Skip to main content

Biofuels from Microalgae: Biodiesel

  • Chapter
  • First Online:
Energy from Microalgae

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

It has been argued that the energy output from microalgal biofuel production should at least be 5–8 times the energy input, apart from solar irradiation driving algal photosynthesis. There is as yet no commercial production of microalgal biodiesel or large-scale demonstration project to check whether this criterion regarding the energy balance can be met in actual practice. There is, however, a set of relatively well-documented peer-reviewed scientific papers estimating energy inputs and outputs of future autotrophic microalgal biodiesel production. Energy balances for biodiesel from autotrophic microalgae grown in ponds tend to be better than for biodiesel from such microalgae grown in bioreactors. The studies regarding energy balances for biodiesel derived from microalgae grown in open ponds are considered here. None of these energy balances meets the criterion that the energy output should exceed the energy input by a factor 5–8. Estimated energy balances are variable due to divergent assumptions about microalgal varieties, applied algal and biodiesel production technologies, assumed parameters and yields and due to differences in system boundaries, allocation, and the use of credits. The studies considered here could have done better in handling uncertainties in estimated energy balances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesanya, V., Cadena, E., Scott, S. A., & Smith, A. G. (2014). Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system. Bioresource Technology, 163, 343–355.

    Article  Google Scholar 

  • Adhikari, B., & Pellegrino, J. (2015). Life cycle assessment of five microalgae-to-biofuels processes of varying complexity. Journal of Renewable and Sustainable Energy, 7, 043136 (12 pp).

    Article  Google Scholar 

  • Batan, L., Quinn, J., Wilson, B., & Bradley, T. (2010). Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae. Environmental Science and Technology, 44, 7975–7980.

    Article  Google Scholar 

  • Benemann, J. R. (2013). Microalgae for biofuels and animal feeds. Biotechnology Bioengineering, 110, 2319–2320.

    Google Scholar 

  • Brentner, L. B., Eckelman, M. J., & Zimmerman, J. B. (2011). Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. Environmental Science and Technology, 45, 7060–7067.

    Article  Google Scholar 

  • Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 10, 360–369.

    Article  Google Scholar 

  • Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C., et al. (2017). Microalgae biorefinery: High value perspectives. Bioresource Technology, 229, 53–62.

    Article  Google Scholar 

  • Chisti, Y. (2013a). Constraints to commercialization of algal biofuels. Journal of Biotechnology, 167, 201–214.

    Article  Google Scholar 

  • Chisti, Y. (2013b). The problem with algal fuels. Biotechnology Bioengineering, 110, 2319–2328.

    Google Scholar 

  • Chisti, Y. (2016). Large scale production of algal biomass: Raceway ponds. In F. Bux, & Y. Chisti (Eds.) Algal Biotechnology (pp. 21–40). Switzerland: Springer.

    Chapter  Google Scholar 

  • Chowdhury, R., & Franchetti, M. (2017). Life cycle energy demand from nutrients present in dairy waste. Sustainable Production and Consumption, 8, 22–27.

    Article  Google Scholar 

  • Clarens, A. F., Nassau, H., Resurreccion, E. P., White, M. A., & Colosi, L. M. (2011). Environmental impacts of algae-derived biodiesel and bioelectricity for transportation. Environmental Science and Technology, 45, 7554–7560.

    Article  Google Scholar 

  • Clarens, A. F., Resurreccion, E. P., White, M. A., & Colosi, L. M. (2010). Environmental life cycle comparison of algae to other bioenergy feedstocks. Environmental Science & Technology, 1813–1819.

    Article  Google Scholar 

  • Colotta, M., Busi, L., Champagne, P., Mabee, W., Tomasoni, G., & Alberti, M. (2016a). Evaluating microalgae-to-energy systems: Different approaches to life cycle assessment (LCA) studies. Biofuels Bioproduction and Biorefining http://doi.org/10.1002/bbb.1713.

  • Colotta, M., Champagne, P., Mabee, W., Tomasoni, G., Alberti, M., Busi, L., et al. (2016b). Environmental assessment of co-location alternatives for a microalgae cultivation plant: A case study of Kingston (Canada). Energy Procedia, 95, 29–36.

    Article  Google Scholar 

  • Dutta, S., Neto, F., & Coelho, M. (2016). Microalgae biofuels: A comparative study on techno-economic analysis & life cycle assessment. Algal Research, 20, 44–52.

    Article  Google Scholar 

  • Frank, E. D., Han, J., Palu-Rivera, I. A., Elgowainy, A., & Wang, M. Q. (2012). Methane and nitrous oxide emissions affect the life cycle analysis of algal biofuels. Environmental Research Letter, 7, 014030.

    Article  Google Scholar 

  • Gregory, J. F., Noshadravan, A., Olivetti, E. A., & Kirchain, R. E. (2016). A methodology for robust comparative life cycle assessments incorporating uncertainty. Environmental Science and Technology, 50, 6397–6405.

    Article  Google Scholar 

  • Hallenbeck, P. C., Grogger, M., Mraz, M., & Veverka, D. (2016). Solar biofuels production with microalgae. Applied Energy, 179, 136–145.

    Article  Google Scholar 

  • Huijbregts, M. A. J., Giliamse, W., Ragas, A. M. J., & Reijnders, L. (2003). Evaluating uncertainty in environmental life cycle assessment. A case study comparing two insulation options for a Dutch one-family dwelling. Environmental Science and Technology, 37, 2600–2608.

    Article  Google Scholar 

  • Huntley, M. E., Johnson, Z. I., Brown, S. L., Sills, D. L., Gerber, L., Archibald, I., et al. (2015). Demonstrated large-scale production of marine microalgae for fuels and feed. Algal Research, 10, 249–265.

    Article  Google Scholar 

  • Jez, S., Spinelli, D., Fierro, A., Dibenedetto, A., Aresta, M., Busi, E., et al. (2017). Comparative life cycle assessment study on environmental impact of oil production from microalgae and terrestrial oilseed crops. Bioresource Technology, 239, 266–275.

    Article  Google Scholar 

  • Kern, J. D., Hise, A. M., Characklis, G. W., Gerlach, R., Viamajala, S., & Gardner, R. (2017). Using life cycle assessment and techno-economic analysis in a real options framework to inform the design of algal biofuel production facilities. Bioresource Technology, 225, 418–428.

    Article  Google Scholar 

  • Khoo, H. H., Sharratt, P. N., Das, P., Balasubramanian, R. K., Naraharisetti, P. K., & Shaik, S. (2011). Life cycle energy and CO2 analysis of micro-algae-to-biodiesel: Preliminary results and comparisons. Bioresource Technology, 102, 5800–5807.

    Article  Google Scholar 

  • Koppelaar, R. H. E. M. (2017). Solar-PV energy payback and net energy: Meta assessment of study quality, reproducibility, and results harmonization. Renewable and Sustainable Energy Reviews, 72, 1241–1255.

    Article  Google Scholar 

  • Lardon, L. A., Helias, A., Sialve, B., Steyer, J., & Bernard, O. (2009). Life cycle assessment of biofuel production from microalgae. Environmental Science and Technology, 43, 6475–6481.

    Article  Google Scholar 

  • Laurens, L. M. L., Chen-Glasser, M., & McMillan, J. (2017). A perspective on renewable bioenergy from photosynthetic algae as feedstock for biofuels and bioproducts. Algal Research, 24, 261–264.

    Article  Google Scholar 

  • Luangpipat, T., Chisti Y. (2017). Biomass and oil production by Chlorella vulgaris and four other microalgae—Effects of salinity and other factors. Journal of Biotechnology. http://doi.org/10.1016/j.jbiotec.2016.11.029.

  • Maranduba, H. L., Robra, S., Nascimento, I. A., da Cruz, R. S., Rodrigues, L. B., & de Almeida Neto, J. A. (2016). Improving the energy balance of microalgal biodiesel: Synergy with an autonomous sugarcane ethanol distillery. Energy, 115, 888–895.

    Article  Google Scholar 

  • Monari, C., Righi, S., & Olsen, S. I. (2016). Greenhouse gas emissions and energy balance of biodiesel production from microalgae cultivated in photobioreactors in Denmark: A life cycle modeling. Journal of Cleaner Production, 112, 4064–4092.

    Article  Google Scholar 

  • Mu, D., Min, M., Krohn, B., Mullins, K. A., Ruan, R., & Hill, J. (2014). Life cycle environmental impacts of wastewater-based algal biofuels. Environmental Science and Technology, 48, 11696–11704.

    Article  Google Scholar 

  • Naraharisetti, P. K., Das, P., & Sharratt, P. N. (2017). Critical factors in energy generation from microalgae. Energy, 120, 139–152.

    Article  Google Scholar 

  • Orfield, N. D., Levine, R. B., Keoleian, G. A., Miller, S. A., & Savage, P. E. (2015). Growing algae for biodiesel on direct sunlight or sugars: A comparative life cycle assessment. ACS Sustainable Chemistry & Engineering, 3, 386–395.

    Article  Google Scholar 

  • Perez-Garcia, O., Puente, Y., & Bahan, M. E. (2011). Organic carbon supplementation of sterilized municipal waste water is essential for heterotrophic growth and removing ammonium by the microalga Chlorella vulgaris. Journal of Phycology, 47, 190–199.

    Article  Google Scholar 

  • Pittman, J. K., Dean, A. P., & Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102, 17–25.

    Article  Google Scholar 

  • Quinn, J. C., Smith, T. G., Downes, C. M., & Quinn, C. (2014). Microalgae to biofuels life cycle assessment—Multiple pathway evaluation. Algal Research, 4, 116–122.

