Skip to main content

Intracytoplasmic Sperm Injection (ICSI): Applications and Insights

  • Chapter
  • First Online:
Intracytoplasmic Sperm Injection

Abstract

When the oocyte (egg) and sperm combine in fertilization, one remarkable process is set in motion and another completed. The first is to initiate the establishment of totipotency, the faculty of a cell to give rise to an entire individual. The second is to produce a new and unique embryo genome comprising one meiotically rearranged nuclear contribution from each parent. Manipulating fertilization may therefore allow us to influence the genome of an entire individual at the stage of the one-cell embryo, and to learn how the totipotent state is established. In the last 50 years or so, such manipulation has been facilitated by injecting sperm directly into oocytes through a fine needle—a process termed intracytoplasmic sperm injection (ICSI). The application of ICSI to mammals now includes widespread use in research, particularly in the mouse, and in human assisted reproduction. Because ICSI bypasses facets of fertilization that are upstream of sperm–oocyte union, this technique has been adapted in the mouse for genome manipulation, the delivery of non-sperm nuclei into oocytes (e.g., somatic cell nuclear transfer) and to dissect totipotency. With this dissection in mind, we here briefly describe ICSI and discuss a recent extension to it in which sperm are injected into one-cell parthenogenetic haploid embryos rather than oocytes. The parthenogenote injection method, termed phICSI, reveals that totipotency can be established by a non-oocyte, mitotic cell-type, taking a different epigenetic path to the one taken in ICSI and natural fertilization. The implications of these findings are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hiramoto Y. Microinjection of the live spermatozoa into sea urchin eggs. Exp Cell Res. 1962;27:416–26.

    Article  CAS  PubMed  Google Scholar 

  2. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340:17–8.

    Article  CAS  PubMed  Google Scholar 

  3. Kimura Y, Yanagimachi R. Intracytoplasmic sperm injection in the mouse. Biol Reprod. 1995;52:709–20.

    Article  CAS  PubMed  Google Scholar 

  4. Yoshida N, Perry ACF. Piezo-actuated mouse intracytoplasmic sperm injection (ICSI). Nat Protoc. 2007;2:296–304.

    Article  CAS  PubMed  Google Scholar 

  5. Dyer S, Chambers GM, de Mouzon J, Nygren KG, Zegers-Hochschild F, Mansour R, Ishihara O, Banker M, Adamson GD. International Committee for Monitoring Assisted Reproductive Technologies world report: Assisted Reproductive Technology 2008, 2009 and 2010. Hum Reprod. 2016;31:1588–609.

    Article  CAS  PubMed  Google Scholar 

  6. Perry ACF, Wakayama T, Yanagimachi R. A novel trans-complementation assay suggests full mammalian oocyte activation is coordinately initiated by multiple, submembrane sperm compartments. Biol Reprod. 1999;60:747–55.

    Article  CAS  PubMed  Google Scholar 

  7. Shoji S, Yoshida N, Amanai M, Ohgishi M, Fukui T, Fujimoto S, Nakano Y, Kajikawa E, Perry ACF. Mammalian Emi2 mediates cytostatic arrest and transduces the signal for meiotic exit via Cdc20. EMBO J. 2006;25:834–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Perry ACF, Wakayama T, Kishikawa H, Kasai T, Okabe M, Toyoda Y, Yanagimachi R. Mammalian transgenesis by intracytoplasmic sperm injection. Science. 1999;284:1180–3.

    Article  CAS  PubMed  Google Scholar 

  9. Perry ACF, Rothman A, de las Heras JI, Feinstein P, Mombaerts P, et al. Efficient metaphase II transgenesis with different transgene archetypes. Nat Biotechnol. 2001;19:1071–3.

    Article  CAS  PubMed  Google Scholar 

  10. Perry ACF. Metaphase II transgenesis. Reprod Biomed Online. 2002;4(3):279–84.

    Article  CAS  PubMed  Google Scholar 

  11. Suzuki T, Asami M, Perry ACF. Asymmetric parental genome engineering by Cas9 during mouse meiotic exit. Sci Rep. 2014;4:7621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wakayama T, Perry ACF, Zuccotti M, Johnson KR, Yanagimachi R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature. 1998;394:369–74.

    Article  CAS  PubMed  Google Scholar 

  13. Onishi A, Iwamoto M, Akita T, Mikawa S, Takeda K, et al. Pig cloning by microinjection of fetal fibroblast nuclei. Science. 2000;289:1188–90.

    Article  CAS  PubMed  Google Scholar 

  14. Kimura Y, Yanagimachi R. Development of normal mice from oocytes injected with secondary spermatocyte nuclei. Biol Reprod. 1995;53:855–62.

    Article  CAS  PubMed  Google Scholar 

  15. Kimura Y, Yanagimachi R. Mouse oocytes injected with testicular spermatozoa or round spermatids can develop into normal offspring. Development. 1995;121:2397–405.

    CAS  PubMed  Google Scholar 

  16. Suzuki T, Asami M, Hoffmann M, Lu X, Gužvić M, et al. Mice produced by mitotic reprogramming of sperm injected into haploid parthenogenotes. Nat Commun. 2016;7:12676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Uehara T, Yanagimachi R. Microsurgical injection of spermatozoa into hamster eggs with subsequent transformation of sperm nuclei into male pronuclei. Biol Reprod. 1976;15:467–70.

    Article  CAS  PubMed  Google Scholar 

  18. Kuretake S, Kimura Y, Hoshi K, Yanagimachi R. Fertilization and development of mouse oocytes injected with isolated sperm heads. Biol Reprod. 1996;55:789–95.

    Article  CAS  PubMed  Google Scholar 

  19. Suzuki T, Yoshida N, Suzuki E, Okuda E, Perry ACF. Full-term mouse development by abolishing Zn2+-dependent metaphase II arrest without Ca2+ release. Development. 2010;137:2659–69.

    Article  CAS  PubMed  Google Scholar 

  20. Condic ML. Totipotency: what it is and what it is not. Stem Cells Dev. 2014;23:796–812.

    Article  PubMed  Google Scholar 

  21. Perry ACF, Verlhac M-H. Second meiotic arrest and exit in frogs and mice. EMBO Rep. 2008;9:246–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maleszewski M, Borsuk E, Koziak K, Maluchnik D, Tarkowski AK. Delayed sperm incorporation into parthenogenetic mouse eggs: sperm nucleus transformation and development of resulting embryos. Mol Reprod Dev. 1999;54:303–10.

    Article  CAS  PubMed  Google Scholar 

  23. Kishigami S, Wakayama S, Nguyen VT, Wakayama T. Similar time restriction for intracytoplasmic sperm injection and round spermatid injection into activated oocytes for efficient offspring production. Biol Reprod. 2004;70:1863–9.

    Article  CAS  PubMed  Google Scholar 

  24. Yang H, Shi L, Chen CD, Li J. Mice generated after round spermatid injection into haploid two-cell blastomeres. Cell Res. 2011;21:854–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Egli D, Rosains J, Birkhoff G, Eggan K. Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature. 2007;447:679–85.

    Article  CAS  PubMed  Google Scholar 

  26. Kang E, et al. Nuclear reprogramming by interphase cytoplasm of two-cell mouse embryos. Nature. 2014;509:101–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yoshida N, Amanai M, Fukui T, Kajikawa E, Brahmajosyula M, Iwahori A, Nakano Y, Shoji S, Diebold J, Hessel H, Huss R, Perry ACF. Broad, ectopic expression of the sperm protein, PLCZ1 induces parthenogenesis and ovarian tumours in mice. Development. 2007;134:3941–52.

    Article  CAS  PubMed  Google Scholar 

  28. McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell. 1984;37:179–83.

    Article  CAS  PubMed  Google Scholar 

  29. Barton SC, Surani MA, Norris ML. Role of paternal and maternal genomes in mouse development. Nature. 1984;311:374–6.

    Article  CAS  PubMed  Google Scholar 

  30. Balhorn R, Gledhill BL, Wyrobek AJ. Mouse sperm chromatin proteins: quantitative isolation and partial characterization. Biochemistry. 1977;16:4074–80.

    Article  CAS  PubMed  Google Scholar 

  31. Hud NV, Allen MJ, Downing KH, Lee J, Balhorn R. Identification of the elemental packing unit of DNA in mammalian sperm cells by atomic force microscopy. Biochem Biophys Res Commun. 1993;193:1347–54.

    Article  CAS  PubMed  Google Scholar 

  32. Mayer W, Niveleau A, Walter J, Fundele R, Haaf T. Demethylation of the zygotic paternal genome. Nature. 2000;403:501–2.

    Article  CAS  PubMed  Google Scholar 

  33. Gu TP, et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature. 2012;477:606–10.

    Article  Google Scholar 

  34. Iqbal K, Jin S-G, Pfeifer GP, Szabó PE. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci U S A. 2011;108:3642–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wossidlo M, et al. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun. 2011;2:241.

    Article  PubMed  Google Scholar 

  36. Hamatani T, Carter MG, Sharov AA, Ko MS. Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell. 2004;6:117–31.

    Article  CAS  PubMed  Google Scholar 

  37. VerMilyea MD, Maneck M, Yoshida N, Blochberger I, Suzuki E, et al. Transcriptome asymmetry within mouse zygotes but not between early embryonic sister blastomeres. EMBO J. 2011;30:1841–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Animal Facility support staff for ensuring the welfare of animals used in this work, Dr. Maki Asami for immunofluorescence images, and we acknowledge Project Grant support from the Medical Research Council, UK (G1000839 and MR/N000080/1) to A.C.F.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony C. F. Perry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suzuki, T., Perry, A.C.F. (2018). Intracytoplasmic Sperm Injection (ICSI): Applications and Insights. In: Palermo, G., Sills, E. (eds) Intracytoplasmic Sperm Injection. Springer, Cham. https://doi.org/10.1007/978-3-319-70497-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70497-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70496-8

  • Online ISBN: 978-3-319-70497-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics