
A Simple and Compact Algorithm for SIDH
with Arbitrary Degree Isogenies

Craig Costello1(B) and Huseyin Hisil2

1 Microsoft Research, Redmond, USA
craigco@microsoft.com

2 Yasar University, Izmir, Turkey
huseyin.hisil@yasar.edu.tr

Abstract. We derive a new formula for computing arbitrary odd-degree
isogenies between elliptic curves in Montgomery form. The formula lends
itself to a simple and compact algorithm that can efficiently compute any
low odd-degree isogenies inside the supersingular isogeny Diffie-Hellman
(SIDH) key exchange protocol. Our implementation of this algorithm
shows that, beyond the commonly used 3-isogenies, there is a moderate
degradation in relative performance of (2d + 1)-isogenies as d grows, but
that larger values of d can now be used in practical SIDH implementa-
tions.

We further show that the proposed algorithm can be used to both
compute isogenies of curves and evaluate isogenies at points, unifying the
two main types of functions needed for isogeny-based public-key cryp-
tography. Together, these results open the door for practical SIDH on
a much wider class of curves, and allow for simplified SIDH implemen-
tations that only need to call one general-purpose function inside the
fundamental computation of the large degree secret isogenies.

As an additional contribution, we also give new explicit formulas for
3- and 4-isogenies, and show that these give immediate speedups when
substituted into pre-existing SIDH libraries.

Keywords: Post-quantum cryptography · Isogeny-based cryptogra-
phy · SIDH · Montgomery curves

1 Introduction

Post-quantum Key Establishment. The existence of a quantum computer
that is capable of implementing Shor’s algorithm [36] at a large enough scale
would have devastating consequences on the current public-key cryptographic
standards and thus on the current state of cybersecurity [32]. Subsequently, the
field of post-quantum cryptography (PQC) [4] is rapidly growing as cryptogra-
phers look for public-key solutions that can resist large-scale quantum adver-
saries. Recently, the USA’s National Institute of Standards and Technology
(NIST) began a process to develop new cryptographic standards and announced
a call for PQC proposals with a deadline of November 30, 2017 [40].
c© International Association for Cryptologic Research 2017
T. Takagi and T. Peyrin (Eds.): ASIACRYPT 2017, Part II, LNCS 10625, pp. 303–329, 2017.
https://doi.org/10.1007/978-3-319-70697-9_11

304 C. Costello and H. Hisil

Although the PQC community is currently examining alternatives to replace
both traditional key establishment and traditional digital signature algorithms,
there is an argument for scrutinising proposals in the former category with more
haste than those in the latter. While digital signatures only need to be quantum-
secure at the moment a powerful enough quantum adversary is realised, the
realistic threat of long-term archival of sensitive data and a retroactive quan-
tum break means that, ideally, key establishment protocols will offer quantum
resistance long before such a quantum adversary exists [38].

Post-quantum key establishment proposals typically fall under one of three
umbrellas:

(i) Code-based. Based on the McEliece cryptosystem [28] and its variants [28],
modern proposals include Bernstein, Chou and Schwabe’s McBits [5] and
Misoczki et al.’s specialised MDPC-McEliece [10,29].

(ii) Lattice-based. Proposals here began with Hoffstein, Pipher and Silverman’s
standardised NTRUEncrypt [20], and in more recent times have been based
on either Regev’s learning with errors (LWE) problem [34] or Lyubashevsky,
Peikert and Regev’s ring variant (R-LWE) [27]. Peikert brought these prob-
lems to life in [33], and his protocols served as a basis for a number of
recent implementations, including Bos et al.’s R-LWE key establishment
software [7], Alkim et al.’s R-LWE successor NewHope [1], and Bos et al.’s
LWE key establishment software Frodo [6].

(iii) Isogeny-based. Starting with the work of Couveignes [13] and with later work
by Rostovsev and Stolbunov [35,39], Jao and De Feo proposed and imple-
mented supersingular isogeny Diffie-Hellman (SIDH) key exchange [21]. In
recent times a number of improvements and optimisations of their SIDH
protocol have been proposed and implemented [2,11,12,15,26].

To date there is no clear frontrunner among the post-quantum key estab-
lishment proposals. In terms of functionality, all of the public implementations
resulting from (i), (ii) and (iii) suffer the same drawback of requiring modifi-
cations (e.g., the Fujisaka-Okamoto transformation [17]) to achieve active secu-
rity1. However, there are bandwidth versus performance trade-offs to consider
when examining the above proposals; while SIDH affords significantly smaller
public keys than its code- and lattice-based counterparts, the performance of the
state-of-the-art SIDH software is currently orders of magnitude slower than the
state-of-the-art implementations mentioned in (i) and (ii) above. The reason for
this wide performance gap is that well-chosen code- and lattice-based instanti-
ations typically involve simple matrix/vector operations over special, and com-
paratively tiny, implementation-friendly moduli that are either powers of 2 or
very close to a power of 2. On the other hand, in addition to SIDH inheriting
several of the more complex operations from traditional curve-based cryptog-
raphy like scalar multiplications and pairings, it also involves a new style of
isogeny arithmetic and requires a new breed of significantly larger underlying

1 For (i), see [5, Sect. 6] and [23]; for (ii), see [33, Sect 5.3], [16] and [22]; for (iii),
see [19,22].

A Simple and Compact Algorithm for SIDH with Arbitrary Degree Isogenies 305

finite fields. Whereas classical elliptic curve cryptography affords implementers
the flexibility to cherry-pick the fastest underlying finite fields of sizes as small
as 256 bits, most of the SIDH implementations to date have required extension
fields of over one thousand bits whose underlying characteristic are of the form
p = 2i3j − 1. Imposing this special form of prime restricts both the number of
SIDH-friendly fields available at a given security level and the number of field
arithmetic optimisations possible for implementers.

Our Contributions. This paper presents a new algorithm for computing the
fundamental operation in isogeny-based public-key cryptography, and in partic-
ular, within the SIDH protocol.

– Odd-degree Montgomery isogenies. We derive a new formula for odd-degree
isogenies between Montgomery curves – see Theorem 1. Compared to Vélu’s
formulas for isogenies between Weierstrass curves, this formula is elegant and
simple, both to write down and to implement. This formula immediately lends
itself to a compact algorithm that computes arbitrary odd-degree isogenies.

– Unifying the two isogeny operations. SIDH operations require isogeny com-
putations to be applied to elliptic curves within the isogeny class and to
the points that lie on those curves. These two operations are typically dif-
ferent and require independent functions. For odd-degree isogenies, we show
that both of these operations can be performed using the same core function
by exploiting the simple connection between 2-torsion points and the Mont-
gomery curve coefficient. This streamlines SIDH code, and for isogenies of
degree 5 and above, has the added benefit of being significantly faster than
performing the computations independently.

– Simplified algorithm. Together, the above two improvements culminate in a
general-purpose algorithm that can efficiently compute isogenies of any odd
degree. Coupled with specialised code for 2- and/or 4-isogenies, this allows
arbitrary SIDH computations and gives rise to new possibilities within the
SIDH framework. Our implementation benchmarks show that practitioners
can lift the restriction of primes of the form p = 2i3j − 1 without paying a
huge performance penalty.

– Faster 3- and 4-isogenies. While the contributions mentioned above broaden
the scope of curves that can be considered SIDH-friendly, they do not give
an immediate speedup to existing SIDH implementations because the pre-
existing formulas for 3-isogenies are a special case of Theorem 1. Nevertheless,
as an auxiliary result, we give new dedicated 3- and 4-isogeny algorithms
that do give immediate speedups. When plugging these new algorithms into
Microsoft’s recent v2.0 release of their SIDH library2, Alice and Bob’s key
generations are both sped up by a factor 1.18x, while their shared secret
computations are both sped up by a factor 1.11x.

Although this paper is largely geared towards SIDH key exchange, we note
that almost all of the discussion applies analogously to other supersingular
2 See https://github.com/Microsoft/PQCrypto-SIDH.

https://github.com/Microsoft/PQCrypto-SIDH

306 C. Costello and H. Hisil

isogeny-based cryptographic schemes, e.g., to the other schemes proposed by
De Feo et al. [15], and to the recent isogeny-based signature scheme from Yoo
et al. [43].

Organisation. We give the preliminaries in Sect. 2. We provide the new formula
for odd-degree Montgomery isogenies in Sect. 3 and discuss its connection to
related works. We show how the point and curve isogeny computations can be
performed using the same function in Sect. 4, before presenting the general-
purpose odd-degree isogeny algorithm in Sect. 5. We provide implementation
benchmarks and conclude with some potential implications in Sect. 6. The faster
explicit formulas for 3- and 4-isogenies are presented in Appendix A.

Remark 1 (Even degree isogenies). Since any separable isogeny can be written
as a chain of prime degree isogenies [18, Theorem 25.1.2], our claim of treating
arbitrary degree isogenies on Montgomery curves follows from the coupling of
Theorem 1 (which covers isogenies of any odd degree) with the prior treatment
of 2-isogenies on Montgomery curves by De Feo et al. [15]. It is worth noting that
a technicality arises in the treatment of 2-isogenies on Montgomery curves: there
is currently no known way of computing a 2-isogeny directly from a generic 2-
torsion point without extracting a square root to transform the image curve into
Montgomery form. De Feo, Jao and Plût overcome this obstruction by making
use of a special 8-torsion point lying above the 2-torsion point in the kernel,
which is already available for use in the SIDH framework. In broader contexts,
however, the preservation of the Montgomery form under general 2-isogenies
might become problematic; in these cases even powers of 2 can be treated by the
application of 4-isogenies which do not need to compute square roots in order to
preserve the Montgomery form [15]. In Remark 2 we discuss the related work of
Moody and Shumow [31] on the (twisted) Edwards model [31]; in their case the 2-
isogeny formula also requires a square root computation to preserve the Edwards
form. Although Vélu’s formulas for 2-isogenies between short Weierstrass curves
do not require square root computations, we believe it worthwhile to pose the
open question of finding efficient 2-isogenies that preserve either of the faster
Montgomery and/or twisted Edwards models (on input of a generic 2-torsion
point).

2 Preliminaries

Montgomery Curves. Unless stated otherwise, all elliptic curves E/K in this
paper are assumed to be written in Montgomery form [30]

E/K : by2 = x3 + ax2 + x.

We will be dealing with the group of K-rational points on E, denoted E(K),
which is the set of solutions (x, y) ∈ K × K to the above equation, furnished
with a point at infinity, OE . This point looks different under different projective

A Simple and Compact Algorithm for SIDH with Arbitrary Degree Isogenies 307

embeddings of E. The usual embedding into P
2 via x = X/Z and y = Y/Z

gives OE = (0 : 1 : 0), but the proof of Theorem 1 makes use of the alternative
embedding into P(1, 2, 1) via x = X/Z and y = Y/Z2, under which OE =
(1 : 0 : 0). The inverse of a point (x, y) is (x,−y), and the number of points in
E(K) is always divisible by 4.

Let P = (xP , yP) and Q = (xQ, yQ) be such that xP �= xQ. Then the coor-
dinates of these points and the x-coordinates of their sum P + Q and difference
P − Q are related by Montgomery’s group law identities [30, p. 261]

xP +Q(xP − xQ)2xP xQ = b(xP yQ − xQyP)2, and

xP − Q(xP − xQ)2xP xQ = b(xP yQ + xQyP)2. (1)

Montgomery multiplies these equations to produce his celebrated differential
arithmetic formulas [30, p. 262]

xP +QxP−Q = (xP xQ − 1)2/(xP − xQ)2, and

x[2]P = (x2
P − 1)2/(4xP (x2

P + axP + 1)). (2)

Assuming the usual embedding of E into P
2, then following [30], we use x

throughout to denote the subsequent projection of points into P
1 that drops

the Y -coordinate, i.e.,

x : E \ {OE} → P
1, (X : Y : Z) �→ (X : Z).

Applying this to (2) gives Montgomery’s two algorithms for differential arith-
metic in P

1, i.e.,

xDBL : (x(P), a) �→ x([2]P), and
xADD : (x(P),x(Q),x(P − Q)) �→ x(P + Q). (3)

If � is odd, then the �-th division polynomial of an elliptic curve E/K is written
as ψ�(x) ∈ K[x], and this vanishes precisely at the nontrivial �-torsion points,
i.e., the points P such that [�]P = OE . The first two nontrivial odd division
polynomials on the Montgomery curve E/K : by2 = x3 + ax2 + x are

ψ3(x) = 3x4 + 4ax3 + 6x2 − 1,

ψ5(x) = 5x12 + 20ax11 + (16a2 + 62)x10 + 80ax9 − 105x8 − 360ax7

− 60(5 + 4a2)x6 − 16a(23 + 4a2)x5 − 5(25 + 32a2)x4 − 140ax3 − 50x2 + 1. (4)

SIDH. Let p = f · nAnB ± 1 be a large prime where gcd(nA, nB) = 1 and
f is a small cofactor. SIDH [21] works in the isogeny class of supersingular
elliptic curves over Fp2 , all of which have cardinality (p ∓ 1)2 = (f · nAnB)2.
Let E be a public starting curve in this isogeny class. To generate her public
key, Alice chooses a secret subgroup GA of order nA on E and computes her
public key as E/GA. Likewise, Bob chooses a secret subgroup GB of order nB

and computes his public key as E/GB . The shared secret is then E/〈GA, GB〉,

308 C. Costello and H. Hisil

and so long as computing this from E, E/GA and E/GB is hard, this offers
an alternative instantiation of the Diffie-Hellman protocol [14]. The key to the
SIDH construction is ensuring that both parties exchange enough information
to allow the mutual computation of E/〈GA, GB〉, while still hiding their secret
keys.

To achieve this, Jao and De Feo [21] propose that the public keys also
contain the images of certain public points under the isogenies defined by
their secret subgroups. If φA : E → E/GA is the secret isogeny correspond-
ing to the subgroup GA, then Alice not only sends Bob the curve E/GA,
but also the image of φA on two points PB and QB whose linear combina-
tions generate the set of subgroups chosen by Bob, i.e., Alice’s public key
is PKA = (E/GA , φA(PB) , φA(QB)). Similarly, if linear combinations of PA

and QA generate the set of subgroups chosen by Alice, then Bob’s public
key is PKB = (E/GB , φB(PA) , φB(QA)). In this way Alice’s key generation
amounts to randomly choosing two secret integers uA, vA ∈ ZnA

, computing
GA = 〈[uA]PA + [vA]QA〉, and upon receipt of Bob’s public key, she can then
compute E/〈GA, GB〉 = (E/GB)/〈[uA]φB(PA) + [vA]φB(QA)〉. Bob proceeds
analogously, and both parties compute the shared secret as the j-invariant of
E/〈GA, GB〉.

In order for SIDH to be secure, nA and nB must be exponentially large so
that Alice and Bob have an exponentially large keyspace. On the other hand,
in order for SIDH to be practical, the computation of the nA- and nB-isogenies
must be manageable. To achieve this, Jao and De Feo propose that nA = �eA

A

and nB = �eB

B for �A and �B small; in this way there are �eA−1
A (�A + 1) secret

cyclic subgroups of order nA for Alice to choose from, and her secret isogeny
computations can be performed as the composition of eA low-degree �A-isogenies
(the analogous statement applies to Bob). In all of the SIDH implementations
to date [2,11,12,15,26], �A = 2 and �B = 3, and Alice computes her 2eA -isogeny
as a composition of 2- and/or 4-isogenies (see [12,15]), while Bob computes his
3eB -isogeny as a composition of 3-isogenies. One consequence of this paper is to
facilitate practical �e-isogenies where � ≥ 5.

Following [21, Fig. 2], one way to compute an �e cyclic isogeny φ on the curve
E0 is to start with a point P0 of order �e, compute the point [�e−1]P0 of order
�, then use Vélu’s formulas [41] to compute the �-isogeny φ0 : E0 → E1 with
ker(φ0) = 〈[�e−1]P0〉, and evaluate it at P0 to give φ0(P0) = P1 ∈ E1. Note
that pushing P0 through the �-isogeny reduces the order of its image point, P1,
by a factor of � on E1. This process is then repeated at each new iteration by
first computing the order � point [�e−1−i]Pi, then the �-isogeny φi : Ei → Ei+1,
and finally the computation of the new point Pi+1 = φi(Pi); this is done until
i = e − 1 and we have the final curve Ee = φe−1 ◦ · · · ◦ φ0(E0) = φ(E0).

In their extended article, De Feo et al. [15] detailed a much faster approach
towards the computation described above. Roughly speaking, they achieve large
speedups by storing intermediate multiples of the Pi at each step and evaluating
φi at these multiples in such a way that the length of the scalar multiplication to
find an order-� point on Ei+1 is reduced. They aim to minimise the overall cost of

A Simple and Compact Algorithm for SIDH with Arbitrary Degree Isogenies 309

the �e-isogeny computation by comparing the costs of point multiplications and
isogeny computations and studying the optimisation problem in a combinatorial
context – see [15, Sect. 4.2.2].

Following [12], in order to thwart simple timing attacks [24], the fastest way
to compute SIDH operations in a constant-time fashion is to (i) perform point
operations on the projective line P

1 associated to Montgomery’s x-coordinate,
i.e., using the map x above, and (ii) to also perform isogeny operations projec-
tively in P

1 by ignoring the b coefficient (in the same way the Y -coordinate is
ignored in the point arithmetic). The reasoning here is that the j-invariant (i.e.,
the isomorphism class) of the Montgomery curve E/K : by2 = x3 + ax2 + x is
j(E) = 256(a2 − 3)3/(a2 − 4), which is independent of b, as is the differential
arithmetic arising from (3). All of the formulas and algorithms we describe in
the remainder of this paper fit into this same framework.

3 Coordinate Maps for Odd-Degree Montgomery
Isogenies

At the heart of this paper is the coordinate maps in Eq. (6) of Theorem 1
below. Although we are mostly concerned with the SIDH-specific applications
to come in the following sections, we believe that the simplicity and usability
of the formula may be of interest outside the realm of SIDH, so we leave the
underlying field unspecified and state the isogeny formula in full. We follow the
theorem with a discussion of the related work of Moody and Shumow [31].

Theorem 1. For a field K with char(K) �= 2, let P ∈ E(K̄) be a point of order
� = 2d + 1 on the Montgomery curve E/K : by2 = x3 + ax2 + x and write
σ =

∑d
i=1 x[i]P , σ̃ =

∑d
i=1 1/x[i]P and π =

∏d
i=1 x[i]P . The Montgomery curve

E′/K : b′y2 = x3 + a′x2 + x (5)

with

a′ = (6σ̃ − 6σ + a) · π2 and b′ = b · π2

is the codomain of the �-isogeny φ : E → E′ with ker(φ) = 〈P 〉, which is defined
by the coordinate maps

φ : (x, y) �→ (f(x), y · f ′(x)), (6)

where

f(x) = x ·
d∏

i=1

(
x · x[i]P − 1
x − x[i]P

)2

,

and f ′(x) is its derivative.

310 C. Costello and H. Hisil

Proof. The proof follows along the lines of Washington’s proof of Vélu’s formulas
on general Weiestrass curves [42, Theorem 12.16]. Write

φ : (x, y) �→ (X,Y),

where X = f(x) = x ·u(x)2/w(x)2 and Y = y ·f ′(x), with u(x) =
∏d

i=1(x ·xi−1)
and w(x) =

∏d
i=1(x − xi), and write G = 〈P 〉. Since X and Y are rational

functions of x and y, they are functions on E, and it is clear that the only poles
of X and Y are at the points in G. Our main goal is to show that the function

F (X,Y) = b′Y 2 − (X3 + a′X2 + X) (7)

is 0. The idea is to introduce a uniformising parameter t at OE and ultimately
show that F (X,Y) ∈ O(t), i.e., that F (X,Y) vanishes at OE . Now, since x[i]P =
x[�−i]P for i = 1 . . . d, it follows from (2) that for any Q = (xQ, yQ) �∈ G,

f(xQ) =
∏

T∈G

xQ+T ,

and therefore that the functions X and Y are invariant under translation by
elements of G. Thus, if we can show that F (X,Y) vanishes at OE , we will have
also shown that it vanishes at all of the points in G. Since the function F (X,Y)
can only have poles at the points in G, the only possibility is that F (X,Y) has
no poles, which means that it is constant [42, Proposition 11.1(3)]. Furthermore,
since it is 0 at infinity, it must be that F (X,Y) is identically zero, and therefore
that X and Y satisfy the Montgomery curve equation in (5).

To show that F (X,Y) vanishes at OE , let t = x/y be a uniformising para-
meter at OE and let s = 1/y. Dividing by2 = x3 +ax2 +x by y3 and rearranging
yields

s = (t3 + at2s + ts2)/b.

Continually substituting this value for s into the above equation eventually yields

s = t3 · t3 + t5 · t5 + t7 · t7 + t9 · t9 + . . . ,

where

t3 = 1/b, t5 = a/b2, t7 = (1 + a2)/b3, t9 = a(3 + a2)/b4,

t11 = (6a2 + a4 + 2)/b5, t13 = a(a4 + 10a2 + 10)/b6.

Since y = 1/s and x = ty, we invert the above equation to give

y = bt−3 · (y0 + y2 · t2 + y4 · t4 + y6 · t6 + . . .) , and

x = bt−2 · (y0 + y2 · t2 + y4 · t4 + y6 · t6 + . . .) (8)

where

y0 = 1, y2 = −a/b, y4 = −1/b2, y6 = −a/b3,

y8 = −(a2 + 1)/b4, y10 = −(a3 + 3a)/b5. y12 = (a6 + 14a4 + 24a2 + 3)/b6.

A Simple and Compact Algorithm for SIDH with Arbitrary Degree Isogenies 311

From (6), we write

X = x · f1(x)2 · f2(x)2 · · · · · fd(x)2, (9)

where

fi(x) =
x[i]P · x − 1
x − x[i]P

,

for 1 ≤ i ≤ d. Substitution of (8) gives

fi(t) =
x[i]P · (

bt−2 · (y0 + y2 · t2 + y4 · t4 + y6 · t6 + . . .)
) − 1

(bt−2 · (y0 + y2 · t2 + y4 · t4 + y6 · t6 + . . .)) − x[i]P
,

= x[i]P +

[
x2
[i]P − 1

b

]

· t2 +

[
(x2

[i]P − 1)(a + x[i]P)

b2

]

· t4

+

[
(x2

[i]P − 1)((a + x[i]P)2 + 1)

b3

]

· t6 + O(t8).

Squaring the above equation yields

fi(t)
2 = x2

[i]P +

[
2x[i]P (x2

[i]P − 1)

b

]
· t2 +

[
(x2

[i]P − 1)(3x2
[i]P + 2ax[i]P − 1)

b2

]
· t4

+

[
2(x2

[i]P − 1)(a2x[i]P + 3ax2
[i]P + 2x3

[i]P − a)

b3

]
· t6 + O(t8). (10)

Substitution of (8) and (10) into (9) gives

X(t) = X−2 · t−2 + X0 + X2 · t2 + X4 · t4 + O(t6). (11)

where

X−2 = bπ2

X0 = −π2(2(σ̃ − σ) + a)

X2 = −4π4((σ − σ̃)(a + 3(σ̃ − σ)) + 1) + 1

5bπ2

X4 = −12π4(σ − σ̃)a2 + (3 − 16π4((σ − σ̃)2 − 2))a − 10(σ − σ̃)(8π4(σ − σ̃)2 − 1)

35b2π2
.

Now, the product rule gives X ′(x) = X ′(t) · (x′(t))−1, so from (11) we have

X ′(t) = t−3 · (−2X−2 + 2X2t
4 + 4X4t

6 + O(t8)
)
, (12)

and from (8) we have

x′(t) = bt−3 · (−2y0 + 2y4 · t4 + 4y6 · t6 + 6y8 · t8 . . .).

312 C. Costello and H. Hisil

Inverting the above equation yields

x′(t)−1 = − t3

2by2
0

·
(
y0 + y4 · t4 + 2y6 · t6 +

[
3y0y8 + y2

4

y0

]

· t8

+
[
4y0y10 + 4y4y6

y0

]

· t10 + O(t12)
)
. (13)

We now have all the ingredients to write F (X,Y) entirely in terms of t. We write

F (t) = b′ (y(t) · X ′(t) · x′(t)−1
)2 − (

X(t)3 + a′X(t)2 + X(t)
)
,

Substituting (8), (11), (12) and (13) into the above equation, and collecting
coefficients, yields

F (X,Y) = F−6 · t−6 + F−4 · t−4 + F−2 · t−2 + F0 + O(t), (14)

where

F−6 = X2
−2 · (b′ −X−2),

F−4 = −X2
−2 · 2ab

′ + b(a′ + 3X0)

b
,

F−2 = X−2 · ((a
2 − 4)X−2 − 2b2X2) · b′ − b2(2a′X0 + 3X2

0 + 3X2X−2 + 1)

b2
,

F0 =
4X−2(aX2 − bX4)b′ − b · (a′X2

0 + 2a′X2X−2 +X3
0 + 6X−2X0X2 + 3X4X2

−2 +X0)

b
.

With X−2, X0, X2 and X4 as in (11), and with a′ and b′ from (5), we get
F−6 = F−4 = F−2 = F0 = 0. Thus, we have F (X,Y) ∈ O(t), which means that
F (X,Y) vanishes at OE , and thus (as detailed above) that F (X,Y) is identically
zero. It follows that X and Y satisfy the equation for E′ in (5), and thus that
φ is a rational map from E to E′. Since E is a smooth curve, we have that φ
is a morphism [37, Proposition II.2.1]. To show that φ is an isogeny, we project
into P(1, 2, 1), where OE = (1: 0 : 0). Substitution of x = X/Z and y = Y/Z2

into (6) reveals that φ(OE) = (1: 0 : 0) = OE′ , and we have established that φ
is an isogeny [37, III.4]. This completes the proof. �

In comparison to Vélu’s formulas [41] on general Weierstrass curves, the
simplicity of Eq. (6) lies in the fact that it factors neatly across the different
multiples of P . This lends itself to the simple algorithm we describe in Sect. 5.

Remark 2. To our knowledge, the work of Moody and Shumow [31] is the only
prior work to investigate arbitrary degree isogenies on non-Weierstrass models.
They managed to successfully derive general isogenies on both (twisted) Edwards
curves [31, Theorem 3] and on Huff curves [31, Theorem 5] without passing
back and forth to Vélu’s formulas on Weierstrass models. Given the ‘uniform-
variable’ formulas in [31, Sect. 4.4], we could have presumably arrived at (6) by
exploiting the birational equivalence between twisted Edwards and Montgomery
curves [3, Theorem 3.2]. In particular, there is a simple relationship between the

A Simple and Compact Algorithm for SIDH with Arbitrary Degree Isogenies 313

twisted Edwards y-coordinate and the Montgomery x-coordinate, and subse-
quently, there are Edwards y-only analogues of Montgomery’s x-only differential
arithmetic that offer favourable trade-offs in certain ECC scenarios3. However,
our experiments seemed to suggest that these trade-offs evaporate in SIDH when
the curve constants are treated projectively. Nevertheless, given the similarities
between the y-only isogeny formula in [31, Theorem 4] and our Theorem 1, it
could be that there are savings to be gained in a twisted Edwards version of
SIDH, or perhaps in some sort of hybrid that passes back and forth between
the two models – see [9]. We leave this investigation open, pointing out that the
sorts of trade-offs discussed in [9] can become especially favourable in SIDH, due
to the large field sizes and the nature of arithmetic in quadratic extension fields.

We conclude this section by pointing out that (in our case) it is a simple exer-
cise to transform Eq. (6) into an analogue that, rather than writing the isogeny
map in terms of the coordinates of the torsion points à la Vélu, instead writes it
in terms of the coefficients of the polynomial defining the kernel subgroup à la
Kohel [25, Sect. 2.4]. While a Kohel-style formulation of our formula is arguably
more natural from a mathematical perspective, the way it is factored and written
in (6) is more natural from an algorithmic perspective.

4 Computing the Isogenous Curve Using the 2-Torsion

Let φ : E �→ E′ be the isogeny of Montgomery curves in Theorem 1 and let Q ∈ E
be any point where Q �∈ ker(φ). All supersingular isogeny-based cryptosystems,
and in particular all known implementations of SIDH [2,11,12,15,26], require
separate functions for computing isogenous curves, i.e., iso curve : E �→ φ(E),
and for evaluating the isogeny at points, i.e., iso point : Q �→ φ(Q). In this
brief section we show that these two functions can be unified in the computation
of odd-degree isogenies. The idea is to exploit the correspondence between the
2-torsion points and the curve-twist isomorphism class, and to replace calls to
the iso curve function with calls to iso point on the input of 2-torsion points.
Pushing 2-torsion points through an odd-degree isogeny preserves their order
on the image curve, and so the correspondence between 2-torsion points and
the isogenous curves they lie on remains an invariant throughout the SIDH
algorithm.

On the Montgomery curve E/K : y2 = x3 + ax2 + x, the three affine points
of order 2 in E(K̄) are

P0 = (0, 0), Pα = (α, 0), and P1/α = (1/α, 0),

where a = −(α2 + 1)/α. Note that the full 2-torsion is K-rational if x2 + ax + 1
is reducible in K[x], i.e., if α ∈ K; this is typically the case in SIDH and is
therefore assumed in this section.

3 See http://hyperelliptic.org/EFD/g1p/auto-edwards-yz.html.

http://hyperelliptic.org/EFD/g1p/auto-edwards-yz.html

314 C. Costello and H. Hisil

Under the x map from Sect. 2, the 2-torsion points are then

x(P0) = (0 : 1), x(Pα) = (Xα : Zα), and x(P1/α) = (Zα : Xα),

and in P
1 we now have

(a : 1) = (X2
α + Z2

α : − XαZα). (15)

Observe that for the isogeny φ described in Theorem 1, the point P0 = (0, 0) ∈ E
is mapped to the point φ(P0) = (0, 0) ∈ E′. Since E′ is a Montgomery curve and
2-torsion points preserve their order under odd isogenies, it must be that

x(φ(P0)) = (0 : 1), x(φ(Pα)) = (X ′
α : Z ′

α), and x(φ(P1/α)) = (Z ′
α : X ′

α),

so that the relation in (15) between 2-torsion coordinates and the curve coeffi-
cient holds on the new curve.

Rather than thinking of the Montgomery curve as being represented by the
coefficient (a : 1) = (A : C), we can (without loss of generality) think of it
as being represented by the 2-torsion point (Xα : Zα). A close inspection of
Theorem 1 reveals that, for values of d greater than 3, computing the isogenous
curve via (5) becomes increasingly more expensive than passing a 2-torsion point
through (6). In these cases a function for computing (5) is no longer needed.
If, during the current iteration, the curve constant (A : C) is needed for point
operations (e.g., the multiplication-by-� map), then we can recover A using (15)
at a cost4 of 2S + 5a. In fact, the general multiplication-by-� routine is the
Montgomery ladder [30] that calls xDBL as a subroutine, and (in SIDH) xDBL
makes use of the constant (a − 2 : 4) = ((A − 2C)/4 : C). Parsing directly to
this format is slightly faster than parsing to (A : C), since from (15) we have
((A − 2C)/4 : C) = ((Xα + Zα)2 : (Xα − Zα)2 − (Xα + Zα)2), which can be
computed in 2S + 3a.

Although parsing from α to (a : 1) = (1 + α2 : − α) is trivial, parsing in the
other direction requires a square root computation in general. We never have to
do this, however, since (i) during key generation, the starting curve is fixed and
so the corresponding 2-torsion point(s) can be thought of as system parameters5,
and (ii) for the subsequent shared secret computations, we can happily replace
a with α as the description of the supersingular curve in the (compressed or
uncompressed) public key6. In the next section we use the notation a from alpha
to represent the function that performs this cheap parsing.

4 As usual, we use M, S, a and I to denote the costs of multiplications, squarings,
additions/subtractions and inversions in the field Fp2 .

5 All public implementations of SIDH currently take the starting curve to be
E/Fp2 : y2 = x3 + x, where Fp2 = Fp(i) with i2 + 1. In these scenarios the starting
2-torsion point can be defined by setting α = i.

6 We note that the uncompressed keys in the SIDH library associated with [12] do not
send the curve constant a explicitly, so would require modest modifications to take
advantage of this 2-torsion technique. The compressed key format from the subse-
quent work in [11] does send a in the public key so has immediately compatibility.

A Simple and Compact Algorithm for SIDH with Arbitrary Degree Isogenies 315

Remark 3. If P and Q �= ±P are two points on the Montgomery curve
E/K : by2 = x3+ax2+x, then the curve constant a relates to their x-coordinates
and the x-coordinate of their difference via [12, Remark 4]

a =
(1 − xP xQ − xP xQ−P − xQxQ−P)2

4xP xQxQ−P
− xP − xQ − xQ−P . (16)

Thus, if we ever have three points on an isogenous curve whose coefficient has not
been computed, we can use the projective version of the above equation to recover
(a : 1) = (A : C) from x(P), x(Q) and x(Q−P). Since the cost of computing the
isogenous curve using the 2-torsion technique grows as the degree of the isogeny
grows, while the cost of computing the isogenous curve via (16) is fixed, there
will obviously be a crossover point when taking advantage of three available
points becomes faster. Based on the cost of computing one �-isogeny presented
in the next section, and on the projective version of (16) costing 8M+5S+11a,
it will be faster to use the above after d ≥ 2. Following [12], we note that there
is always three such x-coordinates that can be exploited during key generation,
namely the three x-coordinates whose image under the isogeny forms (part of)
the public key. During the shared secret computation, however, there will not
always be three points available at each stage. Thus, we recommend that unless
d is very large (so that the performance benefits of using (16) over an additional
isogeny evaluation will be visible), it is most simple to stick to the 2-torsion
approach in this section through the SIDH algorithm.

5 A General-Purpose Algorithm for Arbitrary
Odd-Degree Isogenies

We now turn to deriving an optimised algorithm for arbitrary odd-degree isogeny
evaluation based on Theorem 1. Since we are working exclusively within the P

1

framework under the map x, the only equation we need to recall is (6), which
we rewrite as

f(x) = x ·
(

d∏

i=1

(
x · x[i]P − 1
x − x[i]P

))2

.

We begin working this into an algorithm by first projectivising into P
1, writing

(Xi : Zi) = (x[i]P : 1) for i = 1 . . . d, (X : Z) = (x : 1) for the indeterminate
coordinate where the isogeny is evaluated, and (X ′ : Z ′) = x(φ(x, y)) for the
result. Then

X ′ = X ·
(d∏

i=1

(X · Xi − Zi · Z)
)2

, and

Z ′ = Z ·
(d∏

i=1

(X · Zi − Xi · Z)
)2

316 C. Costello and H. Hisil

At first glance it appears that computing the pairs (X ·Xi −Zi ·Z) and (X ·Zi −
Xi · Z) will cost 4M + 2a each, but following Montgomery [30], we can achieve
this in 2M + 6a by rewriting the above as

X ′ = X ·
(d∏

i=1

[
(X − Z)(Xi + Zi) + (X + Z)(Xi − Zi)

])2

, and

Z ′ = Z ·
(d∏

i=1

[
(X − Z)(Xi + Zi) − (X + Z)(Xi − Zi)

])2

. (17)

Observe that when d > 1 the values of X − Z and X + Z can be reused across
the d expressions in both of the products above. Furthermore, the isogeny φ
is usually going to be evaluated at multiple points of the form (X : Z), and
this will always be the case if the 2-torsion technique from the previous section
is employed. Thus, suppose the isogeny is to be evaluated at the n elements
(X1 : Z1), . . . , (Xn : Zn), where we use boldface to distinguish these points and
the coordinates of the i-th multiples of the kernel generator P . We note at once
that the values of (Xi + Zi) and (Xi − Zi) can now also be reused across the
n elements evaluated by the isogeny. This mutual recycling across both sets of
points suggests a simple subroutine that merely computes the sum and difference
of these pairwise products as in (17): we dub this routine CrissCross and present
it in Algorithm 1 for completeness.

Algorithm 1. CrissCross: K4 → K2.
Input: (α, β, γ, δ) ∈ K4

Output: (αδ + βγ, αδ − βγ) ∈ K2

Cost: 2M + 2a.
1 (t1, t2) ← (α · δ, β · γ) // 2M
2 return (t1 + t2, t1 − t2) // 2a

Now, on input of the kernel generator x(P) = (X1 : Z1), the first step
of the main algorithm will be to generate the d − 1 additional elements
x([i]P) = (Xi : Zi). This subroutine is called KernelPoints and we present it in
Algorithm 2. Since it must start with a call to xDBL7, we also need to input the
modified curve constant (Â : Ĉ) = (a − 2 : 4).

Looking back at (17), we can see that once the (Xi : Zi) have been com-
puted for i = 1, . . . , d, they can immediately be overwritten by their sum and
difference pairs through assigning (X̂i, Ẑi) ← (Xi + Zi,Xi − Zi) in preparation
for CrissCross. Based on (17), we now present an algorithm for evaluating a

7 For many values of d, all of the kernel elements can be generated by repeated calls
to xDBL, which is slightly cheaper than xADD in our context. However, for the sake
of general applicability, we make repeated calls to xADD after the initial xDBL in
KernelPoints.

A Simple and Compact Algorithm for SIDH with Arbitrary Degree Isogenies 317

Algorithm 2. KernelPoints: P1 × P
1 → (P1)d.

Input: (X1 : Z1) = x(P) ∈ P
1 and (Â : Ĉ) = (a − 2 : 4) ∈ P

1

Output: ((X1 : Z1), . . . , (Xd : Zd)) = (x(P),x([2]P), . . . ,x([d]P)) ∈ (P1)d

Cost: 4(d − 1)M + 2(d − 1)S + 2(3d − 4)a.
1 if d ≥ 2 then (X2 : Z2) ← xDBL((X1 : Z1), (Â : Ĉ))

// 4M+2S+4a
2 for i = 3 to d do
3 (Xi : Zi) ← xADD((Xi−1 : Zi−1), (X1 : Z1), (Xi−2 : Zi−2)) // 4M+2S+6a
4 end
5 return ((X1 : Z1), . . . , (Xd : Zd))

Algorithm 3. OddIsogeny: (K2)d × P
1 → P

1.

Input: ((X̂1, Ẑ1), . . . , (X̂d, Ẑd)) and (X : Z) ∈ P
1

Output: (X ′ : Z′) ∈ P
1 corresponding to x(φ(Q)) where x(Q) = (X : Z)

Cost: 4dM + 2S + 2(d + 1)a.
1 (X̂, Ẑ) ← (X + Z, X − Z) // 2a

2 (X ′, Z′) ← CrissCross(X̂1, Ẑ1, X̂, Ẑ) // Algorithm 1

3 for i = 2 to d do

4 (t0, t1) ← CrissCross(X̂i, Ẑi, X̂, Ẑ) // Algorithm 1

5 (X ′, Z′) ← (t0 · X ′, t1 · Z′) // 2M

6 end
7 (X ′, Z′) ← (X · (X ′)2, Z · (Z′)2) // 2M+2S
8 return (X ′ : Z′)

single isogeny that takes as input the modified set of kernel point coordinates:
OddIsogeny is given in Algorithm 3.

We are now in a position to present SimultaneousOddIsogeny, which is
the main algorithm – see Algorithm 4. It takes as input x(P) = (X1 : Z1) ∈
P
1 and (Â : Ĉ) = (a − 2 : 4), which correspond to a point P of order �

on E/K : by2 = x3 + ax2 + x, as well as an n-tuple (x(Q1), . . .x(Qn)) =
((X1 : Z1), . . . , (Xn : Zn)) ∈ (P1)n where the Qi ∈ E are such that Q �∈ 〈P 〉.
The output is an n-tuple corresponding to (x(φ(Q1)), . . .x(φ(Qn))) ∈ (P1)n,
where ker(φ) = 〈P 〉.

Simplified Odd-Degree Isogenies in SIDH. Together with an algorithm
for computing the multiplication-by-� map, Algorithm 4 is essentially all that is
needed to compute an odd �e-degree isogeny in the context of SIDH. Regardless
of which high-level strategy is used to compute the �e-isogeny (i.e., whether it be
the multiplication-based approach [21, Fig. 2] or the optimal strategy [15, Sect.
4.2.2]), Algorithm 4 will be called e times to compute e isogenies of degree �. In
Algorithm 5 we show how SimultaneousOddIsogeny is to be used in conjunction
with the simple conversion function a from alpha from Sect. 4 and the Mont-
gomery ladder for computing the multiplication-by-� map. We assume the use

318 C. Costello and H. Hisil

Algorithm 4. SimultaneousOddIsogeny: P1 × P
1 × (P1)n → (P1)n.

Input: (X1 : Z1) ∈ P
1, (Â : Ĉ) ∈ P

1, and ((X1 : Z1), . . . , (Xn : Zn)) ∈ (P1)n

Output: ((X′
1 : Z′

1), . . . , (X
′
n : Z′

n)) ∈ (P1)n

Cost: 4(d(n + 1) − 1)M + 2(n + d − 1)S + 2((d + 1)n + (3d − 4))a.
1 ((X1 : Z1), . . . , (Xd : Zd)) ← KernelPoints((X1 : Z1), (Â, Ĉ)) // Algorithm 2

2 ((X̂1, Ẑ1), . . . , (X̂d, Ẑd)) ← ((X1 + Z1, X1 − Z1), . . . , (Xd + Zd, Xd − Zd)) // 2da
3 for j = 1 to n do

4 (X′
j : Z′

j) ← OddIsogeny((X̂1, Ẑ1), . . . , (X̂d, Ẑd)), (Xj : Zj))
// Algorithm 3

5 end
6 return ((X′

1 : Z′
1), . . . , (X

′
n : Z′

n))

of the function LADDER as discussed in Sect. 4, where the Montgomery coefficient
a is passed in projectively as (Â : Ĉ) = (a − 2: 4); i.e.,

LADDER : P1 × P
1 × Z → P

1, (x(P), (Â : Ĉ), �z) �→ x([�z]P). (18)

For ease of exposition, we adopt the multiplication-based approach [21, Fig. 2]
for computing the degree �e-isogeny, but note that the way in which the proposed
algorithms are called in Lines 4–6 of Algorithm 5 is analogous if the optimal strat-
egy mentioned above is used; the only difference worth mentioning is that the
length of the list of the (X′

i : Z′
i) passed in and out of SimultaneousOddIsogeny

on Line 6 can change when it is called within the code executing the optimal
strategy.

In the notation of Sect. 2, let E/Fp2 : y2 = x(x − α)(x − 1/α) be the public
starting curve in the SIDH protocol. For public key generation, Alice would
compute her secret kernel generator as RA = [uA]PA + [vA]QA of order �eA

A

(see [15, Algorithm 1]), and with Bob’s public basis PB and QB , she can then
compute her public key by calling Algorithm 5 as
(
(Xα,A : Zα,A), ((x(φA(PB)),x(φA(QB)),x(φA(QB − PB)))

)

= SIDH Isogeny
(
x(RA), (�A, eA), (α : 1), (x(PB),x(QB),x(QB − PB))

)
,

where ker(φA) = 〈RA〉, and where x(QB − PB) is included as an input to avoid
sign ambiguities in the subsequent shared secret computations – see [12]. Alice
would normalise each of these elements, i.e., convert them all from P

1(Fp2) into
Fp2 via a simultaneous inversion [30], then send them to Bob. Writing αA =
Xα,A/Zα,A, Bob can then compute x(SB) = x ([uB]φA(PB) + [vB]φA(QB)), and
compute the shared secret by calling Algorithm 5 as

(Xα,AB : Zα,AB) = SIDH Isogeny
(
x(SB), (�B , eB), (αA : 1)

)
,

before computing the j-invariant of the Montgomery curve whose coefficient is
the output of the function a from alpha((Xα,AB : Zα,AB)). Note that, during
the shared secret computation, the (P1)k input to SIDH Isogeny is empty, i.e.,
has k = 0.

A Simple and Compact Algorithm for SIDH with Arbitrary Degree Isogenies 319

Algorithm 5. SIDH Isogeny: P1 × Z
2 × P

1 × (P1)k → P
1 × (P1)k.

Input: x(P) = (X1 : Z1) ∈ P
1, and (
, e) ∈ Z

2, where |〈P 〉| =
e on E.
(α : 1) ∈ P

1, where ord((α, 0)) = 2 on E and α �= 0.
(x(Q1), . . .x(Qk)) = ((X1 : Z1), . . . , (Xk : Zk)) ∈ (P1)k, where Qi ∈

E and Q �∈ 〈P 〉.
Output: (Xα′ : Zα′) ∈ P

1, where ord((Xα′/Zα′ , 0)) = 2 on φ(E′) for ker(φ) =
〈P 〉 and Xα′ �= 0.
(x(φ(Q1)), . . .x(φ(Qk))) = ((X′

1 : Z′
1), . . . , (X

′
k : Z′

k)) ∈ (P1)k

1 ((Xα′ : Zα′), (X′
1 : Z′

1), . . . , (X
′
k : Z′

k)) ← ((α : 1), (X1 : Z1), . . . , (Xk : Zk))
// Initialise

2 (XR : ZR) ← (X1 : Z1) // Initialise

3 for z = e − 1 downto 0 do

4 (Â : Ĉ) ← a from alpha((Xα′ : Zα′)) // See Sect. 4

5 (XS : ZS) ← LADDER((XR : ZR), (Â : Ĉ),
z) // See Eq. (18)

6 ((XR : ZR), (Xα′ : Zα′), (X′
1 : Z′

1), . . . , (X
′
k : Z′

k)) ←
SimultaneousOddIsogeny // Algorithm 4

((XS : ZS), (Â : Ĉ), ((XR : ZR), (Xα′ : Zα′), (X′
1 : Z′

1), . . . , (X
′
k : Z′

k)))
7 end
8 return (Xα′ : Zα′), ((X′

1 : Z′
1), . . . , (X

′
n : Z′

n))

We note that the operation counts presented in Algorithms 2–4 do not apply
to the special case of d = 1. Although Algorithm 4 still performs the 3-isogeny
computations in the same number of operations as the dedicated formulas in
Appendix A, the claimed operation counts only hold if KernelPoints is called,
which is not the case for 3-isogenies (where no additional kernel elements are
required).

We conclude this section with a remark on a more compact version of
Algorithm 4.

Remark 4 (A low-storage version). The description of the general odd-degree
isogeny function in Algorithm 4 aims to minimise the total number of field
operations needed for an �-isogeny computation and its evaluation at an arbitrary
number of points. However, the recycling of the additions computed in (17)
requires us to generate the entire list of d kernel elements before entering the
loop that repeatedly calls Algorithm 3. If d is large, the space required to store
d elements in Fp2 might become infeasible, especially given the size of the fields
used in real-world SIDH implementations. Moreover, this recycling only saves Fp2

additions, and our benchmarking of the SIDH v2.0 software accompanying [12]
in the following section revealed that their software has 1M ≈ 20a, which means
the above recycling will only have a minor benefit on the overall performance.
Thus, a more streamlined version of Algorithm 4 would simply compute one of
the elements x([i]P) = (Xi : Zi) at a time and absorb its contribution to (17)
immediately before calling xADD to replace it by x([i + 1]P) = (Xi+1 : Zi+1),
and so on, with no need for Algorithm 2. Since the required storage would then

320 C. Costello and H. Hisil

remain fixed as d increases, this would give a much more compact algorithm
for larger d, both in its description and in terms of the storage required to
implement it.

6 Implementation Results and Implications

In this section we provide benchmarks for SimultaneousOddIsogeny, i.e., the
general odd-degree isogeny function in Algorithm 4. We stress that we are not
aiming to outperform the relative performance of the 3- and 4-isogenies, by
pointing out that the relative performance of odd �-isogenies decreases as � grows
larger. The point of this paper is to broaden the class of curves for which SIDH
is practical in all of the relevant aspects, i.e., memory requirements, code size,
simplicity of the implementation, as well as efficiency. Nevertheless, there are
scenarios where larger odd-degree isogenies could be preferred over the low degree
ones, as we will discuss later in this section.

Table 1 presents benchmarks for the evaluation of isogenies of degree � ∈
{3, 5, . . . , 15} at n ∈ {1, 2, 5, 8} input points. These timings were obtained
by wrapping Algorithm 4 around the SIDH v2.0 software8 accompanying [11,
12]; this software uses the supersingular isogeny class containing the curve
E/Fp2 : y2 = x3 + x where p = 2372 · 3239 − 1, where all curves in the class
have cardinality (2372 ·3239)2. We note that this curve does not have Fp2 -rational
points of order � for odd � > 3, but this is immaterial; the timings for Algorithm 4
would be exactly the same when working with a curve with rational �-torsion
over the same field. We benchmarked in this way in order to get a fair compari-
son of the cost of different values of � and n when the field arithmetic stays fixed
at a size that is relevant to real-world SIDH implementations. We discuss the
influence of needing rational �-torsion on the field arithmetic later in this section.
The reason we chose to benchmark n ∈ {1, 2, 5, 8} is based on the average num-
ber of isogeny evaluations for both Alice and Bob at each step of the SIDH v2.0
software that uses the optimal tree traversal (see Sect. 2 or [15, Sect. 4.2.2]) in
the main loop: Alice and Bob use roughly 7.15 and 7.70 evaluations of every
4- and 3-isogeny (respectively) during key generation, and this would include
one more evaluation if our 2-torsion technique from Sect. 4 was employed (hence
n = 8), and they use 4.15 and 4.70 respective isogeny evaluations per step during
the shared secret phase (hence n = 5). We also include n = 1 to benchmark the
cost of a single isogeny evaluation and n = 2 assuming a single isogeny evalu-
ation is included alongside the 2-torsion technique from Sect. 4; this is to view
the relative performance of the simple SIDH loop in Algorithm 5 that evaluates
each isogeny at one point during the main loop.

Table 1 shows a natural increase in latency as � grows. A single 5-isogeny
evaluation costs around 2.71x that of a single 3-isogeny, and the cost of a 15-
isogeny evaluation is around 11.40x that of a 3-isogeny. Due to the multiple
isogeny evaluations sharing computations performed on the kernel elements (see
Sect. 5), naturally these ratios become slightly more favourable for larger � as n

8 See https://github.com/Microsoft/PQCrypto-SIDH.

https://github.com/Microsoft/PQCrypto-SIDH

A Simple and Compact Algorithm for SIDH with Arbitrary Degree Isogenies 321

Table 1. Cycle counts for SimultaneousOddIsogeny for different values of
 and n.
Timing benchmarks were taken on an Intel Core i7-6500U Skylake processor running
Ubuntu 14.04.5 LTS with TurboBoost disabled and all cores but one are switched-off.
To obtain the executables, we used GNU-gcc version 4.8.4 with the -O2 flag set and
GNU assembler version 2.24.

d
 n = 1 n = 2 n = 5 n = 8

1 3 9, 780 19, 420 48, 270 76, 930

2 5 26, 450 43, 420 93, 400 143, 670

3 7 43, 310 67, 490 139, 280 219, 270

4 9 60, 170 91, 390 184, 480 277, 700

5 11 77, 000 115, 490 230, 070 344, 220

6 13 93, 710 139, 370 275, 170 411, 800

7 15 110, 510 163, 480 320, 460 477, 980

increases: the evaluation of a 5-isogeny (resp. 15-isogeny) at n = 8 points costs
around 2.03x (resp. 7.18x) the same number of 3-isogeny evaluations. These
numbers are depicted graphically on the left of Fig. 1, and the approximate
relative slowdown of using �-isogenies within the SIDH framework is depicted on
the right. An analogous version of Fig. 1 for � up to � = 301 is given in Fig. 2. In
both figures the cycle counts have been divided by n in order to give a cost per
isogeny evaluation.

Fig. 1. Average cycle counts for SimultaneousOddIsogeny for different values of
 and
n. Timing benchmarks were taken on an Intel Core i7-6500U Skylake processor running
Ubuntu 14.04.5 LTS with TurboBoost disabled and all cores but one are switched-off.
To obtain the executables, we used GNU-gcc version 4.8.4 with the -O2 flag set and
GNU assembler version 2.24. Raw cycle counts per isogeny evaluation are given on the
left, while on the right they are scaled by the factor log(3)/(log(
) · C3), where C3 is
the cost of a 3-isogeny, in order to approximate the relative factor slowdown within the
SIDH framework.

The right graphs in Figs. 1 and 2 aim to depict the relative factor slowdowns
of computing an �e isogeny versus a 3e3 isogeny assuming that �e ≈ 3e3 . However,
we must note that a more accurate depiction of the relative slowdown in the

322 C. Costello and H. Hisil

Fig. 2. Average cycle counts for SimultaneousOddIsogeny for different values of
 and
n. Timing benchmarks were taken on an Intel Core i7-6500U Skylake processor running
Ubuntu 14.04.5 LTS with TurboBoost disabled and all cores but one are switched-off.
To obtain the executables, we used GNU-gcc version 4.8.4 with the -O2 flag set and
GNU assembler version 2.24. Raw cycle counts per isogeny evaluation are given on the
left, while on the right they are scaled by the factor log(3)/(log(
) · C3), where C3 is
the cost of a 3-isogeny, in order to approximate the relative factor slowdown within the
SIDH framework.

SIDH framework would incorporate the relative costs of the multiplication-by-�
functions, since these are called almost as frequently as the �-isogeny functions
in an optimised implementation (and significantly more times than the �-isogeny
functions in the simple SIDH loop – see [12, Sect. 6]). To that end, we point out
that the relative slowdown of using �-isogenies would be much less than these
graphs depict (as � increases), under the assumption that the Montgomery ladder
is called to compute x(P) �→ x([�]P). Table 2 and Fig. 3 exhibit the obvious
trend in LADDER’s performance as � increases: unlike the linear increase in �-
isogeny latencies, the performance of ladder is asymptotically logarithmic, being
(roughly) fixed by the value �log2(�)�. In any case, we make the obvious comment
that a practically meaningful representation of the performance trade-offs for
different values of � can only be obtained by benchmarking similarly optimised
implementations in all cases. As we discuss below, such implementations might
call for vastly different styles of field arithmetic, so we leave this open for future
work.

Implications. At a first glance, Table 1 and Figs. 1 and 2 seem to suggest that,
unless faster isogenies of degree � ≥ 5 are found, such higher degree isogenies will
not find any meaningful real-world application. However, the ability to compute
arbitrary degree isogenies in SIDH already opens up some interesting possibilities
as we now discuss.

Firstly, recent work by Bos and Friedberger [8] studied SIDH-friendly primes
of the form p = 2irj − 1, where r can be any small prime. They investigated a
number of different arithmetic techniques, and interestingly, when implementing
arithmetic over the field with p = 23723329 −1 above, found that arithmetic over
a comparably sized field p = 23911988 − 1 was actually significantly faster [8,
Table 3]. The more severe slowdown of 19-isogenies versus 3-isogenies means
that, overall, the performance of 3-isogenies will still be preferred. However,

A Simple and Compact Algorithm for SIDH with Arbitrary Degree Isogenies 323

Table 2. Cycle counts for [
](X : Z) on Montgomery Ladder with projective inputs:
(X : Z) and (A24 : C24). Timing benchmarks were taken on an Intel Core i7-6500U
Skylake processor running Ubuntu 14.04.5 LTS with TurboBoost disabled and all cores
but one are switched-off. To obtain the executables, we used GNU-gcc version 4.8.4
with the -O2 flag set and GNU assembler version 2.24. For the fixed odd low degrees
of
 ∈ {3, 5, 7}, we also present the cycle counts of our own optimised, dedicated
algorithms for computing the multiplication-by-
 maps, since this might be of interest
for future implementers; see Appendix A for justification.

Operation ladder Optimized

[2](X : Z) - 9,608

[3](X : Z) 28,954 18,622

[5](X : Z) 48,603 27,346

[7](X : Z) 49,086 36,110

[9](X : Z) 67,610 -

[11](X : Z) 68,429 -

[13](X : Z) 68,125 -

[15](X : Z) 68,848 -

[17](X : Z) 86,717 -

Fig. 3. Cycle counts chart for [
](X : Z) using Montgomery ladder with projective
inputs: (X : Z) and (A24 : C24). Timing benchmarks were taken on an Intel Core i7-
6500U Skylake processor running Ubuntu 14.04.5 LTS with TurboBoost disabled and
all cores but one are switched-off. To obtain the executables, we used GNU-gcc version
4.8.4 with the -O2 flag set and GNU assembler version 2.24.

in real-world applications like the transport layer security (TLS) protocol, it
is typically one side of the protocol (i.e., the server, who is processing many
SIDH instances) where performance is the bottleneck, while the performance of
a single SIDH instance on the client side is ultimately a non-issue. In such a
situation, we could envision affording the server the luxury of the faster prime
p = 23911988 − 1 and the faster 4-isogenies in order to get the best of both
worlds, while the client could put up with the 19-isogenies and not be noticibly
hampered by the increased latency on their side.

324 C. Costello and H. Hisil

Another possibility opened up by Algorithm 4 is the abandonment of even-
degree isogenies on either side of the protocol, in the name of implementation
simplicity. For example, SIDH implementations using primes of the form9 p =
4 · 3i5j − 1 could be implemented using Algorithm 4 for isogenous curve and
point operations on both sides. This would make for a much simpler and more
compact code-base, and could be an attractive option if the relatively modest
slowdown from 4- to 5-isogenies (and the possible slowdown of the new shaped
primes) is justifiable.

Finally, we leave it as an open question to see whether primes not of the form
p = f · 2i3j − 1 can be found where arithmetic is fast enough to justify isogenies
of � ≥ 5. It could even be possible to find fast primes where p ± 1 is smooth but
contains many small, unique prime factors, and where isogeny walks on either
or both sides of the protocol involve isogenies of different degrees. Of course, the
security implications of such a choice are also left as open.

Acknowledgements. We are especially grateful to Steven Galbraith for his help in
correcting the proof of Theorem 1. We thank Dustin Moody for his detailed comments
on an earlier version of this paper, as well as Joppe Bos, Patrick Longa, Michael Naehrig
and the anonymous reviewers for their useful comments.

A Improvements for 3- and 4-isogenies

In this section, we briefly present improved explicit formulas, operation counts,
and performance benchmarks for 3- and 4-isogeny and related operations in
SIDH; this provides implementers with a fair comparison of the general �-isogeny
algorithm and more optimised formulas for the currently used 3- and 4-isogenies.
A complete list of the improved operations are presented in Table 3 and the
cycle counts are compared in Table 4; all of the associated explicit formulas
are presented thereafter. We plugged these formulas into the SIDH v2.0 library
from [12] and Table 5 gives the overall improvements of each stage of the SIDH
key exchange protocol.

Below we use (X3 : Z3) and (X4 : Z4) to denote the coordinates of points P3

and P4 of orders 3 and 4 respectively, under the x map. We use (A24 : C24) to
denote the projective version of the Montgomery curve constant (a − 2)/4, i.e.,
(A24 : C24) = (a − 2 : 4) in P

1.
The 3 iso curve operation

(A′
24 : C ′

24) =
(
(X3 + Z3)(Z3 − 3X3)3 : 16X3Z

3
3

)

takes 2M+ 3S+ 14a and produces the common subexpressions K1 = X3 − Z3

and K2 = X3+Z3. The justification of the claimed operation count is as follows:

K1 = X3 − Z3, R1 = K2
1 , K2 = X3 + Z3, R2 = K2

2 , R3 = R2 + R1,
R4 = K1 + K2, R4 = R2

4, R4 = R4 − R3, R3 = R4 + R2, R4 = R4 + R1,
R5 = R1 + R4, R5 = 2R5, R5 = R5 + R2, A′

24 = R5 · R3, R5 = R2 + R3,
R5 = 2R5, R5 = R5 + R1, R5 = R5 · R4, C′

24 = R5 − A′
24.

9 We still need the cofactor of 4 in the group order to be able to exploit the Montgomery
form – see Sect. 2.

A Simple and Compact Algorithm for SIDH with Arbitrary Degree Isogenies 325

Table 3. Operation counts comparison for common elliptic curve and isogeny functions
within existing SIDH implementations.

xTPL 3 iso point 3 iso curve 4 iso point 4 iso curve

CLN2016 8M+4S+8a 6M+2S+2a 3M+3S+8a 9M+1S+6a 5S+7a

This work 9M+2S+17a 4M+2S+4a 2M+3S+14a 6M+2S+6a 4S+4a

7M+5S+11a

Table 4. Cycle counts comparison for common elliptic curve and isogeny functions
within existing SIDH implementations. Timing benchmarks were taken on an Intel Core
i7-6500U Skylake processor running Ubuntu 14.04.5 LTS with TurboBoost disabled and
all cores but one are switched-off. To obtain the executables, we used GNU-gcc version
4.8.4 with the -O2 flag set and GNU assembler version 2.24.

Operation CLN2016 This work Speed-up

xTPL 19,226 18,622 1.032x

3 iso curve 9,264 8,202 1.129x

3 iso point 12,901 9,581 1.346x

4 iso curve 6,276 5,095 1.232x

4 iso point 17,432 13,545 1.287x

Table 5. Cycle counts for Ephemeral isogeny-based key exchange. Timing benchmarks
were taken on an Intel Core i7-6500U Skylake processor running Ubuntu 14.04.5 LTS
with TurboBoost disabled and all cores but one are switched-off. To obtain the exe-
cutables, we used GNU-gcc version 4.8.4 with the -O2 flag set and GNU assembler
version 2.24.

Operation CLN2016 This work Speed-up

Alice’s key generation 39,043,000 33,266,000 1.174x

Bob’s key generation 44,289,000 37,430,000 1.183x

Alice’s shared key computation 36,716,000 33,240,000 1.105x

Bob’s shared key computation 42,576,000 38,046,000 1.120x

The 3 iso point operation

(X ′ : Z ′) =
(
X(X3X − Z3Z)2 : Z(Z3X − X3Z)2

)

takes 4M+ 2S+ 4a and uses the common subexpressions K1 = X3 − Z3 and
K2 = X3 + Z3. The justification of the claimed operation count is as follows:

R2 := X + Z, R3 := R2 · K1, R2 := X − Z, R1 := R2 · K2, R2 := R1 + R3,
R2 := R2

2, X ′ := R2 · X, R1 := R3 − R1, R1 := R2
1, Z′ := R1 · Z.

The 4 iso curve operation

(A′
24 : C ′

24) =
(
X4

4 − Z4
4 : Z4

4

)

326 C. Costello and H. Hisil

takes 4S + 4a and produces the common subexpressions K1 = 4Z2
4 , K2 =

X4 − Z4, and K3 = X4 + Z4. The justification of the claimed operation count is
as follows:

K1 = Z2
4 , R1 = X2

4 , R1 = R2
1, C′

24 = K2
1 , A′

24 = R1 − C′
24, K1 = 4K1,

K2 = X4 − Z4, K3 = X4 + Z4.

The 4 iso point operation

(X ′ : Z ′) =
(
X

(
2X4Z4Z − (X2

4 + Z2
4)X

)
(X4X − Z4Z)2 :

Z
(
2X4Z4X − (X2

4 + Z2
4)Z

)
(Z4X − X4Z)2

)

takes 6M+ 2S+ 6a and benefits from the common subexpressions K1 = 4Z2
4 ,

K2 = X4 − Z4, and K3 = X4 + Z4 generated by 4 iso curve. The justification
of the claimed operation count is as follows:

R2 = X + Z, R3 = R2 · K2, R4 = X − Z, R1 = R4 · K3, R2 = R4 · R2,
R4 = R1+R3, R4 = R2

4, R3 = R1−R3, R3 = R2
3, R2 = K1·R2, R1 = R4+R2,

R2 = R3 − R2, X ′ = R4 · R1, Z′ = R3 · R2.

The xTPL operation

[3](X : Z) =
(
X(16A24XZ3 − C24(X − 3Z)(X + Z)3)2 :

Z(16A24X
3Z + C24(3X − Z)(X + Z)3)2

)

takes 9M + 2S + 16a assuming that K1 = A24+C24 is cached. The justification
of the claimed operation count is as follows:

R1 = X −Z, R2 = R2
1, R3 = X +Z, R4 = R2

3, R5 = R4 +R2, R6 = R2 −R4,
R7 = R4 · K1, R8 = R2 · A24, R4 = R8 + R7, R2 = R7 − R8, R4 = R4 · R6,
R5 = R2 · R5, R2 = R2 · R6, R2 = 2R2, R6 = R4 + R5, R5 = R4 − R5,
R4 = R6 + R2, R6 = R6 − R2, R4 = R4 · R6, R6 = R2 · R5, R6 = 2R6,
R5 = R4 − R6, R4 = R4 + R6, R2 = R4 · R3, R1 = R1 · R5, Xout = R2 + R1,
Zout = R2 − R1.

Alternatively, the xTPL operation takes 7M + 5S + 10a assuming that K1 =
A24+C24 is cached. The justification of the claimed operation count is as follows:

R1 = X −Z, R3 = R2
1, R2 = X +Z, R4 = R2

2, R5 = R2 +R1, R1 = R2 −R1,
R2 = R2

5, R2 = R2 − R4, R2 = R2 − R3, R6 = R4 · K1, R4 = R6 · R4,
R7 = R3 · A24, R3 = R3 · R7, R4 = R3 − R4, R3 = R6 − R7, R2 = R3 · R2,
R3 = R4 + R2, R3 = R2

3, Xout = R3 · R5, R2 = R4 − R2, R2 = R2
2,

Zout = R2 · R1.

The dedicated explicit formulas for the multiplication-by-5 map referred to in
Table 2 take (Xout : Zout) = x([5]P), where x(P) = (X : Z), and are as below.
The cost is 11M+ 6S+ 14a, assuming that K1 = A24 + C24 is cached.

R1 = X −Z, R2 = R2
1, R3 = X +Z, R4 = R2

3, R5 = R4 +R2, R1 = R1 +R3,
R1 = R2

1, R3 = R1 − R5, R2 = R2 · A24, R4 = K1 · R4, R4 = R4 − R2,
R5 = R4 · R5, R2 = R2

3, R1 = R2 · C24, R2 = R1/4, R2 = R5 − R2,
R5 = R4 · R3, R3 = R2 + R5, R4 = R2 − R5, R3 = R3 · R4, R4 = R2 · R3,
R1 = R1 · R2, R1 = R1 + R3, R3 = R1 · R5, R2 = R4 + R3, R2 = R2

2,
Xout = R2 · X1, R1 = R4 − R3, R1 = R2

1, Zout = R1 · Z1.

A Simple and Compact Algorithm for SIDH with Arbitrary Degree Isogenies 327

The dedicated explicit formulas for the multiplication-by-7 map referred to in
Table 2 take (Xout : Zout) = x([7]P), where x(P) = (X : Z), and are as below.
The cost is 14M+ 9S+ 18a, assuming that K1 = A24 + C24 is cached.

R1 = X − Z, R3 = R2
1, R2 = X + Z, R4 = R2

2, R1 = R1 + R2, R1 = R2
1,

R1 = R1 − R4, R2 = R1 − R3, R1 = K1 · R4, R4 = R1 · R4, R5 = R3 · A24,
R1 = R1−R5, R3 = R3 ·R5, R3 = R4−R3, R4 = R2 ·R1, R1 = R2

3, R5 = R2
4,

R4 = R3+R4, R4 = R2
4, R2 = R2

2, R2 = R2 ·R3, R3 = R1−R5, R1 = R1+R5,
R4 = R1 − R4, R1 = R1 · R3, R3 = 2R3, R2 = R2 · C24, R5 = R2 · R5,
R5 = R5 + R1, R1 = R3 + R2, R3 = R3 · R5, R2 = R1 + R2, R2 = R2 · R1,
R1 = 2R3, R2 = R4 · R2, R3 = R1 + R2, R3 = R2

3, Xout = X1 · R3,
R3 = R1 − R2, R3 = R2

3, Zout = Z1 · R3.

References

1. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- A new hope. In: Holz, T., Savage, S. (eds.) 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, 10–12 August 2016, pp. 327–343. USENIX
Association (2016)

2. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression
for isogeny-based cryptosystems. In: Emura, K., Hanaoka, G., Zhang, R. (eds.)
Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryp-
tography, AsiaPKC@AsiaCCS, Xi’an, China, 30 May–03 June 2016, pp. 1–10. ACM
(2016)

3. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted edwards
curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–
405. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68164-9 26

4. Bernstein, D.J., Buchmann, J., Dahmen, E.: Post-Quantum Cryptography.
Springer Science & Business Media, Heidelberg (2009). https://doi.org/10.1007/
978-3-540-88702-7

5. Bernstein, D.J., Chou, T., Schwabe, P.: McBits: Fast constant-time code-
based cryptography. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS,
vol. 8086, pp. 250–272. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40349-1 15

6. Bos, J.W., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Raghu-
nathan, A., Stebila, D.: Frodo: Take off the ring! Practical, quantum-secure key
exchange from LWE. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C.,
Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, 24–28 October 2016, pp. 1006–
1018. ACM (2016)

7. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: 2015 IEEE Sym-
posium on Security and Privacy, SP 2015, San Jose, CA, USA, 17–21 May 2015,
pp. 553–570. IEEE Computer Society (2015)

8. Bos, J.W., Friedberger, S.: Fast arithmetic modulo 2x py ± 1. In: Burgess, N.,
Bruguera, J.D., de Dinechin, F. (eds.) 24th IEEE Symposium on Computer Arith-
metic, ARITH 2017, London, United Kingdom, 24–26 July 2017, pp. 148–155.
IEEE Computer Society (2017)

https://doi.org/10.1007/978-3-540-68164-9_26
https://doi.org/10.1007/978-3-540-88702-7
https://doi.org/10.1007/978-3-540-88702-7
https://doi.org/10.1007/978-3-642-40349-1_15
https://doi.org/10.1007/978-3-642-40349-1_15

328 C. Costello and H. Hisil

9. Castryck, W., Galbraith, S., Farashahi, R.R.: Efficient arithmetic on elliptic curves
using a mixed Edwards-Montgomery representation. Cryptology ePrint Archive,
Report 2008/218 (2008). http://eprint.iacr.org/2008/218

10. Chou, T.: QcBits: Constant-time small-key code-based cryptography. In: Gierlichs,
B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 280–300. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2 14

11. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient com-
pression of SIDH public keys. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10210, pp. 679–706. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56620-7 24

12. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular
isogeny diffie-hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53018-4 21

13. Couveignes, J.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006). http://eprint.iacr.org/2006/291

14. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (1976)

15. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

16. Fluhrer, S.: Cryptanalysis of ring-LWE based key exchange with key share reuse.
Cryptology ePrint Archive, Report 2016/085 (2016). http://eprint.iacr.org/2016/
085

17. Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption
at minimum cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp.
53–68. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49162-7 5

18. Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge University
Press, New York (2012)

19. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingu-
lar isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53887-6 3

20. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryp-
tosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

21. Jao, D., Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

22. Kirkwood, D., Lackey, B.C., McVey, J., Motley, M., Solinas, J.A., Tuller, D.: Failure
is not an option: Standardization issues for post-quantum key agreement. Talk at
NIST workshop on Cybersecurity in a Post-Quantum World, April 2015. http://
www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm

23. Kobara, K., Imai, H.: Semantically secure McEliece public-key cryptosystems -
conversions for McEliece PKC -. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 19–35. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-2 2

24. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

25. Kohel, D.R.: Endomorphism rings of elliptic curves over finite fields. PhD thesis,
University of California, Berkeley (1996)

http://eprint.iacr.org/2008/218
https://doi.org/10.1007/978-3-662-53140-2_14
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-662-53018-4_21
http://eprint.iacr.org/2006/291
http://eprint.iacr.org/2016/085
http://eprint.iacr.org/2016/085
https://doi.org/10.1007/3-540-49162-7_5
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-642-25405-5_2
http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
https://doi.org/10.1007/3-540-44586-2_2
https://doi.org/10.1007/3-540-68697-5_9

A Simple and Compact Algorithm for SIDH with Arbitrary Degree Isogenies 329

26. Koziel, B., Azarderakhsh, R., Kermani, M.M., Jao, D.: Post-quantum cryptography
on FPGA based on isogenies on elliptic curves. IEEE Trans. Circuits Syst. 64(1),
86–99 (2017)

27. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. J. ACM 60(6), 43:1–43:35 (2013)

28. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Cod-
ing Thv 4244, 114–116 (1978)

29. Misoczki, R., Tillich, J., Sendrier, N., Barreto, P.S.L.M.: MDPC-McEliece: New
McEliece variants from moderate density parity-check codes. In: Proceedings of
the 2013 IEEE International Symposium on Information Theory, Istanbul, Turkey,
7–12 July 2013, pp. 2069–2073. IEEE (2013)

30. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–264 (1987)

31. Moody, D., Shumow, D.: Analogues of Vélu’s formulas for isogenies on alternate
models of elliptic curves. Math. Comput. 85(300), 1929–1951 (2016)

32. Mosca, M.: Cybersecurity in an ERA with quantum computers: will we be ready?
Cryptology ePrint Archive, Report 2015/1075 (2015). http://eprint.iacr.org/2015/
1075

33. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11659-4 12

34. Regev, O.: On lattices, learning with errors, random linear codes, and cryptog-
raphy. In: Gabow, H.N., Fagin, R. (ed.) Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, Baltimore, MD, USA, 22–24 May 2005, pp.
84–93. ACM (2005)

35. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryp-
tology ePrint Archive, Report 2006/145 (2006). http://eprint.iacr.org/

36. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: 1994 Proceedings and 35th Annual Symposium on Foundations of Com-
puter Science, pp. 124–134. IEEE (1994)

37. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in
Mathematics, 2nd edn. Springer, New York (2009). https://doi.org/10.1007/
978-1-4757-1920-8

38. Stebila, D., Mosca, M.: Post-quantum key exchange for the Internet and the
open quantum safe project. Cryptology ePrint Archive, Report 2016/1017 (2016).
http://eprint.iacr.org/2016/1017

39. Stolbunov, A.: Cryptographic Schemes Based on Isogenies. PhD thesis, Norwegian
University of Science and Technology (2012)

40. The National Institute of Standards and Technology (NIST). Submission require-
ments and evaluation criteria for the post-quantum cryptography standardization
process, December 2016

41. Vélu, J.: Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Sér. AB 273,
A238–A241 (1971)

42. Washington, L.C.: Elliptic Curves: Number Theory and Cryptography. CRC Press,
Boca Raton (2008)

43. Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V.: A post-quantum
digital signature scheme based on supersingular isogenies (2017). http://eprint.
iacr.org/2017/186. To appear in Financial Cryptography and Data Security

http://eprint.iacr.org/2015/1075
http://eprint.iacr.org/2015/1075
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12
http://eprint.iacr.org/
https://doi.org/10.1007/978-1-4757-1920-8
https://doi.org/10.1007/978-1-4757-1920-8
http://eprint.iacr.org/2016/1017
http://eprint.iacr.org/2017/186
http://eprint.iacr.org/2017/186

	A Simple and Compact Algorithm for SIDH with Arbitrary Degree Isogenies
	1 Introduction
	2 Preliminaries
	3 Coordinate Maps for Odd-Degree Montgomery Isogenies
	4 Computing the Isogenous Curve Using the 2-Torsion
	5 A General-Purpose Algorithm for Arbitrary Odd-Degree Isogenies
	6 Implementation Results and Implications
	A Improvements for 3- and 4-isogenies
	References

