
Learning to Map Vehicles into Bird’s Eye View

Andrea Palazzi(B), Guido Borghi, Davide Abati,
Simone Calderara, and Rita Cucchiara

University of Modena and Reggio Emilia, Modena, Italy
{andrea.palazzi,guido.borghi,davide.abati,
simone.calderara,rita.cucchiara}@unimore.it

Abstract. Awareness of the road scene is an essential component for
both autonomous vehicles and Advances Driver Assistance Systems and
is gaining importance both for the academia and car companies. This
paper presents a way to learn a semantic-aware transformation which
maps detections from a dashboard camera view onto a broader bird’s eye
occupancy map of the scene. To this end, a huge synthetic dataset featur-
ing 1M couples of frames, taken from both car dashboard and bird’s eye
view, has been collected and automatically annotated. A deep-network
is then trained to warp detections from the first to the second view. We
demonstrate the effectiveness of our model against several baselines and
observe that is able to generalize on real-world data despite having been
trained solely on synthetic ones.

1 Introduction

Vision-based algorithms and models have massively been adopted in current
generation ADAS solutions. Moreover, recent research achievements on scene
semantic segmentation [9,14], road obstacle detection [3,12] and driver’s gaze,
pose and attention prediction [7,22] are likely to play a major role in the rise of
autonomous driving.

As suggested in [5], three major paradigms can be individuated for vision-
based autonomous driving systems: mediated perception approaches, based on
the total understanding of the scene around the car, behavior reflex methods,
in which driving action is regressed directly from the sensory input, and direct
perception techniques, that fuse elements of previous approaches and learn a
mapping between the input image and a set of interpretable indicators which
summarize the driving situation.

Following this last line of work, in this paper we develop a model for map-
ping vehicles across different views. In particular, our aim is to warp vehicles
detected from a dashboard camera view into a bird’s eye occupancy map of
the surroundings, which is an easily interpretable proxy of the road state. Being
almost impossible to collect a dataset with this kind of information in real-world,
we exclusively rely on synthetic data for learning this projection. We aim to cre-
ate a system close to surround vision monitoring ones, also called around view
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Fig. 1. Simple outline of our task. Vehicle detections in the frontal view (left) are
mapped onto a bird-eye view (right), accounting for the positions and size.

cameras that can be useful tools for assisting drivers during maneuvers by, for
example, performing trajectory analysis of vehicles out from own visual field.
In this framework, our contribution is twofold:

– We make available a huge synthetic dataset (>1 million of examples) which
consists of couple of frames corresponding to the same driving scene captured
by two different views. Besides the vehicle location, auxiliary information such
as the distance and yaw of each vehicle at each frame are also present.

– We propose a deep learning architecture for generating bird’s eye occupancy
maps of the surround in the context of autonomous and assisted driving. Our
approach does not require a stereo camera, nor more sophisticated sensors
like radar and lidar. Conversely, we learn how to project detections from
the dashboard camera view onto a broader bird’s eye view of the scene (see
Fig. 1). To this aim we combine learned geometric transformation and visual
cues that preserve objects size and orientation in the warping procedure.

Dataset, code and pre-trained model are publicly available and can be found at
http://imagelab.ing.unimore.it/scene-awareness.

2 Related Work

Surround View. Few works in literature tackle the problem of the vehicle’s
surround view. Most of these approaches are vision and geometry based and are
specifically tailored for helping drivers during parking manoeuvres. In particular,
in [13] a perspective projection image is transformed into its corresponding bird’s
eye view, through a fitting parameters searching algorithm. In [16] exploited the
calibration of six fish eye cameras to integrate six images into a single one, by
a dynamic programming approach. In [17] were described algorithms for creat-
ing, storing and viewing surround images, thanks to synchronized and aligned
different cameras. Sung et al. [20] proposed a camera model based algorithm
to reconstruct and view multi-camera images. In [21], an homography matrix
is used to perform a coordinate transformation: visible markers are required in
input images during the camera calibration process. Recently, Zhang et al. [24]
proposed a surround view camera solution designed for embedded systems, based
on a geometric alignment, to correct lens distortions, a photometric alignment,
to correct brightness and color mismatch and a composite view synthesis.

http://imagelab.ing.unimore.it/scene-awareness
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Videgames for Collecting Data. The use of synthetic data has recently
gained considerable importance in the computer vision community for several
reasons. First, modern open-world games exhibit constantly increasing realism -
which does not only mean that they feature photorealistic lights/textures etc.,
but also show plausible game dynamics and lifelike autonomous entity AI [18,19].
Furthermore, most research fields in computer vision are now tackled by means
of deep networks, which are notoriously data hungry in order to be properly
trained. Particularly in the context of assisted and autonomous driving, the
opportunity to exploit virtual yet realistic worlds for developing new techniques
has been embraced widely: indeed, this makes possible to postpone the (very
expensive) validation in real world to the moment in which a new algorithm
already performs reasonably well in the simulated environment [8,23]. Building
upon this tendency, [5] relies on TORCS simulator to learn an interpretable
representation of the scene useful for the task of autonomous driving. However,
while TORCS [23] is a powerful simulation tool, it’s still severely limited by the
fact that both its graphics and its game variety and dynamics are far from being
realistic.

Many elements mark as original our approach. In principle, we want our sur-
round view to include not only nearby elements, like commercial geometry-based
systems, but also most of the elements detected into the acquired dashboard cam-
era frame. Additionally, no specific initialization or alignment procedures are
necessary: in particular, no camera calibration and no visible alignment points
are required. Eventually, we aim to preserve the correct dimensions of detected
objects, which shape is mapped onto the surround view consistently with their
semantic class.

3 Proposed Dataset

In order to collect data, we exploit Script Hook V library [4], which allows to
use Grand Theft Auto V (GTAV) video game native functions [1]. We develop a
framework in which the game camera automatically toggle between frontal and
bird-eye view at each game time step: in this way we are able to gather infor-
mation about the spatial occupancy of the vehicles in the scene from both views
(i.e. bounding boxes, distances, yaw rotations). We associate vehicles informa-
tion across the two views by querying the game engine for entity IDs. More
formally, for each frame t, we compute the set of entities which appear in both
views as

E(t) = Efrontal(t) ∩ Ebirdeye(t) (1)

where Efrontal(t) and Ebirdeye(t) are the sets of entities that appear at time
t in frontal and bird’s eye view, respectively. Entities e(t) ∈ E(t) constitute
the candidate set for frame t C(t); other entities are discarded. Unfortunately,
we found that raw data coming from the game engine are not always accurate
(Fig. 2). To deal with this problem, we implement a post-processing pipeline in
order to discard noisy data from the candidate set C(t). We define a discriminator
function
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Fig. 2. (a) Randomly sampled couples from our GTAV dataset, which highlight the
huge variety in terms of landscape, traffic condition, vehicle models etc. Each detection
is treated as a separate training example (see Sect. 3 for details). (b) Random examples
rejected during the post-processing phase.

f(e(t)) : C �→ {0, 1} (2)

which is positive when information on dumped data e(t) are reliable and zero
otherwise. Thus we can define the final filtered dataset as

T⋃

t=0

D(t) where D(t) = {ci(i) | f(ci(t)) > 0} (3)

being T the total number of frames recorded. From an implementation stand-
point, we employ a rule-based ontology which leverage on entity information
(e.g. vehicle model, distance etc.) to decide if the bounding box of that entity
can be considered reasonable. This implementation has two main values: first it’s
lightweight and very fast in filtering massive amounts of data. Furthermore, rule
parameters can be tuned to eventually generate different dataset distribution
(e.g. removing all trucks, keeping only cars closer than 10 m, etc.).
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Each entry of the dataset is a tuple containing:

– framef , frameb: 1920 × 1080 frames from the frontal and bird’s eye camera
view, respectively;

– IDe, modele: identifiers of the entity (e) in the scene and of the vehicle’s type;
– frontal coordse, birdeye coordse: the coordinates of the bounding box that

encloses the entity;
– distancee, yawe: distance and rotation of the entity w.r.t. the player.

Figure 3 shows the distributions of entity rotation and distance across the
collected data.

Table 1. Overview of the statistics on the collected dataset. See text for details.

Total

Number of runs 300

Number of bounding boxes 1125187

Unique entity IDs 56454

Unique entity models 198

Fig. 3. Unnormalized distribution of vehicle orientation (a) and distances (b) present in
the collected dataset. Distribution of angles conversely presents two prominent modes
around 0◦/360◦ and 180◦ respectively, due to the fact that the major part of vehicles
encountered travel in parallel to the player’s car, on the same (0/360◦) or the opposite
(180◦) direction. Conversely, distance is almost uniformly distributed between 5 and
30 m.

4 Model

At a first glance, the problem we address could be mistaken with a bare geometric
warping between different views. Indeed, this is not the case since targets are
not completely visible from the dashboard camera view and their dimensions in
the bird’s eye map depend on both the object visual appearance and semantic
category (e.g. a truck is longer than a car). Additionally, it cannot be cast as
a correspondence problem, since no bird’s eye view information are available at
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Fig. 4. A graphical representation of the proposed SDPN (see Sect. 4). All layers contain
ReLU units, except for the top decoder layer which employs tanh activation. The
number of fully connected units is (256, 256, 256) and (1024, 1024, 512, 256, 128, 4) for
the coordinate encoder and decoder respectively.

test time. Conversely, we tackle the problem from a deep learning perspective:
dashboard camera information are employed to learn a spatial occupancy map
of the scene seen from above.

Our proposed architecture composes of two main branches, as depicted in
Fig. 4. The first branch takes as input image crops of vehicles detected in the
dashboard camera view. We extract deep representations by means of ResNet50
deep network [10], taking advantage of pre-training for image recognition on
ImageNet [6]. To this end we discard the top fully-connected dense layer which
is tailored for the original classification task. This part of the model is able to
extract semantic features from input images, even though it is unaware of the
location of the bounding box in the scene.

Conversely, the second branch consists of a deep Multi Layer Perceptron
(MLP), composed by 4 fully-connected layers, which is fed with bounding boxes
coordinates (4 for each detection), learning to encode the input into a 256 dimen-
sional feature space. Due to its input domain, this segment of the model is not
aware of objects’ semantic, and can only learn a spatial transformation between
the two planes.

Both appearance features and encodings of bounding box coordinates are
then merged through concatenation and undergo a further fully-connected
decoder which predicts vehicles’ locations in the bird’s eye view. Since our model
combines information about object’s location with semantic hints on the content
of the bounding box, we refer to it as Semantic-aware Dense Projection Network
(SDPN in short).
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Training Details: ImageNet [6] mean pixel value is subtracted from input
crops, which are then resized to 224 × 224 before being fed to the network.
During training, we freeze ResNet50 parameters. Ground truth coordinates in
the bird’s eye view are normalized in range [−1, 1]. Dropout is applied after each
fully-connected layer with drop probability 0.25. The whole model is trained end-
to-end using Mean Squared Error as objective function and exploiting Adam [11]
optimizer with the following parameters: lr = 0.001, β1 = 0.9, β2 = 0.999.

5 Experimental Results

We now assess our proposal comparing its performance against some baselines.
Due to the peculiar nature of the task, the choice of competitor models is not
trivial.

To validate the choice of a learning perspective against a geometrical one,
we introduce a first baseline model that employs a projective transformation
to estimate a mapping between corresponding points in the two views. Such
correspondences are collected from bottom corners of both source and target
boxes in the training set, then used to estimate an homography matrix in a
least-squares fashion (e.g. minimizing reprojection error). Since correspondences
mostly belong to the street, which is a planar region, the choice of the projective
transformation seems reasonable. The height of the target box, however, cannot
be recovered from the projection, thus it is cast as the average height among
training examples. We refer to this model as homography model.

Additionally, we design second baseline by quantizing spatial locations in
both views in a regular grid, and learn point mappings in a probabilistic fashion.
For each cell Gf

i in the frontal view grid, a probability distribution is estimated
over bird’s eye grid cells Gb

j , encoding the probability of a pixel belonging to Gf
i

to fall in the cell Gb
j . During training, top-left and bottom-right bounding box

corners in both views are used to update such densities. At prediction stage, given
a test point pk which lies in cell Gf

i we predict destination point by sampling
from the corresponding cell distribution. We fix grid resolution to 108× 192,
meaning a 10 × quantization along both axes, and refer to this baseline as grid
model. It could be questioned if the appearance of the bounding box content
in the frontal view is needed at all in estimating the target coordinates, given
sufficient training data and an enough powerful model. In order to determine
the importance of the visual input in the process of estimating the bird’s eye
occupancy map, we also train an additional model with approximately the same
number of trainable parameters of our proposed model SDPN, but fully connected
from input to output coordinates. We refer to this last baseline as MLP.

For comparison, we rely on three metrics:

– Intersection over Union (IoU): measure of the quality of the predicted bound-
ing box BBp with respect to the target BBt:

IoU(BBp, BBt) =
A(BBp ∩ BBt)
A(BBp ∪ BBt)
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where A(R) refers to the area of the rectangle R;
– Centroid Distance (CD): distance in pixels between box centers, as an indi-

cator of localization quality1;
– Height, Width Error (hE,wE): average error on bounding box height and

width respectively, expressed in percentage w.r.t. the ground truth BBt size;
– Aspect ratio mean Error (arE): absolute difference in aspect ratio between

BBp and BBt:

arE =
∣∣∣∣
BBp.w

BBp.h
− BBt.w

BBt.h

∣∣∣∣ (4)

The evaluation of baselines and proposed model is reported in Fig. 5(a). Results
suggest that both homography and grid are too naive to capture the complexity
of the task and fail in properly warping vehicles into the bird’s eye view. In
particular, grid baseline performs poorly as it only models a point-wise trans-
formation between bounding box corners, disregarding information about the
overall input bounding box size. On the contrary, MLP processes the bounding
box in its whole and provides a reasonable estimation. However, it still misses
the chance to properly recover the length of the bounding box in the bird’s eye
view, being unaware of entity’s visual appearance. Instead, SDPN is able to cap-
ture the object’s semantic, which is a primary cue for correctly inferring vehicle’s
location and shape in the target view.

A second experiment investigates how vehicle’s distance affects the warping
accuracy. Figure 5(b) highlights that all the models’ performance degrades as
the distance of target vehicles increases. Indeed, closer examples exhibit lower
variance (e.g. are mostly related to the car ahead and the ones approaching from
the opposite direction) and thus are easier to model. However, it can be noticed
that moving forward along distance axis the gap between the SDPN and MLP gets
wider. This suggests that the additional visual input adds robustness in these
challenging situations. We refer the reader to Fig. 6 for a qualitative comparison.

IoU ↑ CD ↓ hE ↓ wE ↓ arE ↓
homo 0.13 191.8 0.28 0.34 0.38
grid 0.18 154.3 0.74 0.70 1.30

MLP 0.32 96.5 0.25 0.25 0.29
SDPN 0.37 78.0 0.21 0.24 0.29

)b()a(

Fig. 5. (a) Table summarizing results of proposed SDPN model against the baselines;
(b) degradation of IoU performance as the distance to the detected vehicle increases.

1 Please recall that images are 1920× 1080 pixel size.
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Fig. 6. Qualitative comparison between different models. Baselines often predict rea-
sonable locations for the bounding boxes. SDPN is also able to learn the orientation and
type of the vehicle (e.g. a truck is bigger than a car etc.).

A Real-World Case Study. In order to judge the capability of our model
to generalize on real-world data, we test it using authentic driving videos taken
from a roof-mounted camera [2]. We rely on state-of-the-art detector [15] to
get the bounding boxes of vehicles in the frontal view. As the ground truth is
not available for these sequences, performance is difficult to quantify precisely.
Nonetheless, we show qualitative results in Fig. 7: it can be appreciated how the
network is able to correctly localize other vehicles’ positions, despite having been
trained exclusively on synthetic data.

SDPN can perform inference at approximately 100 Hz on a NVIDIA TitanX
GPU, which demonstrates the suitability of our model for being integrated in
an actual assisted or autonomous driving pipeline.

Fig. 7. Qualitative results on real-world examples. Predictions look reasonable even if
the whole training was conducted on synthetic data.
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6 Conclusions

In this paper we presented two main contributions. A new high-quality synthetic
dataset, featuring a huge amount of dashboard camera and bird’s eye frames,
in which the spatial occupancy of a variety of vehicles (i.e. bounding boxes, dis-
tance, yaw) is annotated. Furthermore, we presented a deep learning based model
to tackle the problem of mapping detections onto a different view of the scene.
We argue that these maps could be useful in an assisted driving context, in order
to facilitate driver’s decisions by making available in one place a concise repre-
sentation of the road state. Furthermore, in an autonomous driving scenario,
inferred vehicle positions could be integrated with other sensory data such as
radar or lidar by means of e.g. a Kalman filter to reduce overall uncertainty.
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