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CHAPTER 8

Medium- and Extended-Range Ensemble 
Weather Forecasting

David Richardson

Abstract  The chapter provides an overview of ensemble weather forecast-
ing for the medium- and extended-range (days to weeks ahead). It reviews 
the methods used to account for uncertainties in the initial conditions and 
in the forecast models themselves. The chapter explores the challenges of 
making useful forecasts for the sub-seasonal timescale, beyond the typical 
limit for skilful day-to-day forecasts, and considers some of the sources of 
predictability such as the Madden-Julian oscillation (MJO) that make this 
possible. It then introduces some of the ensemble-based forecast products 
and concludes with a case study for a European heat wave that demon-
strates how ensemble weather forecasts can be used to guide decision mak-
ing for weather-dependent activities.
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Preamble

Operational weather forecasts for the medium- and extended-range (days 
to weeks ahead) are generally based on the output from global Numerical 
Weather Prediction (NWP) or General Circulation Model (GCM) ensem-
ble forecasts.

Initial Condition Uncertainties

The main aim of the ensemble approach is to account for uncertainty in 
the initial atmospheric conditions. Typically this is done by adding small 
perturbations to a single “best-estimate” analysis of the current state of 
the atmosphere. The analysis is generated through assimilation of observa-
tions into the NWP model. The size of the perturbations is constrained to 
be consistent with the known analysis errors. A number of different meth-
odologies are used to generate perturbations that are physically realistic 
and that will grow to represent the range of possible future states consis-
tent with the initial uncertainty.

The error-breeding method (Toth and Kalnay 1993, 1997) uses a 
cycling approach where the differences between short-range forecasts are 
re-scaled to form the initial perturbations for the next forecast. A number 
of generalisations of the original breeding method have been developed, 
designed to improve the representation of the analysis uncertainty at each 
initial time. These include the Ensemble Transform Kalman Filter (ETKF, 
Bishop et al. 2001), used at the Met Office (Bowler et al. 2008, 2009), 
and the Ensemble Transform with Rescaling (ETR, Wei et al. 2008) used 
at the United States National Centers for Environmental Prediction 
(NCEP).

The Singular Vector (SV) method (Buizza and Palmer 1995) computes 
new perturbations at each analysis time. The method identifies the fastest 
growing perturbations over a given time period (e.g. 48 hours). A linear 
combination of these SVs, scaled to have amplitudes consistent with the 
analysis error, is added to the best-estimate analysis to make the starting 
conditions for each ensemble member. The SV method is used operation-
ally at the European Centre for Medium-Range Weather Forecasts 
(ECMWF) (Leutbecher and Palmer 2008) and the Japan Meteorological 
Agency (JMA) (Yamaguchi and Majumdar 2010).

Other methods more directly address the observation uncertainty by 
perturbing the observed values themselves. At ECMWF, perturbations are 
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also provided from an Ensemble of Data Assimilations (EDA) (Buizza 
et al. 2008). Each EDA member is an independent data assimilation, using 
the same set of observations, but introducing perturbations to these obser-
vations consistent with the known observation errors. The Meteorological 
Service of Canada (MSC) uses perturbed observations and an ensemble 
approach, the ensemble Kalman filter (EnKF, Houtekamer and Mitchell 
2005; Houtekamer et al. 2009, 2014), to provide an ensemble of initial 
conditions. It should be noted that for both the EDA and EnKF, it is nec-
essary to take account of model uncertainties (see below) as well as the 
observation uncertainties to generate appropriate initial perturbations.

Model Uncertainties

Global NWP ensemble forecasts typically run with a grid spacing of a few 
tens of kilometres. Many important physical processes (that affect, e.g., 
clouds and precipitation) work on much smaller spatial scales than can be 
resolved directly. These processes are represented in the NWP models by 
“parametrization schemes” that describe the aggregate effect of the 
smaller-scale unresolved processes on the larger resolved scales.

The finite resolution of the NWP model and the approximations made 
in the parametrisation schemes are sources of model uncertainty. Most 
global NWP ensembles also now include a representation of these uncer-
tainties in the model formulation. A range of methods has been developed 
and sometimes a combination of methods is used in a single ensemble 
system to account for different aspects of model uncertainty.

One approach is to use a number of different parametrisation schemes 
within the ensemble. For example, there are various ways to parametrise 
convective processes and an ensemble can be generated by running some 
members using one convection parametrisation scheme, while other mem-
bers use a different convection scheme (Charron et al. 2010). An alterna-
tive is to use a single parametrisation, but to perturb some of the key 
parameters in the scheme (Bowler et al. 2008). Other schemes represent 
the uncertainty from the sub-grid scale by stochastically perturbing the 
tendencies from the parametrisation schemes, as, for example, in the 
Stochastically Perturbed Parametrisation Tendency scheme (SPPT, 
Leutbecher et  al. 2017; Buizza et  al. 1999). Backscatter schemes are 
designed to simulate the transfer of energy from the unresolved sub-grid 
scales to the larger scales that are resolved by the model (Shutts 2005; 
Berner et al. 2009).
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Operational Global Medium-Range Ensembles

A number of meteorological centres produce operational medium-range 
ensemble forecasts. Initial condition and model uncertainties are repre-
sented using many of the above methods, with different centres adopting 
different approaches. The TIGGE (The International Grand Global 
Ensemble) project provides access to regular global ensemble predictions 
from ten of the leading global NWP centres to support research and has 
facilitated a comprehensive evaluation of the global ensembles produced 
by different NWP centres (Swinbank et al. 2016; Bougeault et al. 2010; 
and references therein).

Comparison of the forecasts from the TIGGE centres confirms that 
while the different centres each have their strengths and weaknesses, the 
different perturbation methodologies all have merit. It is more important 
that an NWP system produces an ensemble that accounts for both initial 
condition and model uncertainties than the precise methodology used to 
produce the perturbations. However, it is also important to carry out 
proper and comprehensive evaluation to ensure that the perturbations are 
consistent with the uncertainties of the system. Figure 8.1 shows an exam-
ple of the skill of operational ensemble forecasts from five global centres in 
predicting the large-scale weather patterns over the extra-tropical north-
ern hemisphere up to two weeks ahead (the temperature at 850 hPa is a 
good indicator of whether a location is under the influence of a warm or 
cool circulation pattern). Skill is measured using the Continuous Ranked 
Probability Skill Score (CRPSS), a standard measure for assessing the use-
fulness of probabilistic forecasts, which can also be interpreted as an indi-
cation of the potential economic value of the forecast systems (Palmer and 
Richardson 2014). CRPSS ranges from a maximum value of 1 (perfect 
knowledge of what the weather will be) to zero (only the climatological 
information is known). This evaluation shows that all the forecasting sys-
tems have positive skill in forecasting day-to-day changes in the weather 
for up to two weeks ahead.

Extended-Range Ensembles

The medium-range ensembles described above typically produce forecasts 
for one to two weeks ahead. This is usually considered the limit for day-
to-day predictability, as the influence of the atmospheric initial conditions 
is much reduced at longer range.
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However, there are important sources of predictability that do give the 
potential to make useful forecasts for the sub-seasonal scale (one or two 
months ahead). One important phenomenon is the Madden-Julian oscil-
lation (MJO), a feature of the tropical atmosphere that also impacts on the 
weather in the extra-tropics (Lin et  al. 2009; Cassou 2008). The MJO 
evolves over a period of 40–60 days, and so is a potential source of forecast 
skill for several weeks ahead. Initial conditions in the stratosphere can 
affect the circulation in the troposphere over the following month, provid-
ing another source for sub-seasonal predictability (Baldwin and Dunkerton 
2001). Other potential sources of predictability at this timescale include 
the land surface (Koster et al. 2010) and snow cover (Jeong et al. 2013) 
conditions at the start of the forecast.

There have been significant improvements in sub-seasonal forecasts in 
recent years, with large improvements in skill for predicting the MJO 
(Fig.  8.2), as well as its influence on other regions, including Europe 
(Vitart 2014). There is now a growing interest in developing applications 
to exploit these forecasts as well as to improve the forecasts themselves.

Following the success of TIGGE, a new sub-seasonal to seasonal pre-
diction project (S2S) has been initiated by the World Weather Research 
Programme (WWRP) and World Climate Research Programme (WCRP). 
The main goal of this five-year project is to improve forecast skill and 
understanding of the sub-seasonal to seasonal timescale and to promote its 
uptake by operational centres and its exploitation by the applications com-
munity (Vitart et al. 2012).

The S2S database includes near real-time ensemble forecasts for up to 
60  days ahead, from 11 forecasting centres: Australia’s Bureau of 
Meteorology (BOM); the China Meteorological Administration (CMA); 
ECMWF; Environment and Climate Change Canada (ECCC); Italy’s 
Institute of Atmospheric Sciences and Climate (CNR-ISAC); the 
Hydrometeorological Centre of Russia (HMCR); the Japan Meteorological 
Agency (JMA); the Korea Meteorological Administration (KMA); Météo-
France; the US National Centers for Environmental Prediction (NCEP); 
and the UK Met Office (Vitart et al. 2017).

These models are generally different from the NWP models used to 
produce medium-range forecasts at the same centres. Most are coupled to 
an ocean model, as it is important to take account of the evolution of the 
sea-surface temperature and its interaction with the atmosphere over the 
longer time periods of these forecasts. For the same reason, some systems 
also include an active sea ice model. Some centres, such as ECMWF, that 
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already include an ocean model in the medium-range ensemble, use the 
same ensemble system for both the medium-range and sub-seasonal fore-
casts, hence providing a seamless set of predictions covering the timescales 
from days to months ahead. While the skill in predicting the day-to-day 
weather may be limited to around two weeks in general (as seen in 
Fig.  8.1), many of the S2S models demonstrate substantial skill out to 
three or even four weeks ahead for the MJO (Fig. 8.2); this can lead to 
enhanced predictability, for example, over Europe, in certain situations.

Another important aspect of the sub-seasonal forecasts is the need to 
account for model errors. Systematic model errors (biases) can accumulate 

Fig. 8.2  Forecast lead-time (in days) when a correlation-based measure of accu-
racy of the prediction of the Madden-Julian Oscillation (MJO) reaches 0.6 correla-
tion (orange bars) and 0.5 correlation (yellow bars) (1.0 would indicate a perfect 
forecast). The black lines indicate the 95% confidence interval of the time when the 
0.6 correlation is reached. Results are based on the re-forecast from 1999 to 2010 
from all the models, verified against ERA-Interim analyses. Correlations of 0.5 and 
0.6 are often used as indication of useful forecast skill (Vitart 2014)
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during the forecast, and while they are often small enough to be neglected 
for medium-range forecasts, they become too large to be ignored at the 
longer sub-seasonal range. Hence, an additional set of historical ensemble 
integrations is generated by making forecasts from start dates covering the 
last 15–20 years. These re-forecasts (or hindcasts) are used to estimate the 
model climate. This can then be used to remove the model biases from the 
real-time forecasts in a statistical post-processing step (Vitart 2014).

Ensemble Weather Forecast Products

Ensembles are designed to take account of the uncertainties in the initial 
conditions and in the NWP model used to make the forecast. The set of 
ensemble forecasts provides a direct quantitative indication of the range of 
possible future weather scenarios that may occur. Most ensembles are con-
structed so that each member of the ensemble is equally likely. The pro-
portion of ensemble members forecasting a specific weather event gives an 
indication of the probability for it to occur. Grouping the ensemble into a 
small number of clusters can be valuable for those cases when there are 
distinct alternative scenarios within the ensemble (Ferranti et al. 2015).

The forecast values of weather variables (temperature, wind, rainfall, 
etc.) are typically generated on a 10–50-kilometre spatial grid for medium- 
and extended-range ensembles. These values are not directly comparable 
to the measurements recorded at specific locations since they represent the 
average for the area covered by a grid-box. Statistical post-processing can 
substantially improve the forecasts by tailoring (down-scaling) the grid-
box forecasts to smaller areas or individual sites, and also accounting for 
the finite ensemble size (Hemri et al. 2014). Re-forecasts are useful for 
calibrating medium-range forecasts as well as for the sub-seasonal range, 
and re-forecast datasets are increasingly becoming part of the medium-
range forecast configurations. This can be especially important for severe 
weather forecasting by providing information about how the model per-
formed for severe events in the re-forecast period.

The Extreme Forecast Index (EFI) was developed at ECMWF to high-
light potential anomalous weather events, by comparing the real-time 
forecast to the re-forecast model climate distribution (Lalaurette 2003).

Beyond a few days ahead it is no longer possible to predict the day-to-
day changes in the weather at specific locations. However, by considering 
the average conditions over a period of time, it is possible to give skilful 
forecasts for longer lead times (Buizza and Leutbecher 2015). Sub-
seasonal forecasts typically predict average conditions for each week of the 
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coming month. At this longer forecast range, the prediction of changes in 
large-scale weather patterns is important, for example, to give an early 
indication of the onset of heat waves or cold spells.

In summer 2015, a heat wave affected large parts of Europe—tempera-
ture records were broken in many places, including in Germany, France 
and Spain. Early indications of widespread warmer than normal conditions 
during the first week of July can be seen in the ECMWF forecast from 16 
June (Fig. 8.3). The signal becomes noticeably stronger in the forecast 
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Fig. 8.3  ECMWF forecasts for the heat wave over Europe in July 2015. Lower 
panel shows the 2-metre temperature anomaly forecasts for the 7-day period 29 
June to 5 July initialised on 18 June (left) and 22 June (right). Areas where the 
forecast distribution is significantly different from climatology are shaded. Upper 
panel shows the evolution of the ensemble forecasts for the temperature in Paris at 
12 UTC on 1 July; the dates on the horizontal axis indicate the start time of each 
forecast. The box-and-whisker plots show the 1st, 10th, 25th, 75th, 90th and 
99th percentile of the forecast, while black dot shows the median of the distribu-
tion. The temperature distribution of the model climate (generated from re-
forecasts for late June and early July for the last 20 years) is shown in red (the 
dotted line highlights the climate median). Magnusson et al. 2015.
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from 22 June. While these successive forecasts give a good indication of 
the general situation, it is also interesting to consider the forecast for a 
specific time and location. The top panel of Fig. 8.3 shows a sequence of 
forecasts for the temperature in Paris at 12 UTC on 1 July (this was the 
second warmest day on record for Paris, with temperatures reaching to 
almost 40°C later in the afternoon). Each forecast is represented as a box-
and-whisker plot that summarises the information in the ensemble. The 
forecasts from early June indicate a range of possible outcomes, similar to 
the model climate distribution (shown in red), with no clear signal for 
temperature to be warmer or cooler than normal. This is not surprising: as 
noted in the previous paragraphs, we should not expect skill in predicting 
the precise temperature at a specific place and time out to a month ahead. 
By mid-June there is a noticeable shift in the forecasts: while not certain, 
the ensemble indicates that high temperatures are much more likely to be 
above normal than below normal, and there is a significant chance that the 
temperature in Paris could reach more than 30°C. The risk of extreme 
temperatures increases in consecutive forecasts, and by 26 June the out-
come is almost certain (see Magnusson et al. 2015 for more details).

This example shows how ensemble weather forecasts can be used to 
guide decision making for weather-dependent activities in the days and 
weeks ahead. For the coming days, detailed information can be obtained 
on the weather at a particular place and time. Looking further ahead, these 
details are less predictable, but the forecasts can give an indication of the 
likely general weather situation, and what alternative scenarios may be. 
While the weather is not always predictable out to a month ahead, there 
are particular situations where the predictability is enhanced—on such 
occasions the ensemble will show higher confidence and a more limited 
range of alternatives. In all cases, the ensemble approach provides impor-
tant information about possible alternative scenarios, and enables users to 
make appropriate decisions, taking account of the confidence and risks 
quantified by the ensemble.
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