
Beyond Hellman’s Time-Memory Trade-Offs
with Applications to Proofs of Space

Hamza Abusalah1(B), Joël Alwen1, Bram Cohen2, Danylo Khilko3,
Krzysztof Pietrzak1, and Leonid Reyzin4

1 Institute of Science and Technology Austria, Klosterneuburg, Austria
{habusalah,jalwen,pietrzak}@ist.ac.at
2 Chia Network, San Francisco, CA, USA

bram@chia.network
3 ENS Paris, Paris, France

dkhilko@ukr.net
4 Boston University, Boston, USA

reyzin@cs.bu.edu

Abstract. Proofs of space (PoS) were suggested as more ecological and
economical alternative to proofs of work, which are currently used in
blockchain designs like Bitcoin. The existing PoS are based on rather
sophisticated graph pebbling lower bounds. Much simpler and in several
aspects more efficient schemes based on inverting random functions have
been suggested, but they don’t give meaningful security guarantees due
to existing time-memory trade-offs.

In particular, Hellman showed that any permutation over a domain
of size N can be inverted in time T by an algorithm that is given S
bits of auxiliary information whenever S · T ≈ N (e.g. S = T ≈ N1/2).
For functions Hellman gives a weaker attack with S2 · T ≈ N2 (e.g.,
S = T ≈ N2/3). To prove lower bounds, one considers an adversary who
has access to an oracle f : [N] → [N] and can make T oracle queries. The
best known lower bound is S ·T ∈ Ω(N) and holds for random functions
and permutations.

We construct functions that provably require more time and/or space
to invert. Specifically, for any constant k we construct a function [N] →
[N] that cannot be inverted unless Sk · T ∈ Ω(Nk) (in particular, S =
T ≈ Nk/(k+1)). Our construction does not contradict Hellman’s time-
memory trade-off, because it cannot be efficiently evaluated in forward
direction. However, its entire function table can be computed in time
quasilinear in N , which is sufficient for the PoS application.

Our simplest construction is built from a random function oracle g :
[N] × [N] → [N] and a random permutation oracle f : [N] → [N] and
is defined as h(x) = g(x, x′) where f(x) = π(f(x′)) with π being any
involution without a fixed point, e.g. flipping all the bits. For this function
we prove that any adversary who gets S bits of auxiliary information,
makes at most T oracle queries, and inverts h on an ε fraction of outputs
must satisfy S2 · T ∈ Ω(ε2N2).

c© International Association for Cryptologic Research 2017
T. Takagi and T. Peyrin (Eds.): ASIACRYPT 2017, Part II, LNCS 10625, pp. 357–379, 2017.
https://doi.org/10.1007/978-3-319-70697-9_13

358 H. Abusalah et al.

1 Introduction

A proof of work (PoW), introduced by Dwork and Naor [DN93], is a proof system
in which a prover P convinces a verifier V that he spent some computation with
respect to some statement x. A simple PoW can be constructed from a function
H(·), where a proof with respect to a statement x is simply a salt s such that
H(s, x) starts with t 0’s. If H is modelled as a random function, P must evaluate
H on 2t values (in expectation) before he finds such an s.

The original motivation for PoWs was prevention of email spam and denial
of service attacks, but today the by far most important application for PoWs is
securing blockchains, most prominently the Bitcoin blockchain, whose security
is based on the assumption that the majority of computing power dedicated
towards the blockchain comes from honest users. This results in a massive waste
of energy and other resources, as this mining is mostly done on dedicated hard-
ware (ASICs) which has no other use than Bitcoin mining. In [DFKP15] proofs
of space (PoS) have been suggested as an alternative to PoW. The idea is to use
disk space rather than computation as the main resource for mining. As millions
of users have a significant amount of unused disk space available (on laptops
etc.), dedicating this space towards securing a blockchain would result in almost
no waste of resources.

Let [N] denote some domain of size N . For convenience we’ll often assume
that N = 2n is a power of 2 and identify [N] with {0, 1}n, but this is never
crucial and [N] can be any other efficiently samplable domain. A simple idea for
constructing a PoS is to have the verifier specify a random function f : [N] →
[N] during the initialization phase, and have the prover compute the function
table of f and sort it by the output values.1 Then, during the proof phase, to
convince the verifier that he really stores this table, the prover must invert f on
a random challenge. We will call this approach “simple PoS”; we will discuss it
in more detail in Sect. 1.3 below, and explain why it miserably fails to provide
any meaningful security guarantees.

Instead, existing PoS [DFKP15,RD16] are based on pebbling lower bounds
for graphs. These PoS provide basically the best security guarantees one could
hope for: a cheating prover needs Θ(N) space or time after the challenge is known
to make a verifier accept. Unfortunately, compared to the (insecure) simple PoS,
they have two drawbacks which make them more difficult to use as replacement
for PoW in blockchains. First, the proof size is quite large (several MB instead
of a few bytes as in the simple PoS or Bitcoin’s PoW). Second, the initialization
phase requires two messages: the first message, like in the simple PoS, is sent from
the verifier to the prover specifying a random function f , and second message,
unlike in the simple PoS, is a “commitment” from the prover to the verifier.2

1 f must have a short description, so it cannot be actually random. In practice the
prover would specify f by, for example, a short random salt s for a cryptographic
hash function H, and set f(x) = H(s, x).

2 Specifically, the prover computes a “graph labelling” of the vertices of a graph (which
is specified by the PoS) using f , and then a Merkle tree commitment to this entire
labelling, which must be sent back to the verifier.

Beyond Hellman’s Time-Memory Trade-Offs 359

If such a pebbling-based PoS is used as a replacement for PoW in a blockchain
design, the first message can be chosen non-interactively by the miner (who plays
the role of the prover), but the commitment sent in the second message is more
tricky. In Spacemint (a PoS-based decentralized cryptocurrency [PPK+15]), this
is solved by having a miner put this commitment into the blockchain itself before
he can start mining. As a consequence, Spacemint lacks the nice property of
the Bitcoin blockchain where miners can join the effort by just listening to the
network, and only need to speak up once they find a proof and want to add it
to the chain.

1.1 Our Results

In this work we “resurrect” the simple approach towards constructing PoS
based on inverting random functions. This seems impossible, as Hellman’s time-
memory trade-offs — which are the reason for this approach to fail — can be
generalized to apply to all functions (see Sect. 1.4). For Hellman’s attacks to
apply, one needs to be able to evaluate the function efficiently in forward direc-
tion. At first glance, this may not seem like a real restriction at all, as inverting
functions which cannot be efficiently computed in forward direction is undecid-
able in general.3 However, we observe that for functions to be used in the simple
PoS outlined above, the requirement of efficient computability can be relaxed in
a meaningful way: we only need to be able to compute the entire function table
in time linear (or quasilinear) in the size of the input domain. We construct
functions satisfying this relaxed condition for which we prove lower bounds on
time-memory trade-offs beyond the upper bounds given by Hellman’s attacks.

Our most basic construction of such a function gf : [N] → [N] is based on a
function g : [N] × [N] → [N] and a permutation f : [N] → [N]. For the lower
bound proof g and f are modelled as truly random, and all parties access them
as oracles. The function is now defined as gf (x) = g(x, x′) where f(x) = π(f(x′))
for any involution π without fixed points. For concreteness we let π simply flip all
bits, denoted f(x) = f(x′). Let us stress that f does not need to be a permutation
– it can also be a random function4 – but we’ll state and prove our main result
for a permutation as it makes the analysis cleaner. In practice — where one
has to instantiate f and g with something efficient — one would rather use a
function, because it can be instantiated with a cryptographic hash function like

3 Consider the function f : N × {0, 1}∗ → {0, 1} × {0, 1}∗ where f(s, T) = (b, T)
with b = 1 iff the Turing machine T stops in s steps. Here deciding if (1, T) has a
pre-image at all requires to solve the halting problem.

4 If f is a function, we don’t need π; the condition f(x) = π(f(x′)) can be replaced
with simply f(x) = f(x′), x �= x′. Note than now for some x there’s no output gf (x)
at all (i.e., if ∀x′ �= x f(x) �= f(x′)), and for some x there’s more than one possible
value for gf (x). This is a bit unnatural, but such a gf can be used for a PoS in the
same way as if f were a permutation.

360 H. Abusalah et al.

SHA-3 or (truncated) AES,5 whereas we don’t have good candidates for suitable
permutations (at the very least f needs to be one-way; and, unfortunately, all
candidates we have for one-way permutations are number-theoretic and thus
much less efficient).

In Theorem 2 we state that for gf as above, any algorithm which has a state
of size S (that can arbitrarily depend on g and f), and inverts gf on an ε fraction
of outputs, must satisfy S2T ∈ Ω(ε2N2). This must be compared with the best
lower bound known for inverting random functions (or permutations) which is
ST = Ω(εN). We can further push the lower bound to SkT ∈ Ω(εkNk) by
“nesting” the construction; in the first iteration of this nesting one replaces the
inner function f with gf .6 These lower bounds are illustrated in Fig. 1.

In this paper we won’t give a proof for the general construction, as the
proof for the general construction doesn’t require any new ideas, but just gets
more technical. We also expect the basic construction to be already sufficient for
constructing a secure PoS. Although for gf there exists a time-memory trade-off
S4T ∈ O(N4) (say, S = T ≈ N4/5), which is achieved by “nesting” Hellman’s
attack,7 we expect this attack to only be of concern for extremely large N .8

A caveat of our lower bound is that it only applies if T ≤ N2/3. We don’t
see how to break our lower bound if T > N2/3, and the restriction T ≤ N2/3

seems to be mostly related to the proof technique. One can improve the bound
to T ≤ N t/(t+1) for any t by generalizing our construction to t-wise collisions.
One way to do this – if f is a permutation and t divides N – is as follows:
let g : [N]t → [N] and define gf (x) = g(x, x1, . . . , xt−1) where for some parti-
tion S1, . . . , SN/t, |Si| = t of [N] the values f(x), f(x1), . . . , f(xt−1) contain all
elements of a partition Si and x1 < x2 < . . . < xt−1.

5 As a concrete proposal, let AESn : {0, 1}128×{0, 1}128 → {0, 1}n denote AES with the
output truncated to n bits. We can now define f, g by a random key k ← {0, 1}128 as
f(x) = AESn(k, 0‖x‖0128−n−1) and g(x) = AESn(k, 1‖x‖0128−2n−1). As in practice
n will be something like 30 − 50, which corresponds to space (which is ≈ n · 2n bits)
in the Gigabyte to Petabyte range. Using AES with the smallest 128 bit blocksize is
sufficient as 2n 	 128.

6 The dream version would be a result showing that one needs either S = Ω(N) or
T = Ω(N) to invert. Our results approach this as k grows showing that S = T =
Ω(Nk/(k+1)) is required.

7 Informally, nesting Hellman’s attack works as follows. Note that if we could efficiently
evaluate gf (.), we could use Hellman’s attack. Now to evaluate gf we need to invert f .
For this make a Hellman table to invert f , and use this to “semi-efficiently” evaluate
gf (.). More generally, for our construction with nesting parameter k (when the lower
bound is SkT ∈ Ω(Nk)) the nested Hellman attack applies if S2kT ∈ O(N2k).

8 The reason is that for this nested attack to work, we need tables which allow to invert
with very high probability, and in this case the tables will store many redundant
values. So the hidden constant in the S4T ∈ O(N4) bound of the nested attack will
be substantial.

Beyond Hellman’s Time-Memory Trade-Offs 361

Fig. 1. Illustration of lower bounds. Orange : the ST = Ω(N) lower bound for inverting
random permutations or functions. Dark green : the ideal bound where either T or S
is Ω(N) as achieved by the pebbling-based PoS [DFKP15,RD16] (more precisely, the
bound approaches the dark green line for large N). Light green : the lower bound
S2T = Ω(N2) for T ≤ N2/3 for our most basic construction as stated in Theorem 2.
Pink : the restriction T ≤ N2/3 on T we need for our proof to go through can be
relaxed to T ≤ N t/(t+1) by using t-wise collisions instead of pairwise collisions in our
construction. The pink arrow shows how the bound improves by going from t = 2 to
t = 3. Purple : we can push the S2T = Ω(N2) lower bound of the basic construction
to SkT = Ω(Nk) by using k − 1 levels of nesting. The purple arrow shows how the
bound improves by going from k = 2 to k = 3. (Color figure online)

1.2 Proofs of Space

A proof of space as defined in [DFKP15] is a two-phase protocol between a
prover P and a verifier V, where after an initial phase P holds a file F of size
N ,9 whereas V only needs to store some small value. The running time of P
during this phase must be at least N as P has to write down F which is of
size N , and we require that it’s not much more, quasilinear in N at most. V
on the other hand must be very efficient, in particular, its running time can be
polynomial in a security parameter, but must be basically independent of N .

Then there’s a proof execution phase — which typically will be executed
many times over a period of time — in which V challenges P to prove it stored
F . The security requirement states that a cheating prover P̃ who only stores
a file F ′ of size significantly smaller than N either fails to make V accept, or

9 We use the same letter N for the space committed by an honest prover in a PoS
as we used for the domain size of the functions discussed in the previous section to
emphasize that in our construction of a PoS from a function these will be roughly
the same. We’ll come back to this in Remark 2 in the next section.

362 H. Abusalah et al.

must invest a significant amount of computation, ideally close to P’s cost during
initialization. Note that we cannot hope to make it more expensive than that as
a cheating P̃ can always just store the short communication during initialization,
and then reconstruct all of F before the execution phase.

1.3 A Simple PoS that Fails

Probably the first candidate for a PoS scheme that comes to mind is to have —
during the initalization phase — V send the (short) description of a “random
behaving” function f : [N] → [N] to P, who then computes the entire function
table of f and stores it sorted by the outputs. During proof execution V will pick
a random x ∈ [N], and then challenge P to invert f on y = f(x).10

An honest prover can answer any challenge y by looking up an entry (x′, y)
in the table, which is efficient as the table is sorted by the y’s. At first one might
hope this provides good security against any cheating prover; intuitively, a prover
who only stores � N log N bits (i.e., uses space sufficient to only store � N
output labels of length log N) will not have stored a value x ∈ f−1(y) for most
y’s, and thus must invert by brute force which will require Θ(N) invocations to
f . Unfortunately, even if f is modelled as a truly random function, this intuition
is totally wrong due to Hellman’s time-memory trade-offs, which we’ll discuss in
the next section.

The goal of this work is to save this elegant and simple approach towards
constructing PoS. As discussed before, for our function gf : [N] → [N] (defined
as gf (x) = g(x, x′) where f(x) = f(x′)) we can prove better lower bounds than
for random functions. Instantiating the simple PoS with gf needs some minor
adaptions. V will send the description of a function g : [N] × [N] → [N] and
a permutation f : [N] → [N] to P. Now P first computes the entire function
table of f and sorts it by the output values. Note that with this table P can
efficiently invert f . Then P computes (and sorts) the function table of gf (using
that gf (x) = g(x, f−1(f(x))). Another issue is that in the execution phase V can
no longer compute a challenge as before – i.e. y = gf (x) for a random x – as it
cannot evaluate gf . Instead, we let V just pick a random y ∈ [N]. The prover P
must answer this challenge with a tuple (x, x′) s.t. f(x) = f(x′) and g(x, x′) = y
(i.e., gf (x) = y). Just sending the preimage x of gf for y is no longer sufficient,
as V is not able to verify if gf (x) = y without x′.

Remark 1 (Completeness and Soundness Error). This protocol has a significant
soundness and completeness error. On the one hand, a cheating prover P̃ who
only stores, say 10%, of the function table, will still be able to make V accept in
10% of the cases. On the other hand, even if gf behaves like a random function,

10 Instead of storing all N tuples (x, f(x)) (sorted by the 2nd entry), which takes
2N log N bits, one can compress this list by almost a factor 2 using the fact that
the 2nd entry is sorted, and another factor ≈ 1 − 1/e ≈ 0.632 by keeping only one
entry whenever there are multiple tuples with the same 2nd entry, thus requiring
≈ 0.632N log N bits.

Beyond Hellman’s Time-Memory Trade-Offs 363

an honest prover P will only be able to answer a 1−1/e fraction (≈ 63%) of the
challenges y ∈ [N], as some will simply not have a preimage under gf .11

When used as a replacement for PoW in cryptocurrencies, neither the sound-
ness nor the completeness error are an issue. If this PoS is to be used in a context
where one needs negligible soundness and/or completeness, one can use standard
repetition tricks to amplify the soundness and completeness, and make the cor-
responding errors negligible.12

Remark 2 (Domain vs. Space). When constructing a PoS from a function with
a domain of size N , the space the honest prover requires is around N log N bits
for the simple PoS outlined above (where we store the sorted function table of
a function f : [N] → [N]), and roughly twice that for our basic construction
(where we store the function tables of gf : [N] → [N] and f : [N] → [N]). Thus,
for a given amount N ′ of space the prover wants to commit to, it must use a
function with domain N ≈ N ′/ log(N ′). In particular, the time-memory trade-
offs we can prove on the hardness of inverting the underlying function translate
directly to the security of the PoS.

1.4 Hellman’s Time-Memory Trade Offs

Hellman [Hel80] showed that any permutation p : [N] → [N] can be inverted
using an algorithm that is given S bits of auxiliary information on p and makes
at most T oracle queries to p(·), where (Õ below hides log(N)O(1) factors)

S · T ∈ Õ(N) e.g. when S = T ≈ N1/2 . (1)

Hellman also presents attacks against random functions, but with worse para-
meters. A rigorous bound was only later proven by Fiat and Naor [FN91] where
they show that Hellman’s attack on random functions satisfies

S2 · T ∈ Õ(N2) e.g. when S = T ≈ N2/3 . (2)

Fiat and Naor [FN91] also present an attack with worse parameters which
works for any (not necessarily random) function, where

S3 · T ∈ Õ(N3) e.g. when S = T ≈ N3/4 . (3)

The attack on a permutation p : [N] → [N] for a given T is easy to explain:
Pick any x ∈ [N] and define x0, x1, . . . as x0 = x, xi+1 = p(xi), let � ≤ N − 1

11 Throwing N balls in N bins at random will leave around N/e bins empty, so gf ’s
outputs will miss N/e ≈ 0.37 · N values in [N].

12 To decrease the soundness error from 0.37 to negligible, the verifier can ask the
prover to invert gf on t ∈ N independent random challenges in [N]. In expectation
gf will have a preimage on 0.63 · t challenges. The probability that – say at least
0.5 · t – of the challenges have a preimage is then exponentially (in t) close to 1 by
the Chernoff bound. So if we only require the prover to invert half the challenges,
the soundness error becomes negligible.

364 H. Abusalah et al.

be minimal such that x0 = x�. Now store the values xT , x2T , . . . , x(� mod T)T in
a sorted list. Let us assume for simplicity that � − 1 = N , so x0, . . . , x�−1 cover
the entire domain (if this is not the case, one picks some x′ not yet covered and
makes a new table for the values x0 = x′, x1 = p(x0), . . .). This requires storing
S = N/T values. If we have this table, given a challenge y to invert, we just apply
p to y until we hit some stored value xiT , then continue applying p to x(i−1)T until
we hit y, at which point we found the inverse p−1(y). By construction this attack
requires T invocations to p. The attack on general functions is more complicated
and gives worse bounds as we don’t have such a nice cycle structure. In a nutshell,
one computes several different chains, where for the jth chain we pick some
random hj : [N] → [N] and compute x0, x1, . . . , xn as xi = f(hj(xi−1)). Then,
every T ’th value of the chain is stored. To invert a challenge y we apply f(h1(·))
sequentially on input y up to T times. If we hit a value xiT we stored in the
first chain, we try to invert by applying f(h1(·)) starting with x(i−1)T .13 If we
don’t succeed, continue with the chains generated by f(h2(·)), f(h3(·)), . . . until
the inverse is found or all chains are used up. This attack will be successful with
high probability if the chains cover a large fraction of f ’s output domain.

1.5 Samplability is Sufficient for Hellman’s Attack

One reason the lower bound for our function gf : [N] → [N] (defined as
gf (x) = g(x, x′) where f(x) = f(x′)) does not contradict Hellman’s attacks
is the fact that gf cannot be efficiently evaluated in forward direction. One can
think of simpler constructions such as g′

f (x) = g(x, f−1(x)) which also have
this property, but observe that Hellman’s attack is easily adapted to break g′

f .
More generally, Hellman’s attack doesn’t require that the function can be effi-
ciently computed in forward direction, it is sufficient to have an algorithm that
efficiently samples random input/output tuples of the function. This is possi-
ble for g′

f as for a random z the tuple f(z), g(f(z), z) is a valid input/output:
g′

f (f(z) = g(f(z), f−1(f(z)) = g(f(z), z). To adapt Hellman’s attack to this
setting – where we just have an efficient input/output sampler σf for f – replace
the f(hi(·))’s in the attack described in the previous section with σf (hi(·)).

1.6 Lower Bounds

De, Trevisan and Tulsiani [DTT10] (building on work by Yao [Yao90], Gennaro-
Trevisan [GT00] and Wee [Wee05]) prove a lower bound for inverting random
permutations, and in particular show that Hellman’s attack as stated in Eq. (1)
is optimal: For any oracle-aided algorithm A, it holds that for most permutations
p : [N] → [N], if A is given advice (that can arbitrarily depend on p) of size
S, makes at most T oracle queries and inverts p on εN values, we have S · T ∈
Ω(εN). Their lower bound proof can easily be adapted to random functions

13 Unlike for permutations, there’s no guarantee we’ll be successful, as the challenge
might lie on a branch of the function graph different from the one that includes
x(i−1)T .

Beyond Hellman’s Time-Memory Trade-Offs 365

f : [N] → [N], but note that in this case it is no longer tight, i.e., matching
Eq. (2). Barkan, Biham, and Shamir [BBS06] show a matching S2 · T ∈ Ω̃(N2)
lower bound for a restricted class of algorithms.

1.7 Proof Outline

The starting point of our proof is the S · T ∈ Ω(εN) lower bound for inverting
random permutations by De, Trevisan and Tulsiani [DTT10] mentioned in the
previous section. We sketch their simple and elegant proof, with a minor adaption
to work for functions rather than permutations in Appendix A.

The high level idea of their lower bound proof is as follows: Assume an
adversary A exists, which is given an auxiliary string aux, makes at most T
oracle queries and can invert a random permutation p : [N] → [N] on an ε
fraction of [N] with high probability (aux can depend arbitrarily on p). One
then shows that given (black box access to) Aaux(·) def= A(aux, ·) it’s possible
to “compress” the description of p from log(N !) to log(N !) − Δ bits for some
Δ > 0. As a random permutation is incompressible (formally stated as Fact 1 in
Sect. 2 below), the Δ bits we saved must come from the auxiliary string given,
so S = |aux| � Δ.

To compress p, one now finds a subset G ⊂ [N] where (1) A inverts success-
fully, i.e., for all y ∈ p(G) = {p(x) : x ∈ G} we have Ap

aux(y) = p−1(y) and (2)
A never makes a query in G, i.e., for all y ∈ G all oracle queries made by Ap

aux(y)
are in [N] − G (except for the last query which we always assume is p−1(y)).

The compression now exploits the fact that one can learn the mapping G →
p(G) given aux, an encoding of the set p(G), and the remaining mapping [N] −
G → p([N] − G). While decoding, one recovers G → p(G) by invoking Ap

aux(·)
on all values p(G) (answering all oracle queries using [N]−G → p([N]−G), the
first query outside [N] − G will be the right value by construction).

Thus, we compressed by not encoding the mapping G → p(G), which will
save us |G| log(N) bits, however we have to pay an extra |G| log(eN/|G|) bits
to encode the set p(G), so overall we compressed by |G| log(|G|/e) bits, and
therefore S ≥ |G| assuming |G| ≥ 2e. Thus the question is how large a set G can
we choose. A simple probabilistic argument, basically picking values at random
until it’s no longer possible to extend G, shows that we can always pick a G of
size at least |G| ≥ εN/T , and we conclude S ≥ εN/T assuming T ≤ εN/2e.

In the De et al. proof, the size of the good set G will always be close to εN/T ,
no matter how Aaux actually behaves. In this paper we give a more fine grained
analysis introducing a new parameter Tg as discussed next.

The Tg parameter. Informally, our compression algorithm for a function g : [N] →
[N] goes as follows: Define the set I = {x : Ag

aux(g(x)) = x} of values where
Ag

aux inverts g(I), by assumption |I| = εN . Now we can add values from I to
G as long as possible, every time we add a value x, we “spoil” up to T values
in I, where we say x′ gets spoiled if Ag

aux(g(x)) makes oracle query x′, and thus
we will not be able to add x′ to G in the future. As we start with |I| = εN ,

366 H. Abusalah et al.

and spoil at most T values for every value added to G, we can add at least εN/T
values to G.

This is a worst case analysis assuming Ag
aux really spoils close to T values

every time we add a value to G, but potentially Ag
aux behaves nicer and on average

spoils less. In the proof of Lemma 1 we take advantage of this and extend G as
long as possible, ending up with a good set G of size at least εN/2Tg for some
1 ≤ Tg ≤ T . Here Tg is the average number of elements we spoiled for every
element added to G.

This doesn’t help to improve the De et al. lower bound, as in general Tg can
be as large as T in which case our lower bound S · Tg ∈ Ω(εN) coincides with
the De et al. S · T ∈ Ω(εN) lower bound.14 But this more fine grained bound
will be a crucial tool to prove the lower bound for gf .

Lower Bound for gf . We now outline the proof idea for our lower bound S2 ·T ∈
Ω(ε2N2) for inverting gf (x) = g(x, x′), f(x) = f(x′) assuming g : [N] × [N] →
[N] is a random function and f : [N] → [N] is a random permutation. We
assume an adversary Ag,f

aux exists which has oracle access to f, g and inverts
gf : [N] → [N] on a set J = {y : gf (Af,g

aux(y)) = y} of size J = |εN |.
If the function table of f is given, gf : [N] → [N] is a random function that

can be efficiently evaluated, and we can prove a lower bound S · Tg ∈ Ω(εN) as
outlined above.

At this point, we make a case distinction, depending on whether Tg is below
or above

√
T .

If Tg <
√

T our S ·Tg ∈ Ω(εN) bound becomes S2 ·T ∈ Ω(ε2N2) and we are
done.

The more complicated case is when Tg ≥ √
T where we show how to use

the existence of Af,g
aux to compress f instead of g. Recall that Tg is the average

number of values that got “spoiled” while running the compression algorithm
for gf , that means, for every value added to the good set G, Af,g

aux made on
average Tg “fresh” queries to gf . Now making fresh gf queries isn’t that easy,
as it requires finding x, x′ where f(x) = f(x′). We can use Af,g

aux which makes
many such fresh gf queries to “compress” f : when Af,g

aux makes two f queries
x, x′ where f(x) = f(x′), we just need to store the first output f(x), but won’t
need the second f(x′) as we know it is f(x). For decoding we also must store
when exactly Af,g

aux makes the f queries x and x′, more on this below.
Every time we invoke Af,g

aux for compression as just outlined, up to T outputs
of f may get “spoiled” in the sense that Af,g

aux makes an f query that we need to
answer at this point, and thus it’s no longer available to be compressed later.

As Af,g
aux can spoil up to T queries on every invocation, we can hope to invoke

it at least εN/T times before all the f queries are spoiled. Moreover, on average
Af,g

aux makes Tg fresh gf queries, so we can hope to compress around Tg outputs of
f with every invocation of Af,g

aux, which would give us around Tg ·εN/T compressed

14 Note that for the adversary as specified by Hellman’s attack against permutations
as outlined in Sect. 1.4 we do have Tg = T , which is not surprising given that for
permutations the De et al. lower bound matches Hellman’s attack.

Beyond Hellman’s Time-Memory Trade-Offs 367

values. This assumes that a large fraction of the fresh gf queries uses values of
f that were not spoiled in previous invocations. The technical core of our proof
is a combinatorial lemma which we state and prove in Sect. 5, which implies
that it’s always possible to find a sequence of inputs to Af,g

aux such that this is
the case. Concretely, we can always find a sequence of inputs such that at least
Tg · εN/32T values can be compressed.15

2 Notation and Basic Facts

We use brackets like (x1, x2, . . .) and {x1, x2, . . .} to denote ordered and
unordered sets, respectively. We’ll usually refer to unordered sets simply as sets,
and to ordered sets as lists. [N] denotes some domain of size N , for notational
convenience we assume N = 2n is a power of two and identify [N] with {0, 1}n.
For a function f : [N] → [M] and a set S ⊆ [N] we denote with f(S) the set
{f(S[1]), . . . , f(S[|S|])}, similarly for a list L ⊆ [N] we denote with f(L) the list
(f(L[1]), . . . , f(L[|L|])). For a set X , we denote with x ← X that x is assigned a
value chosen uniformly at random from X .

Fact 1 (from [DTT10]). For any randomized encoding procedure Enc : {0, 1}r×
{0, 1}n → {0, 1}m and decoding procedure Dec : {0, 1}r×{0, 1}m → {0, 1}n where

Pr
x←{0,1}n, ρ←{0,1}r

[Dec(ρ, Enc(ρ, x)) = x] ≥ δ

we have m ≥ n − log(1/δ).

Fact 2. If a set X is at least ε dense in Y , i.e., X ⊂ Y, |X| ≥ ε|Y |, and Y is
known, then X can be encoded using |X| · log(e/ε) bits. To show this we use the
inequality

(
n
εn

) ≤ (en/εn)εn, which implies log
(

n
εn

) ≤ εn log(e/ε).

3 A Lower Bound for Functions

The following theorem is basically from [DTT10], but stated for functions not
permutations.

Theorem 1. Fix some ε ≥ 0 and an oracle algorithm A which on any input
makes at most T oracle queries. If for every function f : [N] → [N] there exists
a string aux of length |aux| = S such that

Pr
y←[N]

[f(Af
aux(y)) = y] ≥ ε

then
T · S ∈ Ω(εN) . (4)

15 The constant 32 here can be decreased with a more fine-grained analysis, we opted
for a simpler proof rather than optimising this constant.

368 H. Abusalah et al.

The theorem follows from Lemma 1 below using Fact 1 as follows: in Fact 1
let δ = 0.9 and n = N log N , think of x as the function table of a function
f : [N] → [N]. Then |Enc(ρ, aux, f)| ≥ N log N − log(1/0.9), together with the
upper bound on the encoding from Eq. (6) this implies Eq. (4). Note that the
extra assumption that T ≤ εN/40 in the lemma below doesn’t matter, as if it’s
not satisfied the theorem is trivially true. For now the value Tg in the lemma
below is not important and the reader can just assume Tg = T .

Lemma 1. Let A, T, S, ε and f be as in Theorem 1, and assume T ≤ εN/40.
There are randomized encoding and decoding procedures Enc, Dec such that if
f : [N] → [N] is a function and for some aux of length |aux| = S

Pr
y←[N]

[f(Af
aux(y)) = y] ≥ ε

then
Pr

ρ←{0,1}r
[Dec(ρ,Enc(ρ, aux, f)) = f] ≥ 0.9 (5)

and the length of the encoding is at most

|Enc(ρ, aux, f)| ≤ N log N
︸ ︷︷ ︸

=|f |

− εN

2Tg
+ S + log(N) (6)

for some Tg, 1 ≤ Tg ≤ T .

3.1 Proof of Lemma 1

The Encoding and Decoding Algorithms. In Algorithms 1 and 2, we always
assume that if Af

aux(y) outputs some value x, it makes the query f(x) at some
point. This is basically w.l.o.g. as we can turn any adversary into one satisfying
this by making at most one extra query. If at some point Af

aux(y) makes an oracle
query x where f(x) = y, then we also w.l.o.g. assume that right after this query
A outputs x and stops. Note that if A is probabilistic, it uses random coins
which are given as input to Enc, Dec, so we can make sure the same coins are
used during encoding and decoding.

The Size of the Encoding. We will now upper bound the size of the encoding
of G, f(Q′), (|q1|, . . . , |q|G||), f([N] − {G−1 ∪ Q′}) as output in line (15) of the
Enc algorithm.

Let Tg := |B|/|G| be the average number of elements we added to the bad
set B for every element added to the good set G, then

|G| ≥ εN/2Tg . (7)

To see this we note that when we leave the while loop (see line (8) of the
algorithm Enc) it holds that |B| ≥ |J |/2 = εN/2, so |G| = |B|/Tg ≥ |J |/2Tg =
εN/2Tg.

Beyond Hellman’s Time-Memory Trade-Offs 369

Algorithm 1. Enc
1: Input: A, aux, randomness ρ and a function f : [N] → [N] to compress.
2: Initialize: B, G := ∅, c := −1
3: Throughout we identify [N] with {0, . . . , N − 1}.
4: Pick a random permutation π : [N] → [N] (using random coins from ρ)
5: Let J := {y : f(Af

aux(y)) = y}, |J | = εN � The set J where A inverts. If A is
probabilistic, use random coins from ρ.

6: For i = 0, . . . , N − 1 define yi := π(i). � Randomize the order
7: For y ∈ J let the list q(y) contain all queries made by Af (y) except the last query

(which is x s.t. f(x) = y).
8: while |B| < |J |/2 do � While the bad set contains less than half of J
9: c := min{c′ > c : yc′ ∈ {J \ B}} � Increase c to the next yc in J \ B

10: G := G ∪ yc � Add this yc to good set
11: B := B ∪ (f(q(yc)) ∩ J) � Add spoiled queries to bad set
12: end while
13: Let G = {g1, . . . , g|G|}, Q = (q(g1), . . . , q(g|G|)), and define Q′ = (q′

1, . . . , q
′
|G|), q

′
i ⊆

q(gi) to contain only the “fresh” queries in Q by deleting all but the first
occurrence of every element. E.g. if (q(g1), q(g2)) = ((1, 2, 3, 1), (2, 4, 5, 4)) then
(q′

1, q
′
2) = ((1, 2, 3), (4, 5)).

14: Let G−1 = {Af
aux(y) : y ∈ G}

15: Output an encoding of (the set) G, (the lists) f(Q′), (|q′
1|, . . . , |q′

|G||), f([N]−{G−1∪
Q′}) and (the string) aux.

G: Instead of G we will actually encode the set π−1(G) = {c1, . . . , c|G|}. From
this the decoding Dec (who gets ρ, and thus knows π) can then reconstruct
G = π(π−1(G)). We claim that the elements in c1 < c2 < . . . < c|G| are whp.
at least ε/2 dense in [c|G|] (equivalently, c|G| ≤ 2|G|/ε). By Fact 2 we can
thus encode π−1(G) using |G| log(2e/ε) + log N bits (the extra log N bits are
used to encode the size of G which is required so decoding later knows how
to parse the encoding). To see that the ci’s are ε/2 dense whp. consider line
(9) in Enc which states c := min{c′ > c : yc′ ∈ {J \ B}}. If we replace J \ B
with J , then the ci’s would be whp. close to ε dense as J is ε dense in [N]
and the yi are uniformly random. As |B| < |J |/2, using J \ B instead of J
will decrease the density by at most a factor 2. If we don’t have this density,
i.e., c|G| > 2|G|/ε, we consider encoding to have failed.

f(Q′): This is a list of Q′ elements in [N] and can be encoded using |Q′| log N
bits.

(|q′
1|, . . . , |q′

|G||): Require |G| log T bits as |q′
i| ≤ |qi| ≤ T . A more careful argu-

ment (using that the q′
i are on average at most Tg) requires |G| log(eTg) bits.

f([N] − {G−1 ∪ Q′}): Requires (N−|G|−|Q′|) log N bits (using that G−1∩Q′ =
∅ and |G−1| = |G|).

aux: Is S bits long.

Summing up we get

|Enc(ρ, aux, f)| = |G| log(2e2Tg/ε) + (N − |G|) log N + S + log N

370 H. Abusalah et al.

Algorithm 2. Dec
1: Input: A, ρ and the encoding (G, f(Q′), (|q′

1|, . . . , |q′
|G||), f([N]−{G−1∪Q′}), aux).

2: Let π be as in Enc.
3: Let (g1, . . . , g|G|) be the elements of G ordered as they were added by Enc (i.e.,

π−1(gi) < π−1(gi+1) for all i).

4: Invoke A(·)
aux(·) sequentially on inputs g1, . . . , g|G| using f(Q′) to answer Aaux’s oracle

queries. � If A is probabilistic, use the same random coins from ρ as in Enc.
5: Combine the mapping G−1 ∪ Q′ → f(G−1 ∪ Q′) (which we learned in the previous

step) with [N]−{G−1∪Q′} → f([N]−{G−1∪Q′}) to learn the entire [N] → f([N])
6: Output f([N])

as by assumption Tg ≤ T ≤ εN/40, we get log N − log(2e2Tg/ε) ≥ 1, and further
using (7) we get

|Enc(ρ, aux, f)| ≤ N log N − εN

2Tg
+ S + log N

as claimed.

4 A Lower Bound for g(x, f−1(f(x)))

For a permutation f : [N] → [N] and a function g : [N] × [N] → [N] we define
gf : [N] → [N] as

gf (x) = g(x, x′) where f(x) = f(x′) or equivalently gf (x) = g(x, f−1(f(x))

Theorem 2. Fix some ε > 0 and an oracle algorithm A which makes at most

T ≤ (N/4e)2/3 (8)

oracle queries and takes an advice string aux of length |aux| = S. If for all
functions f : [N] → [N], g : [N] × [N] → [N] and some aux of length |aux| = S
we have

Pr
y←[N]

[gf (Af,g
aux(y)) = y] ≥ ε (9)

then
TS2 ∈ Ω(ε2N2) . (10)

The theorem follows from Lemma 2 below as we’ll prove thereafter.

Lemma 2. Fix some ε ≥ 0 and an oracle algorithm A which makes at most
T ≤ (N/4e)2/3 oracle queries. There are randomized encoding and decoding pro-
cedures Encg,Decg and Encf ,Decf such that if f : [N] → [N] is a permutation,
g : [N] × [N] → [N] is a function and for some advice string aux of length
|aux| = S we have

Pr
y←[N]

[gf (Af,g
aux(y)) = y] ≥ ε

Beyond Hellman’s Time-Memory Trade-Offs 371

then

Pr
ρ←{0,1}r

[Decg(ρ, f,Encg(ρ, aux, f, g)) = g] ≥ 0.9 (11)

Pr
ρ←{0,1}r

[Decf (ρ, g,Encf (ρ, aux, f, g)) = f] ≥ 0.9 . (12)

Moreover for every ρ, aux, f, g there is a Tg, 1 ≤ Tg ≤ T , such that

|Encg(ρ, aux, f, g)| ≤ N2 log N
︸ ︷︷ ︸

=|g|

− εN

2Tg
+ S + log N (13)

and if Tg ≥ √
T

|Encf (ρ, aux, f, g)| ≤ log N !
︸ ︷︷ ︸
=|f |

−εNTg

64T
+ S + log N . (14)

We first explain how Theorem 2 follows from Lemma 2 using Fact 1.

Proof (of Theorem 2). The basic idea is to make a case analysis; if Tg <
√

T we
compress g, otherwise we compress f . Intuitively, our encoding for g achieving
Eq. (13) makes both f and g queries, but only g queries “spoil” g values. As the
compression runs until all g values are spoiled, it compresses better the smaller
Tg is. On the other hand, the encoding for f achieving Eq. (12) is derived from
our encoding for g, and it manages to compresses in the order of Tg values of f
for every invocation (while “spoiling” at most T of the f values), so the larger
Tg the better it compresses f .

Concretely, pick f, g uniformly at random (and assume Eq. (9) holds). By
a union bound for at least a 0.8 fraction of the ρ Eqs.(11) and (12) hold
simultaneously. Consider any such good ρ, which together with f, g fixes some
Tg, 1 ≤ Tg ≤ T as in the statement of Lemma 2. Now consider an encoding
Encf,g where Encf,g(ρ, aux, f, g) outputs (f,Encg(ρ, aux, f, g)) if Tg <

√
T , and

(g,Encf (ρ, aux, f, g)) otherwise.

– If Tg <
√

T we use (13) to get

|Encf,g(ρ, aux, f, g)| = |f |+ |Encg(ρ, aux, f, g)| ≤ |f |+ |g|−εN/2Tg +S+log N

and now using Fact 1 (with δ = 0.8) we get

S ≥ εN/2Tg − log N − log(1/0.8) > εN/2
√

T − log N − log(1/0.8)

and thus TS2 ∈ Ω(ε2N2) as claimed in Eq. (10).
– If Tg ≥ √

T then we use Eq. (14) and Fact 1 and again get S ≥ εNTg/64T −
log N − log(1/0.8) which implies Eq. (10) as Tg ≥ √

T . ��

372 H. Abusalah et al.

Algorithm 3. Encg

1: Input: A, ρ, aux, f, g
2: Compute the function table of gf : [N] → [N], gf (x) = g(x, x′) where f(x) = f(x′).
3: Invoke Egf ← Enc(A, gf , aux, ρ)

4: Let g′ be the function table of g([N]2) = g(1, 1)‖ . . . ‖g(N, N), but with the N
entries (x, x′) where f(x) = f(x′) deleted.

5: Output Egf , g′, aux.

Algorithm 4. Decg

1: Input: A, ρ, f and the encoding (Egf , g′, aux) of g.
2: Invoke gf ← Dec(A, ρ, aux, Egf).
3: Reconstruct g from g′ and gf (this is possible as f is given).
4: Output g([N]2)

Algorithm 5. Encf

1: Input: A, ρ, aux, f, g
2: Invoke Egf ← Enc(A, gf , aux, ρ) � Compute the same encoding of gf as Encg did.
3: For G ∈ Egf , let Gf ⊂ G, Gf = {z1, . . . , z|Gf |} be as defined in proof of Lemma 2.
4: Initialize empty lists Lf , Tf , Cf := ∅.
5: for i = 1 to |Gf | do
6: Invoke Af,g

aux (zi). � Using random coins from ρ if A is probabilistic.
7: For each pair of f queries x, x′ (made in this order during invocation) where

f(x) = f(x′) and neither f(x′) nor f(x) is in Lf ∪ Cf , let (t, t′) be the indices
(1 ≤ t < t′ ≤ T) specifying when during invocation these queries were made.
Append (t, t′) to Tf and append f(x′) to Cf .

8: Append all images of oracle queries to f made during invocation of Af,g
aux (zi) to

Lf , except if the value is in Lf ∪ Cf . � Append the images of all fresh f queries
which were not compressed.

9: end for
10: Let L−1

f (similarly C−1
f) contain the inputs corresponding to Lf , i.e., add x to L−1

f

when adding f(x) to Lf .
11: Output an encoding of Gf , the list of values of f queries Lf , the list of tuples Tf

and the remaining outputs f([N − L−1
f − C−1

f]) which were neither in the list Lf

nor compressed.

Beyond Hellman’s Time-Memory Trade-Offs 373

Algorithm 6. Decf

1: Input: A, ρ, aux, g and encoding (Gf , Lf , Tf , f([N − L−1
f − C−1

f])) of f .
2: Let Gf = {z1, . . . , z|Gf |}.
3: for i = 1 to |Gf | do

4: Invoke A(·),g
aux (zi) reconstructing the answers to the first oracle (which should be

f) using the lists Lf and Tf .
5: end for
6: For L−1

f , C−1
f as in Encf , we have learned the mapping (L−1

f ∪ C−1
f) → f((L−1

f ∪
C−1

f)). Reconstruct all of f([N]) by combining this with f([N] − (L−1
f ∪ C−1

f)).
7: Output f([N])

Proof (of Lemma 2).

The Encoding and Decoding Algorithms. The encoding and decoding of
g are depicted in Algorithms 3 and 4, and those of f in Algorithms 5 and 6.
Af,g

aux(·) can make up to T queries in total to its oracles f(.) and g(.). We will
assume that whenever a query g(x, x′) is made, the adversary made queries f(x)
and f(x′) before. This is basically without loss of generality as we can turn any
adversary into one adhering to this by at most tripling the number of queries. It
will also be convenient to assume that Af,g

aux only queries g on its restriction to gf ,
that is, for all g(x, x′) queries it holds that f(x) = f(x′), but the proof is easily
extended to allow all queries to g as our encoding will store the function table of
g on all “uninteresting” inputs (x, x′), f(x) �= f(x′) and thus can directly answer
any such query.

As in the proof of Lemma 1, we don’t explicitly show the randomness in case
A is probabilistic.

The Size of the Encodings. We will now upper bound the size of the encod-
ings output by Encg and Encf in Algorithms 3 and 5 and hence prove Eqs.(13)
and (14).

Equation (13) now follows almost directly from Theorem 1 as our compression
algorithm Encg for g : [N] × [N] → [N] simply uses Enc to compress g restricted
to gf : [N] → [N], and thus compresses by exactly the same amount as Enc.

It remains to prove an upper bound on the length of the encoding of f by
our algorithm Encf as claimed in Eq. (14). Recall that Enc (as used inside Encg)
defines a set G such that for every y ∈ G we have (1) Af,g

aux(y) inverts, i.e.,
gf (Af,g

aux(y)) = y and (2) never makes a gf query x where gf (x) ∈ G. Recall that
Tg in Eq. (13) satisfies Tg = εN/2|G|, and corresponds to the average number of
“fresh” gf queries made by Af,g

aux(·) when invoked on the values in G.
Encf invokes Af,g

aux(·) on a carefully chosen subset Gf = (z1, . . . , z|Gf |) of G (to
be defined later). It keeps lists Lf , Cf and Tf such that after invoking Af,g

aux(·)
on Gf , Lf ∪ Cf holds the outputs to all f queries made. Looking ahead, the
decoding Decf will also invoke Af,g

aux(·) on Gf , but will only need Lf and Tf (but
not Cf) to answer all f queries.

374 H. Abusalah et al.

The lists Lf , Tf , Cf are generated as follows. On the first invocation Af,g
aux(z1)

we observe up to T oracle queries made to g and f . Every g query (x, x′) must
be preceded by f queries x and x′ where f(x) = f(x′). Assume x and x′ are the
queries number t, t′ (1 ≤ t < t′ ≤ T). A key observation is that by just storing
(t, t′) and f(x), Decf will later be able to reconstruct f(x′) by invoking Af,g

aux(z1),
and when query t′ is made, looking up the query f(x) in Lf (its position in Lf is
given by t), and set f(x′) = f(x). Thus, every time a fresh query f(x′) is made
we append it to Lf , unless earlier in this invocation we made a fresh query f(x)
where f(x′) = f(x). In this case we append the indices (t, t′) to the list Tf . We
also add f(x′) to a list Cf just to keep track of what we already compressed. Encf

now continues this process by invoking Af,g
aux(·) on inputs z2, z3, . . . , z|Gf | ∈ Gf

and finally outputs and encoding of Gf , an encoding of the list of images of fresh
queries Lf , an encoding of the list of colliding indices Tf , aux, and all values of
f that were neither compressed nor queried.

In the sequel we show how to choose Gf ∈ G such that |Gf | ≥ εN/8T and
hence it can be encoded using |Gf | log N + log N where the extra log N is used
to encode |Gf |. We also show that |Tf | ≥ |Gf | · Tg/4 and furthermore that we
can compress at least one bit per element of Tf . Putting things together we get

|Encf (ρ, aux, f, g)| ≤ log N ! − |Gf |(Tg/4 − log N) + S + log N .

And if log N ≤ Tg/8, we get Eq. (14)

|Encf (ρ, aux, f, g)| ≤ log N ! − εNTg/64T + S + log N .

Given G such that |G| ≥ εN/2Tg, the subset Gf can be constructed by
carefully applying Lemma 3 which we prove in Sect. 5. Let (X1, . . . , X|G|),
(Y1, . . . , Y|G|) be two sequences of sets such that Yi ⊆ Xi ⊆ [N] and |Xi| ≤ T
such that Yi and Xi respectively correspond to g and f queries in |G| consecutive
executions of Af,g

aux(·) on G.16 Given such sequences Lemma 3 constructs a sub-
sequence of executions Gf ⊆ G whose corresponding g queries (Yi1 , . . . , Yi|Gf |)
are fresh. As a g query is preceded by two f queries, such a subsequence induces
a sequence (Zi1 , . . . , Zi|Gf |) of queries that are not only fresh for g but also fresh
for f . Furthermore, such a sequence covers y · |I|/16T where y = |I|/|G| is the
average coverage of Yi’s and I ⊆ [N] is their total coverage.

However, Lemma 3 considers a g query (x, x′) ∈ Yi to be fresh if either x /∈
∪i−1

j=1Xj or x′ /∈ ∪i−1
j=1Xj , i.e., if at least one of x, x′ is fresh in the ith execution,

then the pair is considered fresh. For compressing f both x, x′ need to be fresh.
To enforce that and apply Lemma 3 directly, we apply Lemma 3 on augmented
sets X1, . . . , X|G| such that whenever Xi, Yi are selected, the corresponding Zi

16 Here is how these sets are compiled. Note that if q is an f query then q ∈ [N], and
if q is a g query then q ∈ [N]2. In the ith execution, both Xi, Yi are initially empty
and later will contain only elements in [N]. Therefore for each query q, if q = (x, x′)
is a g query we add two elements x and x′ to Yi, and if q = x is an f query we add
the single element x to Xi. Furthermore as a g query (x, x′) is preceded by two f
queries x, x′, then Yi ⊆ Xi, and as the max number of queries is T we have |Xi| ≤ T .

Beyond Hellman’s Time-Memory Trade-Offs 375

contains exactly |Zi|/2 pairs of queries that are fresh for both g and f . We
augment Xi as follows. For every Xi and every f query x made in the ith step,
add f−1(f(x)) to Xi. This augmentation results in Xi such that |Xi| ≤ 2T as
originally we have |Xi| ≤ T .

Applying Lemma 3 on Y1, . . . , Y|G| and such augmented sets X1, . . . , X|G|
yields Gf such that the total number of fresh colliding queries is of size at least

y · |I|
16 · 2T

=
εN

|G| · εN

32T
=

εNTg

16T
.

Therefore the total number of fresh colliding pairs, or equivalently |Tf |, is
εNTg/32T as claimed. Furthermore, Lemma 3 guarantees that |Gf | ≥ εN/8T .17

What remains to show is that for each colliding pair in Tf we compress by at
least one bit. Recall that the list Tf has exactly as many entries as Cf . However
entries in Tf are colliding pairs of indices (t, t′) and entries in Cf are images of
size log N . Per each entry (t, t′) in Tf we compress if the encoding size of (t, t′)
is strictly less than log N . Here is an encoding of Tf that achieves this. Instead
of encoding each entry (t, t′) as two indices which costs 2 log T and therefore
we save one bit per element in Tf assuming T ≤ √

N/2, we encode the set of
colliding pairs among all possible query pairs. Concretely, for each z ∈ Gf we
obtain a set of colliding indices of size at least Tg/4. Then we encode this set of
colliding pairs Tg/4 among all possible pairs18, which is upper bounded by T 2,
using

log
(

T 2

Tg/4

)
≤ Tg

4
log

4eT 2

Tg

bits, and therefore, given that Tg ≥ √
T and T ≤ (N/4e)2/3, we have that

log N − log 4eT 2/Tg ≥ 1 and therefore we compress by at least one bit for each
pair, i.e., for each element in Tf , and that concludes the proof. ��

5 A Combinatorial Lemma

In this section we state and prove a lemma which can be cast in terms of the
following game between Alice and Bob. For some integers n,N,M , Alice can
choose a partition (Y1, . . . , Yn) of I ⊆ [N], and for every Yi also a superset
Xi ⊇ Yi of size |Xi| ≤ M . The goal of Bob is to find a subsequence 1 ≤ b1 <
b2 < . . . < b� such that Yb1 , Yb2 , . . . , Yb�

contains as many “fresh” elements as
possible, where after picking Ybi

the elements
⋃i

k=1 Xbk
are not fresh, i.e., picking

Ybi
“spoils” all of Xbi

. How many fresh elements can Bob expect to hit in the
worst case? Intuitively, as every Ybi

added spoils up to M elements, he can hope
17 |Gf | corresponds to � in the proof of Lemma 3.
18 Note that T 2 is an upper bound on all possible pairs of queries, however as we

have that t < t′ for each pair (t, t′), we can cut T 2 by at least a factor of 2. Other
optimizations are possible. This extra saving one can use to add extra dummy pairs
of indices to separate executions for decoding. The details are tedious and do not
affect the bound as we were generous to consider T 2 to be the size of possible pairs.

376 H. Abusalah et al.

to pick up to � ≈ |I|/M of the Yi’s before most of the elements are spoiled. As the
Yi are on average of size y := |I|/n, this is also an upper bound on the number
of fresh elements he can hope to get with every step. This gives something in the
order of y · (|I|/M) fresh elements in total. By the lemma below a subsequence
that contains about that many fresh elements always exists.

Lemma 3. For M,N ∈ N,M ≤ N and any disjoint sets Y1, . . . , Yn ⊂ [N]

n⋃

i=1

Yi = I, ∀i �= j : Yi ∩ Yj = ∅

and supersets (X1, . . . , Xn) where

∀i ∈ [n] : Yi ⊆ Xi ⊆ [N], |Xi| ≤ M

there exists a subsequence 1 ≤ b1 < b2 < . . . < b� ≤ n such that the sets

Zbj
= Ybj

\ ∪k<jXbk
(15)

have total size
�∑

j=1

|Zbj
| = |

�⋃

j=1

Zbj
| ≥ y · |I|

16M

where y = |I|/n denotes the average size of the Yi’s.

Proof. Let (Ya1 , . . . , Yam
) be a subquence of (Y1, . . . , Yn) that contains all the

sets of size at least y/2. By a Markov bound, these large Yai
’s cover at least half

of the domain I, i.e. ∣
∣∪i∈[m]Yai

∣
∣ > |I|/2 . (16)

We now choose the subsequence (Yb1 , . . . , Yb�
) from the statement of the

lemma as a subsequence of (Ya1 , . . . , Yam
) in a greedy way: for i = 1, . . . ,m we

add Yai
to the sequence if it adds a lot of “fresh” elements, concretely, assume

we are in step i and so far have added Yb1 , . . . , Ybj−1 , then we’ll pick the next
element, i.e., Ybj

:= Yai
, if the fresh elements Zbj

= Ybj
\ ∪k<jXbk

contributed
by Ybj

are of size at least |Zbj
| > |Ybj

|/2.
We claim that we can always add at least one more Ybj

as long as we haven’t
yet added at least |I|/4M sets, i.e., j < |I|/4M . Note that this then proves the
lemma as

�∑

j=1

|Zbj
| ≥

�∑

j=1

|Ybj
|/2 ≥ �y/4 ≥ |I|/4M · y/4 = y|I|/16M .

It remains to prove the claim. For contradiction assume our greedy algorithm
picked (Yb1 , . . . , Yb�

) with � < |I|/4M . We’ll show that there is a Yat
(with

at > b�) with
|Yat

\ ∪j
i=1Xbi

| ≥ |Yat
|/2

Beyond Hellman’s Time-Memory Trade-Offs 377

which is a contradiction as this means the sequence could be extended by Yb�+1 =
Yat

. We have
| ∪�

i=1 Xbi
| ≤ |I|/4M · M = |I|/4 .

This together with (16) implies

| ∪i∈[m] Yai
\ ∪�

i=1Xai
| > | ∪i∈[m] Yai

|/2 .

By Markov there must exist some Yat
with

|Yat
\ ∪�

i=1Xai
| ≥ |Yat

|/2

as claimed. ��

6 Conclusions

In this work we showed that existing time-memory trade-offs for inverting func-
tions can be overcome, if one relaxes the requirement that the function is effi-
ciently computable, and just asks for the function table to be computed in
(quasi)linear time. We showed that such functions have interesting applications
towards constructing proofs of space. The ideas we introduced can potentially
also be used for related problems, like memory-bound or memory-hard functions.

Acknowledgements. Hamza Abusalah, Joël Alwen, and Krzysztof Pietrzak were
supported by the European Research Council, ERC consolidator grant (682815 - TOC-
NeT).

Leonid Reyzin gratefully acknowledges the hospitality and support of IST Austria,
where much of this work was performed. He was also supported, in part, by US NSF
grants 1012910, 1012798, and 1422965.

A Proof of Lemma 1 Following [DTT10]

In this section we sketch the proof of Theorem 1 following the proof from
[DTT10], just marginally adapting it so it applied to functions not just per-
mutations. Let

I = {x : Af
aux(f(x)) = x}, J = f(I) = {y : f(Af

aux(y)) = y}

For x ∈ I let q(f(x)) denote the queries made by Affaux(f(x)) but without
the final query x. By assumption |I| = εN . Pick a random subset R ⊂ [N] of
size |R| = N/T (for this use the randomness ρ given to the encoding) (Fig. 2).
Let G denote the set of x’s in R where Af

aux on input f(x) finds x and makes no
queries in R, i.e.,

G = {x ∈ I ∩ R and q(f(x)) ∩ R = ∅}

378 H. Abusalah et al.

Fig. 2. The different subsets of the input domain of f : [N] → [N]. R is a random
subset of size N/T , I are the values x where Af

aux(f(x)) = x. G is the subset of I ∩R of
x where Af

aux(f(x)) makes no oracle queries to values in R (except for the last query x).

The expected size of I∩R is εN/T (as for any x ∈ I, PrR[x ∈ R] = 1/T). For any
x ∈ I, the probability that q(f(x)) ∩ R = ∅ is at least (1 − 1/T)T ≈ 1/e > 1/e,
so the expected size of G is > εN/eT . In this proof sketch we assume the sets
have exactly their expected size, i.e.,

|R| = N/T, |I| = εN, |I ∩ R| = εN/T, |G| = εN/eT

The encoding of Enc(ρ, f) now contains (the random coins r are used to sample
the set R)

aux: The auxiliary input of size S.
Ef([N]−R): The list of values f([N] − R) using (N − |R|) log N bits.
E{f(G)}: An encoding of the set {f(G)} = {f(x) : x ∈ G}. As {f(G)} is ε/Te

dense in N , so by Fact 2 this requires only |G|(log(e2T/ε)) bits.
Ef(R−G): The list of values f(R − G) using (|R| − |G|) log N bits.

Overall, the encoding size is S + |G|(log(e2/Tε)) + (N − |G|) log N

N log N + S − εN

eT
(log N − log(e2/Tε))

The decoding Dec(ρ, [aux, Ef(G), Ef([N]−R), Ef(R−G)]) is straight forward

– Invoke Af
aux(.) on all y ∈ {f(G)}, answering all oracle queries (except the last

one) using the mapping [N] − R → f([N] − R). The last query x of Af
aux(y)

can be recognized as it’s the first query not in [N] − R, and we learn that
f(x) = y.

– Output f([N]), which can be computed as the lists G,R and f(G), f(R −
G), f([N] − R) are all known.

Beyond Hellman’s Time-Memory Trade-Offs 379

References

[BBS06] Barkan, E., Biham, E., Shamir, A.: Rigorous bounds on cryptanalytic
time/memory tradeoffs. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol.
4117, pp. 1–21. Springer, Heidelberg (2006). https://doi.org/10.1007/
11818175 1

[DFKP15] Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of
space. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 585–605. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48000-7 29

[DN93] Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In:
Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 10

[DTT10] De, A., Trevisan, L., Tulsiani, M.: Time space tradeoffs for attacks against
one-way functions and prgs. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 649–665. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-14623-7 35

[FN91] Fiat, A., Naor, M.: Rigorous time/space tradeoffs for inverting functions,
pp. 534–541 (1991)

[GT00] Gennaro, R., Trevisan, L.: Lower bounds on the efficiency of generic cryp-
tographic constructions, pp. 305–313 (2000)

[Hel80] Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Trans. Inf.
Theory 26(4), 401–406 (1980)

[PPK+15] Park, S., Pietrzak, K., Kwon, A., Alwen, J., Fuchsbauer, G., Gaži, P.:
Spacemint: A cryptocurrency based on proofs of space. Cryptology ePrint
Archive, Report 2015/528 (2015). http://eprint.iacr.org/2015/528

[RD16] Ren, L., Devadas, S.: Proof of space from stacked expanders. In: Hirt,
M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 262–285. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4 11

[Wee05] Wee, H.: On obfuscating point functions, pp. 523–532 (2005)
[Yao90] Yao, A.C.-C.: Coherent functions and program checkers (extended

abstract), pp. 84–94 (1990)

https://doi.org/10.1007/11818175_1
https://doi.org/10.1007/11818175_1
https://doi.org/10.1007/978-3-662-48000-7_29
https://doi.org/10.1007/978-3-662-48000-7_29
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/978-3-642-14623-7_35
https://doi.org/10.1007/978-3-642-14623-7_35
http://eprint.iacr.org/2015/528
https://doi.org/10.1007/978-3-662-53641-4_11

	Beyond Hellman's Time-Memory Trade-Offs with Applications to Proofs of Space
	1 Introduction
	1.1 Our Results
	1.2 Proofs of Space
	1.3 A Simple PoS that Fails
	1.4 Hellman's Time-Memory Trade Offs
	1.5 Samplability is Sufficient for Hellman's Attack
	1.6 Lower Bounds
	1.7 Proof Outline

	2 Notation and Basic Facts
	3 A Lower Bound for Functions
	3.1 Proof of Lemma 1

	4 A Lower Bound for g(x,f-1(f(x)))
	5 A Combinatorial Lemma
	6 Conclusions
	A Proof of Lemma 1 Following
	References

