addition of [2i]P for 0 ≤ i ≤ n.
Then the i-th addition is an exceptional doubling if, and only if

a + (k0 + k1 · 2 + · · · + ki−1 · 2i−1) = 2i (mod r).

If i is such that 2i < r. Then, the above condition is equivalent to the condition
a = 2i − ∑i−1

j=0 kj · 2j over the integers. This means that an a can only lead to
an exceptional doubling in the i-th addition if a ∈ {1, . . . , 2i}. Furthermore, if i

Quantum Resource Estimates 261

is the smallest integer, such that there exist k0, . . . , ki−1 such that this equation
holds, we can conclude that a ∈ {2i−1 + 1, . . . , 2i} and ki−1 = 0. In that case,
any scalar of the form (k0, . . . , ki−2, 0, 1, ∗, . . . , ∗) is invalid. The number of such
scalars is 2n−i. If i is instead such that 2i ≥ r and if a ≤ 2i −μr for some positive
integer μ ≤ �2i/r�, then in addition to the solutions given by the equation over
the integers as above, there exist additional solutions given by the condition
a = (2i − μr) − ∑i−1

j=0 kj · 2j , namely (k0, . . . , ki−1, 1, ∗, . . . , ∗). The maximal
number of such scalars is �(2i − a)/r�2n−i, but we might have counted some of
these already.

For a given a ∈ {1, 2, . . . , r − 1}, denote by Sa the set of scalars that contain
an exceptional doubling, i.e. the set of all k = (k0, k1, . . . , kn) ∈ {0, 1, }n+1

such that there occurs an exceptional doubling when executing the addition
[a +

∑i−1
j=0 kj · 2j]P + [2i]P for any i ∈ {0, 1, . . . , n}. Let ia = �log(a)�. Then, an

upper bound for the number of invalid scalars is given by

#Sa ≤ 2n−ia +
n∑

i=�log(r)�
�(2i − a)/r�2n−i.

Hasse’s bound gives �log(r)� ≥ n−1, which means that #Sa ≤ 2n−ia +2�(2n−1−
a)/r�+�(2n −a)/r� ≤ 2n−ia +8. Hence on average, the number of invalid scalars
over a uniform choice of k ∈ {1, . . . , r − 1} can be bounded as

r−1∑

a=1

Pr(a) · #Sa ≤ 1
r − 1

r−1∑

a=1

2n−�log(a)� + 8.

Grouping values of a with the same �log(a)� and possibly adding terms at the
end of the sum, the first term can be simplified and further bounded by 1

r − 1 (2n+

�log(r−1)�2n−1) = (2+�log(r−1)�) 2n−1

r − 1 . For large enough bitsizes, we use that
r − 1 ≥ 2n−1 and obtain the upper bound on the expected number of invalid
scalars of roughly �log(r)�+10 ≈ n+10. This corresponds to a negligible fraction
of about n/2n+1 of all scalars.

Exceptional Additions of a Point to Its Negative. To determine the num-
ber of invalid scalars arising from the second possibility of exceptions, namely
the addition of a point to its negative, we carry out the same arguments. An
invalid scalar is a scalar that leads to an addition [−2i]P + [2i]P . The condition
on the scalar a is slightly changed with 2i replaced by r − 2i, i.e.

a + (k0 + k1 · 2 + · · · + ki−1 · 2i−1) = r − 2i (mod r).

Whenever this equation holds over the integers, i.e. r − a = 2i + (k0 + k1 · 2 +
· · · + ki−1 · 2i−1) holds, we argue analogously as above. If 2i < r and r − a ∈
{2i, . . . , 2i+1 − 1}, there are 2n−i invalid scalars. Similar arguments as above for
the steps such that 2i > r lead to similar counts. Overall, we conclude that in
this case the fraction of invalid scalars can also be approximated by n/2n+1.

262 M. Roetteler et al.

Exceptional Additions of the Point at Infinity. Since the quantum register
holding the elliptic curve point is initialized with a non-zero point and the mul-
tiples of P added during the scalar multiplication are also non-zero, the point
at infinity can only occur as the result of an exceptional addition of a point
to its negative. Therefore, all scalars for which this occurs have been excluded
previously and we do not further consider this case.

Overall, an approximate upper bound for the fraction of invalid scalars among
the superposition of all scalars due to exceptional cases in the addition law is
2n/2n+1 = n/2n.

Double Scalar Multiplication. In Shor’s algorithm with the above modifica-
tion, one needs to compute a double scalar multiplication [a + k]P + [�]Q where
P and Q are the points given by the ECDLP instance we are trying to solve and
a is a fixed uniformly random non-zero integer modulo r. We are trying to find
the integer m modulo r such that Q = [m]P . Since r is a large prime, we can
assume that m ∈ {1, . . . , r − 1} and we can write P = [m−1]Q. Multiplication
by m−1 on the elements modulo r is a bijection, simply permuting these scalars.
Hence, after having dealt with the scalar multiplication to compute [a + k]P
above, we can now apply the same treatment to the second part, the addition of
[�]Q to this result.

Let a be chosen uniformly at random. For any k, we write [a + k]P =
[m−1(a + k)]Q. Assume that k is a valid scalar for this fixed choice of a. Then,
the computation of [a + k]P did not involve any exceptional cases and thus
[a + k]P �= O, which means that a + k �= 0 (mod r). If we assume that the
unknown discrete logarithm m has been chosen from {1, . . . , r − 1} uniformly at
random, then the value b = m−1(a+k) mod r is uniform random in {1, . . . , r−1}
as well, and we have the same situation as above when we were looking at the
choice of a and the computation of [a + k]P .

Using the rough upper bound for the fraction of invalid scalars from above,
for a fixed random choice of a, the probability that a random scalar k is valid, is
at least 1−n/2n. Further, the probability that (k, �) is a pair of valid scalars for
computing [a + k]P + [�]Q, conditioned on k being valid for computing [a + k]P
is also at least 1 − n/2n. Hence, for a fixed uniform random a, the probability
for (k, �) being valid is at least (1−n/2n)2 = 1−n/2n−1 +n2/22n ≈ 1−n/2n−1.
This result confirms the rough estimate by Proos and Zalka [39, Sect. 4.2] of a
fidelity loss of 4n/p ≥ 4n/2n+1.

Remark 2 (Complete addition formulas). There exist complete formulas for the
group law on an elliptic curve in Weierstrass form [7]. This means that there is a
single formula that can evaluate the group law on any pair of Fp-rational points
on the curve and thus avoids the occurrence of exceptional cases altogether. For
classical computations, this comes at the cost of a relatively small slowdown [40].
Using such formulas would increase the algorithm’s fidelity in comparison to the
above method. Furthermore, there exist alternative curve models for elliptic
curves which allow coordinate systems that offer even more efficient complete
formulas. One such example is the twisted Edwards form of an elliptic curve [4].

Quantum Resource Estimates 263

However, not all elliptic curves allow a curve model in twisted Edwards form,
like, for example, the prime order NIST curves. We leave it as an open problem
to investigate the use of a complete group law, or more generally the use of
different curve models and coordinate systems in Shor’s ECDLP algorithm.

5 Cost and Resource Estimates for Shor’s Algorithm

We implemented the reversible algorithm for elliptic curve point addition on
elliptic curves E in short Weierstrass form defined over a prime field Fp, where
p has n bits, as shown in Algorithm1 and Fig. 10 in Sect. 4 in F# within the
quantum computing software tool suite LIQUi|〉 [52]. This allows us to test and
simulate the circuit and all its components and obtain precise counts of the
number of qubits, the number of Toffoli gates and the Toffoli gate depth for a
working simulation. We thus do not have to rely on mere estimates obtained
by pen-and-paper calculations and thus gain a higher confidence in the results.
When implementing the algorithms, our overall emphasis was to minimize first
the number of required logical qubits and second the Toffoli gate count.

We have simulated and tested our implementation for cryptographically rel-
evant parameter sizes and were able to simulate the elliptic curve point addition
circuit for curves over prime fields of size up to 521 bits. For each case, we com-
puted the number of qubits required to implement the circuit, and its size and
depth in terms of Toffoli gates.

Number of Logical Qubits. The number of logical qubits of the modular
arithmetic circuits in our simulation that are needed in the elliptic curve point
addition are given in Table 1. We list each function with its total required num-
ber of qubits and the number of ancilla qubits included in that number. All
ancilla qubits are expected to be input in the state |0〉 and are returned in that
state, except for the circuits in the first two rows, which only require one or two
such ancilla qubits and n − 1 or n − 2 ancillas in an unknown state to which
they will be returned. The addition, subtraction and negation circuits all work
in place, such that one n-qubit input register is replaced with the result. The
multiplication, squaring and inversion circuits require an n-qubit register with
which the result of the computation is XOR-ed.

Although the modular multiplication circuit based on modular doubling and
additions uses less qubits than Montgomery multiplication, we have used the
Montgomery approach to report the results of our experiments. Since the lower
bound on the overall required number of qubits is dictated by the modular
inversion circuit, neither multiplication approach adds qubit registers to the
elliptic curve addition circuit since they can use ancilla qubits provided by the
inversion algorithm. We therefore find that the Montgomery circuit is the better
choice then because it reduces the number of Toffoli gates substantially.

264 M. Roetteler et al.

Table 1. Total number of qubits and number of Toffoli gates needed for the modular
arithmetic circuits used in the elliptic curve point addition on E/Fp with n-bit prime
p. The column labeled “ancilla” denotes the number of required ancilla qubits included
in the total count. Except for the first two rows (un-/controlled constant addition/sub-
traction), they are expected to be input in state |0 . . . 0〉 and are returned in that state.
The constant addition/subtraction circuits in the first row only need one clean ancilla
qubit and can take n − 1 dirty ancilla qubits in an unknown state, in which they are
returned. The controlled constant addition/subtraction circuits in the second row use
two dirty ancillas.

Modular arith. circuit # of qubits # Toffoli gates

Total Ancillas

add const modp, sub const modp 2n n 16n log2(n) − 26.9n

ctrl add const modp, ctrl sub const modp 2n + 1 n 16n log2(n) − 26.9n

ctrl sub modp 2n + 4 3 16n log2(n) − 23.8n

ctrl neg modp n + 3 2 8n log2(n) − 14.5n

mul modp (dbl/add) 3n + 2 2 32n2 log2(n) − 59.4n2

mul modp (Montgomery) 5n + 4 2n + 4 16n2 log2(n) − 26.3n2

squ modp (dbl/add) 2n + 3 3 32n2 log2(n) − 59.4n2

squ modp (Montgomery) 4n + 5 2n + 5 16n2 log2(n) − 26.3n2

inv modp 7n + 2�log2(n)� + 9 5n + 2�log2(n)� + 9 32n2 log2(n)

Because the maximum amount of qubits is used during an inversion opera-
tion, the overall number of logical qubits for the controlled elliptic curve point
addition in our simulation is

9n + 2�log2(n)� + 10.

In addition to the 7n + 2�log2(n)� + 9 required by the inversion, an additional
qubit is needed for the control qubit |ctrl〉 of the overall operation and 2n more
qubits are needed since two n-qubit registers need to hold intermediate results
during each inversion.

Number of Toffoli Gates and Depth. Perhaps surprisingly, the precise
resource count of the number of Toffoli gates in the constructed circuits is not
a trivial matter. There are two main reasons for this: first, as constants are
folded, the actual value of the constants matter as different bit-patterns (e.g.,
of the underlying prime p) give rise to different circuits. This effect, however,
is not large and does not impact the leading order coefficients for the functions
in the table. Second, the asymptotically dominating cost arises from the incre-
menter construction based on [21]. For the basic functions reported in Table 1
one can determine the number of incrementers used, which is either of the form
an log2(n) or an2 log2(n) with a constant a. We determined the leading order
term by inspection of the circuit and determining how many constant incre-
menters occur. Then we computed a regression of the next order term by solving
a standard polynomial interpolation problem. The results are summarized in the
last column of Table 1.

Quantum Resource Estimates 265

Fig. 11. Shown on the left are resource estimates for the number of Toffoli gates and
the Toffoli gate depth for the implementation of elliptic curve point addition |P 〉 �→
|P + Q〉, where Q is a constant point. Shown on the right are resource estimates
for the same metrics for modular multiplication |x〉 �→ |ax mod N〉, where a and
N are constants. Fitting the data for the elliptic curve case we obtain a scaling as
224n2 log2(n)+2045n2 up to lower order terms. The cost for the entire Shor algorithm
over the elliptic curve scales as 2n the cost for a single point addition, i.e. 448n3 log2(n)
up to lower order terms. As shown in [21], the cost for modular multiplication scales as
32n2(log2(n) − 2) + 14.73n2 and the cost of the entire Shor factoring algorithm scales
as 64n2 log2(n).

Putting everything together, we now obtain an estimate for the entire group
law as computed by Algorithm 1: As there are a total of 4 inverters, 2 squarers,
and 4 multipliers, we obtain that the leading order coefficient of a single point
addition is 224 = 4 · 32 + 2 · 16 + 4 · 16. We then again perform a regression to
determine the next coefficient. As a result, we estimate that the number of Toffoli
gates in the point addition circuit scales as 224n2 log2(n) + 2045n2. Figure 11
shows the scaling of the estimates for the Toffoli gate count and the Toffoli
gate depth of the circuit for a range of relatively small bit sizes n. To estimate
the overall resource requirements for Shor’s algorithm, one simply multiplies by
2n, since the controlled point addition is iterated 2n times. This leads to the
overall estimate for the scaling of the number of Toffoli gates in Shor’s ECDLP
algorithm as

(448 log2(n) + 4090)n3.

With respect to a given circuit, the Toffoli depth is computed as follows: we
sweep all gates in the circuits and keep a running counter for each qubit on which
time step it was acted upon last by a Toffoli gate. The depth is then the maximum
of these quantities over all qubits. As the number of qubits is comparatively small
in the circuits considered here, we can perform these updates efficiently, leading
to an algorithm to compute the depth in time linear in the number of gates
in the circuit. Note that whenever we encounter a CNOT or NOT gate, we do
not increase the counter as by our assumption these gates do not contribute to
the overall depth as they are Clifford gates. Overall, we find that the circuit
Toffoli depth is a little bit smaller than the total number of Toffoli gates which
shows that there is some parallelism in the circuit that can be exploited when
implementing it on a quantum computer that facilitates parallel application of
quantum gates.

266 M. Roetteler et al.

Table 2. Resource estimates of Shor’s algorithm for computing elliptic curve discrete
logarithms in E(Fp) versus Shor’s algorithm for factoring an RSA modulus N .

ECDLP in E(Fp) simulation results Factoring of RSA modulus

N interpolation from [21]

�log2(p)� #Qubits #Toffoli Toffoli Sim time (s) �log2(N)� #Qubits #Toffoli

bits gates depth (bits) gates

110 1014 9.44 · 109 8.66 · 109 273 512 1026 6.41 · 1010

160 1466 2.97 · 1010 2.73 · 1010 711 1024 2050 5.81 · 1011

192 1754 5.30 · 1010 4.86 · 1010 1 149 − − −
224 2042 8.43 · 1010 7.73 · 1010 1 881 2048 4098 5.20 · 1012

256 2330 1.26 · 1011 1.16 · 1011 3 848 3072 6146 1.86 · 1013

384 3484 4.52 · 1011 4.15 · 1011 17 003 7680 15362 3.30 · 1014

521 4719 1.14 · 1012 1.05 · 1012 42 888 15360 30722 2.87 · 1015

We compare our results to the corresponding simulation results for Shor’s
factoring algorithm presented in [21], where the corresponding function is mod-
ular constant multiplication. In this case, the number of Toffoli gates scales as
32n2(log2(n)−2)+14.73n2, where n is the bitsize of the modulus to be factored.
As above, to estimate the overall resource requirements, one again multiplies by
2n, which gives (64(log2(n) − 2) + 29.46)n3.

Table 2 contains the resources required in our simulated circuits for parame-
ters of cryptographic magnitude that are used in practice. The simulation time
only refers to our implementation of the elliptic curve group law. The simulation
timings were measured when running our LIQUi|〉 implementation on an HP
ProLiant DL580 Gen8 machine consisting of 4 Intel Xeon processors @ 2.20 GHz
and 3 TB of memory. The rows for ECC and RSA are aligned so that the corre-
sponding parameters provide a similar classical security level according to NIST
recommendations from 2016.

Remark 3. Recently, a variation of Shor’s quantum algorithms for computing
discrete logarithms and factoring was developed in [14]. The basic observation
of this paper is that the quantum circuit size can be reduced at the cost of
a more expensive classical post-processing. Inasmuch as the argument given in
[14] applies only to the case of discrete logarithms that are guaranteed to be
small, it does not apply to the ECC column in Table 2, however, the argument
given about factoring does apply. This means that if one is willing to perform a
classical post-processing based on lattice enumeration algorithms, one can reduce
the rounds of phase estimation from 2n to n/2. While this does not save qubits,
it does lead to a division by 4 of all reported resource counts on the number of
Toffoli gates in the RSA column of Table 2.

Remark 4. In [3] it was shown that even in the presence of a quantum computer
with limited size, the heuristic time complexity of the Number Field Sieve can be
reduced from L1.901+o(1) to L1.386+o(1). Specifically, it is shown that a sub-linear
number of n2/3+o(1) qubits is enough for a hybrid quantum-classical algorithm to

Quantum Resource Estimates 267

work. Taking this result into account, shifts the alignment of security parameters
in Table 2, however, it does so in a way that significantly complicates the analysis
as constants for the algorithm given in [3] would have to be worked out.

6 Discussion

Comparing to the theoretical estimates by Proos and Zalka in [39], our results
provide additional evidence that for cryptographically relevant sizes, elliptic
curve discrete logarithms can be computed more easily on a quantum computer
than factoring an RSA modulus of similar classical security level. However, nei-
ther the Toffoli gate counts for factoring that were provided in [21], nor the
ones for elliptic curves that were provided here are as low as the theoretically
predicted “time” estimates in [39]. Also, the number of qubits in our simulation-
based estimates is higher than the ones conjectured in [39].

The reasons for the larger number of qubits lie in the implementation of the
modular inversion algorithm. Proos and Zalka describe a version of the standard
Euclidean algorithm which requires divisions with remainder. We chose to imple-
ment the binary GCD algorithm, which only requires additions, subtractions and
binary bit shifts. One optimization that applies to both algorithms is register
sharing as proposed in [39, Sect. 5.3.5]. The standard Euclidean algorithm as
well as the binary GCD work on four intermediate variables, requiring 4n bits
in total. In our description in Sect. 3.4, these are the variables u, v, r, s. How-
ever, Proos and Zalka use a heuristic argument to show that they actually only
need about 2n + 8

√
n bits at any time during the algorithm. A complication for

implementing this optimization is that the boundaries between variables change
during the course of the algorithm. We leave it for future work to implement
and simulate a reversible modular inversion algorithm that makes use of register
sharing to reduce the number of qubits.

Since the basis for register sharing in [39] is an experimental analysis, Proos
and Zalka provide a space analysis that does not take into account the register
sharing optimization. With this space analysis, we still need about 2n qubits
more than their Euclidean algorithm. These qubits come from the fact that our
extended binary GCD algorithm generates one bit of garbage in each of the
2n rounds. In contrast, [39] only needs n carry qubits. Furthermore, we need
an additional n-qubit register to copy out the result and run the algorithm in
reverse to clean-up all garbage and ancilla qubits. We could not see how to avoid
this and how to achieve step-wise reversibility for the extended binary Euclidean
algorithm. We leave it as a future challenge to match or even lower the number
of qubits for reversible modular inversion from [39].

To summarize, we presented quantum circuits to implement Shor’s algorithm
to solve the ECDLP. We analyzed the resources required to implement these
circuits and simulated large parts of them on a classical machine. Indeed, the
overwhelming majority of gates in our circuits are Toffoli, CNOT, and NOT
gates, which implement the controlled addition of an elliptic curve point that is
known at circuit generation time. We were able to classically simulate the point

268 M. Roetteler et al.

addition circuit and hence test it for implementation bugs. Our findings imply
that attacking elliptic curve cryptography is indeed easier than attacking RSA,
even for relatively small key sizes.

Acknowledgments. We thank Christof Zalka for feedback and discussions and the
anonymous reviewers for their valuable comments.

References

1. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm
for fast synthesis of depth-optimal quantum circuits. IEEE Trans. Comput. Aided
Des. Integr. Circ. Syst. 32(6), 818–830 (2013)

2. Beauregard, S.: Circuit for Shor’s algorithm using 2n+3 qubits. Quantum Inf.
Comput. 3(2), 175–185 (2003)

3. Bernstein, D.J., Biasse, J.-F., Mosca, M.: A low-resource quantum factoring algo-
rithm. In: Lange and Takagi [28], pp. 330–346

4. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted edwards
curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–
405. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68164-9 26

5. Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., Moeller, B.: Elliptic curve
cryptography (ECC) cipher suites for Transport Layer Security (TLS). RFC 4492,
RFC Editor (2006)

6. Bos, J.W., Costello, C., Miele, A.: Elliptic and hyperelliptic curves: a practical
security analysis. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 203–220.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 12

7. Bosma, W., Lenstra, H.W.: Complete system of two addition laws for elliptic
curves. J. Number Theor. 53(2), 229–240 (1995)

8. Certicom Research: Standards for efficient cryptography 2: recommended elliptic
curve domain parameters. Standard SEC2, Certicom (2000)

9. Crandall, R., Pomerance, C. (eds.): Prime Numbers - A Computational Perspec-
tive. Springer, New York (2005). https://doi.org/10.1007/0-387-28979-8

10. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) protocol version 1.2.
RFC 5246, RFC Editor (2008)

11. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (1976)

12. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: the second-generation onion
router. In: Blaze, M. (ed.) USENIX Security 2004, pp. 303–320. USENIX (2004)

13. ECC Brainpool: ECC brainpool standard curves and curve generation (2005).
http://www.ecc-brainpool.org/download/Domain-parameters.pdf

14. Eker̊a, M., H̊astad, J.: Quantum algorithms for computing short discrete logarithms
and factoring RSA integers. In: Lange and Takagi [28], pp. 347–363

15. Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes:
towards practical large-scale quantum computation. Phys. Rev. A 86, 032324
(2012). arXiv:1208.0928

16. Galbraith, S.D., Gaudry, P.: Recent progress on the elliptic curve discrete logarithm
problem. Des. Codes Crypt. 78(1), 51–72 (2016)

17. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

https://doi.org/10.1007/978-3-540-68164-9_26
https://doi.org/10.1007/978-3-642-54631-0_12
https://doi.org/10.1007/0-387-28979-8
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://arxiv.org/abs/1208.0928
https://arxiv.org/abs/1208.0928
https://doi.org/10.1007/3-540-39568-7_2

Quantum Resource Estimates 269

18. Gordon, D.M.: Discrete logarithms in GF(P) using the number field sieve. SIAM
J. Discrete Math. 6(1), 124–138 (1993)

19. Griffiths, R., Niu, C.: Semiclassical Fourier transform for quantum computation.
Phys. Rev. Lett. 76(17), 3228–3231 (1996)

20. Hamburg, M.: Ed448-Goldilocks, a new elliptic curve. IACR Cryptology ePrint
Archive 2015:625 (2015)

21. Haner, T., Roetteler, M., Svore, K.M.: Factoring using 2n + 2 qubits with Toffoli
based modular multiplication. Quantum Inf. Comput. 18(7&8), 673–684 (2017)

22. Hollosi, A., Karlinger, G., Rossler, T., Centner, M., et al.: Die osterreichische Burg-
erkarte (2008). http://www.buergerkarte.at/konzept/securitylayer/spezifikation/
20080220/

23. Johnson, D., Menezes, A., Vanstone, S.A.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)

24. Joux, A., Lercier, R.: Improvements to the general number field sieve for discrete
logarithms in prime fields. A comparison with the Gaussian integer method. Math.
Comput. 72(242), 953–967 (2003)

25. Kaliski Jr., B.S.: The Montgomery inverse and its applications. IEEE Trans. Com-
put. 44(8), 1064–1065 (1995)

26. Kliuchnikov, V., Maslov, D., Mosca, M.: Practical approximation of single-qubit
unitaries by single-qubit quantum Clifford and T circuits. IEEE Trans. Comput.
65(1), 161–172 (2016)

27. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)
28. Lange, T., Takagi, T. (eds.): PQCrypto 2017. LNCS, vol. 10346. Springer, Cham

(2017). https://doi.org/10.1007/978-3-319-59879-6
29. Langley, A., Hamburg, M., Turner, S.: Elliptic curves for security. RFC 7748, RFC

Editor (2016)
30. Lenstra, A.K., Lenstra, H.W. (eds.): The Development of the Number Field Sieve.

LNM, vol. 1554. Springer, Heidelberg (1993). https://doi.org/10.1007/BFb0091534
31. Maslov, D., Mathew, J., Cheung, D., Pradhan, D.K.: An O(m2)-depth quantum

algorithm for the elliptic curve discrete logarithm problem over GF(2m)a. Quantum
Inf. Comput. 9(7), 610–621 (2009)

32. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 31

33. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput.
44(170), 519–521 (1985)

34. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). http://bitcoin.
org/bitcoin.pdf

35. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

36. Paterson, K.G.: Formal request from TLS WG to CFRG for new elliptic curves.
CFRG mailing list, 14 July 2014. http://www.ietf.org/mail-archive/web/cfrg/
current/msg04655.html

37. Pollard, J.M.: Monte Carlo methods for index computation mod p. Math. Comput.
32(143), 918–924 (1978)

38. Pollard, J.M.: Kangaroos, monopoly and discrete logarithms. J. Cryptol. 13(4),
437–447 (2000)

39. Proos, J., Zalka, C.: Shor’s discrete logarithm quantum algorithm for elliptic curves.
Quantum Inf. Comput. 3(4), 317–344 (2003)

http://www.buergerkarte.at/konzept/securitylayer/spezifikation/20080220/
http://www.buergerkarte.at/konzept/securitylayer/spezifikation/20080220/
https://doi.org/10.1007/978-3-319-59879-6
https://doi.org/10.1007/BFb0091534
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://www.ietf.org/mail-archive/web/cfrg/current/msg04655.html
http://www.ietf.org/mail-archive/web/cfrg/current/msg04655.html

270 M. Roetteler et al.

40. Renes, J., Costello, C., Batina, L.: Complete addition formulas for prime order
elliptic curves. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9665, pp. 403–428. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49890-3 16

41. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

42. Selinger, P.: Quantum circuits of T -depth one. Phys. Rev. A 87, 042302 (2013)
43. Selinger, P.: Efficient Clifford+T approximation of single-qubit operators. Quan-

tum Inf. Comput. 15(1–2), 159–180 (2015)
44. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-

ing. In: FOCS 1994, pp. 124–134. IEEE Computer Society (1994)
45. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-

rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)
46. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathe-

matics, vol. 106, 2nd edn. Springer, New York (2009). https://doi.org/10.1007/
978-0-387-09494-6

47. Stebila, D., Green, J.: Elliptic curve algorithm integration in the Secure Shell
Transport Layer. RFC 5656, RFC Editor (2009)

48. Stein, J.: Computational problems associated with Racah algebra. J. Comput.
Phys. 1(3), 397–405 (1967)

49. Takahashi, Y., Tani, S., Kunihiro, N.: Quantum addition circuits and unbounded
fan-out. Quantum Inf. Comput. 10(9&10), 872–890 (2010)

50. U.S. Department of Commerce/National Institute of Standards and Technology:
Digital Signature Standard (DSS). FIPS-186-4 (2013). http://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.186-4.pdf

51. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-
cations. J. Cryptol. 12(1), 1–28 (1999)

52. Wecker, D., Svore, K.M.: LIQUi|〉: a software design architecture and domain-
specific language for quantum computing (2014). https://arxiv.org/abs/1402.4467

53. WhatsApp Inc.: Whatsapp encryption overview. Technical White Paper (2016)
54. Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.): PKC 2006. LNCS, vol. 3958.

Springer, Heidelberg (2006). https://doi.org/10.1007/11745853

https://doi.org/10.1007/978-3-662-49890-3_16
https://doi.org/10.1007/978-3-662-49890-3_16
https://doi.org/10.1007/978-0-387-09494-6
https://doi.org/10.1007/978-0-387-09494-6
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://arxiv.org/abs/1402.4467
https://doi.org/10.1007/11745853

	Quantum Resource Estimates for Computing Elliptic Curve Discrete Logarithms
	1 Introduction
	2 Elliptic Curves and Shor's Algorithm
	2.1 Elliptic Curves and the ECDLP
	2.2 Shor's Quantum Algorithm for Solving the ECDLP

	3 Reversible Modular Arithmetic
	3.1 Integer Addition and Binary Shifts
	3.2 Modular Addition and Doubling
	3.3 Modular Multiplication
	3.4 Modular Inversion

	4 Reversible Elliptic Curve Operations
	4.1 Point Addition
	4.2 Scalar Multiplication

	5 Cost and Resource Estimates for Shor's Algorithm
	6 Discussion
	References