    Article  Google Scholar 

  • Rawat, I., Gupta, S. K., Shriwastav, A., Singh, P., & Bux, F. (2016). Microalgae applications in wastewater treatment. In F. Bux, Y. Chisti (Eds.) Algae Biotechnology (pp. 249–268). Switzerland: Springer.

    Chapter  Google Scholar 

  • Razon, L. F., & Tan, R. R. (2011). Net energy analysis of the production of biodiesel and biogas from the microalgae Haematococcus pluvialis and Nanochloropsis. Applied Energy, 88, 3507–3514.

    Article  Google Scholar 

  • Reijnders, L. (2013). Lipid-based biofuels from autotrophic microalgae: Energetic and environmental performance. WIRE’s Energy Environmental, 2, 73–85.

    Article  Google Scholar 

  • Reijnders, L. (2017a). Life cycle assessment of greenhouse gas emissions. Chapter 2–2. In W. -Y. Chen et al. (Eds.) Handbook of climate change mitigation and adaptation (pp. 63–91). Heidelberg: Springer (Part 1).

    Google Scholar 

  • Reijnders, L. (2017b). Greenhouse gas balances of microalgal biofuels. In J. C. M. Pires (Ed.) Microalgae as a source of bioenergy: Products, processes and economic. Bentham Science Publishers.

    Google Scholar 

  • Reijnders, L., & Huijbregts, M. A. J. (2009). Biofuels for road transport. Heildelberg: Springer.

    Google Scholar 

  • Rodolfi, L., Zittelli, G. C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., et al. (2008). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low cost photobioreactor. Biotechnology Bioengineering, 102, 100–112.

    Article  Google Scholar 

  • Rogers, J. N., Rosenberg, J. N., Guzman, B. J., Oh, V. H., Mimbela, L. E., Ghassemi, A., Betenbaugh, M. J., Oyler, G. A., Donohue, M. D. (2014). A critical analysis of paddlewheel driven raceway ponds for algal biofuel production at commercial scales. Algal Research, 4, 76–88.

    Article  Google Scholar 

  • Shirvani, T., Yan, X., Inderwildi, O. R., Edwards, P. P., & King, D. A. (2011). Life cycle energy and greenhouse gas analysis for algae-derived biodiesel. Energy & Environmental Science, 4, 3773–3778.

    Article  Google Scholar 

  • Sills, D. L., Paramita, V., Franke, M. J., Johnson, M. C., Akabas, T. M., Greene, C. H., et al. (2012). Quantitative uncertainty analysis of life cycle assessment for algal biofuel production. Environmental Science and Technology, 47, 687–694.

    Article  Google Scholar 

  • Slade, R., & Bauen, A. (2013). Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass and Bioenergy, 53, 29–38.

    Article  Google Scholar 

  • Stephenson, A. L., Kazamis, E., Dennis, J. S., Howe, C. J., Satt, S. A., & Smith, A. G. (2010). Life cycle assessment of potential algal biodiesel production in the United Kingdom: A comparison of raceways and air lift tubular bioreactors. Energy & Fuels, 24, 4062–4077.

    Article  Google Scholar 

  • Togarcheti, S. C., Mediboyina, M. K., Chauhan, V. S., Mukherji, S. M., & Mudliar, S. N. (2017). Life cycle assessment of microalgae based biodiesel production to evaluate the impact of biomass productivity and energy source. Resource, Conservation and Recycling, 122, 285–294.

    Article  Google Scholar 

  • Wijffels, R. H., & Barbosa, M. J. (2010). An outlook on microalgal biofuels. Science, 329, 796–799.

    Article  Google Scholar 

  • Xu, L., Brilman, D. W. F., Withag, J. A. M., Brem, G., & Kersten, S. (2011). Assessment of a dry and a wet route for the production of biofuels from microalgae: Energy balance analysis. Bioresource Technology, 102, 5113–5122.

    Article  Google Scholar 

  • Yuan, J., Kendall, A., & Zhang, Y. (2015). Mass balance and life cycle assessment of biodiesel from microalgae incorporated with nutrient recycling options and technology uncertainties. Global Change Biology Bioenergy, 7, 1245–1259.

    Article  Google Scholar 

  • Zhu, L., Nugroho, Y. K., Shakeel, S. R., Li, Z., Martinkauppi, B., & Hiltunen, E. (2017). Using microalgae to produce liquid transportation biodiesel: What is next? Renewable and Sustainable Energy Reviews, 78, 391–400.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Reijnders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reijnders, L. (2018). Biofuels from Microalgae: Biodiesel. In: Jacob-Lopes, E., Queiroz Zepka, L., Queiroz, M. (eds) Energy from Microalgae . Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-69093-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69093-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69092-6

  • Online ISBN: 978-3-319-69093-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics