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Abstract. Hyper-connectivity network is a network where every edge is con-
nected to more than two nodes, and can be naturally denoted using a
hyper-graph. Hyper-connectivity brain network, either based on structural or
functional interactions among the brain regions, has been used for brain disease
diagnosis. However, the conventional hyper-connectivity network is constructed
solely based on single modality data, ignoring potential complementary infor-
mation conveyed by other modalities. The integration of complementary
information from multiple modalities has been shown to provide a more com-
prehensive representation about the brain disruptions. In this paper, a novel
multimodal hyper-network modelling method was proposed for improving the
diagnostic accuracy of mild cognitive impairment (MCI). Specifically, we first
constructed a multimodal hyper-connectivity network by simultaneously con-
sidering information from diffusion tensor imaging and resting-state functional
magnetic resonance imaging data. We then extracted different types of network
features from the hyper-connectivity network, and further exploited a manifold
regularized multi-task feature selection method to jointly select the most dis-
criminative features. Our proposed multimodal hyper-connectivity network
demonstrated a better MCI classification performance than the conventional
single modality based hyper-connectivity networks.

1 Introduction

Hyper-connectivity brain network is a network where each edge is connected to more
than two brain regions, which can be naturally denoted using a hyper-graph. Hyper-
connectivity network, either based on structural or functional interactions among the
brain regions, has been used for brain disease diagnosis [1]. Functional interactions and
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structural interactions can be extracted from functional magnetic resonance imaging
(fMRI) and diffusion tensor imaging (DTI), respectively [2]. However, the conven-
tional hyper-network, which is constructed solely based on single modality data,
ignores the potential complementary information conveyed by other modalities. Inte-
gration of complementary information from different modalities has been shown to
provide a more comprehensive representation on the brain structural and functional
organizations [3, 4]. Inspired by this observation, classification framework based on
multimodal brain networks constructed from resting-state fMRI (rs-fMRI) and DTI has
been proposed to enhance the classification performance of mild cognitive impairment
(MCI) [5].

In this paper, we proposed the first multimodal hyper-connectivity network mod-
elling method that simultaneously considers the information from rs-fMRI and DTI
data during the network construction. Specifically, the multimodal hyper-connectivity
network was constructed using a star expansion method [6] based on the anatomically
weighted functional distance between pairs of brain regions. The anatomically
weighted functional distance, which is defined as the strength of the anatomically
weighted functional connectivity (awFC) [7], was computed using the complementary
information conveyed by the rs-fMRI and DTI data. We then extracted network fea-
tures from the constructed hyper-connectivity network, and selected the most dis-
criminative features using a manifold regularized multi-task feature selection method
(M2TFS) [1]. Finally, we applied a support vector machine (SVM) on the selected
features for MCI classification. Promising classification results demonstrated the
superiority of the proposed multimodal hyper-connectivity network over the
single-modal hyper-connectivity networks which were constructed either from rs-fMRI
or DTI data.

2 Materials and Methodology

2.1 Dataset

Ten MCI patients (5M/5F) and 17 normal controls (8M/9F) were included in this study
with informed consent obtained from all participants, and the experimental protocols
were approved by the institutional ethics board. The mean age for MCI and control
groups are 74.2 ± 8.6 and 72.1 ± 8.2 (years), respectively. All the subjects were
scanned using a 3.0-Tesla scanner to acquire the rs-fMRI and DTI data. The acquisition
parameters for rs-fMRI were as follows: repetition time (TR) = 2000 ms, echo time
(TE) = 32 ms, flip angle = 77°, acquisition matrix = 64 � 64, voxel size = 4 mm.
One hundred fifty fMRI volumes were acquired. During the scanning, all subjects were
instructed to keep their eyes open and stare at a fixation cross in the middle of the screen,
which lasted for 5 min. The acquisition parameters for DTI were as follows: b = 0 and
1000 s/mm2, flip angle = 90°, TR/TE = 17000/78 ms, imaging matrix = 128 � 128,
FOV = 256 � 256 mm2, voxel thickness = 2 mm, and 72 continuous slices.
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2.2 Data Preprocessing

Resting-state fMRI images were preprocessed using Statistical Parametric Mapping
software package (SPM8). Specifically, the first 10 fMRI volumes were removed
before parcellating the brain space into 116 regions-of-interest (ROIs) based on the
automated anatomical labeling (AAL) [8] template. We averaged the fMRI time series
over all voxels in each ROI to compute the mean fMRI time series. Prior to con-
structing the hyper-connectivity network, a temporal band-pass filtering with frequency
interval (0:025 � f � 0:100Hz) was applied to the mean time series of each individual
ROI to reduce the effects of physiological and measurement noises. Following previous
study, global signal regression was not performed due to its controversy in the rs-fMRI
preprocessing procedure [9].

Similar to the fMRI preprocessing, DTI images were aligned to the AAL template
space using a deformable DTI registration algorithm (F-TIMER) [10] before the par-
cellating the brain space into 116 ROIs. A whole-brain streamline fiber tractography
was then applied on each image using ExploreDTI [11] with the minimal seed point
fractional anisotropy (FA) of 0.45, stopping FA of 0.25, minimal fiber length of
20 mm, and maximal fiber length of 400 mm.

2.3 Methods

Anatomically Weighted Functional Distance. We proposed a novel multimodal
hyper-connectivity network modelling method that simultaneously utilizes the infor-
mation from rs-fMRI and DTI data. Our method is based on the anatomically weighted
functional distance which reflects the evidence for the underlying DTI data to sup-
plement the fMRI data as defined below [7]

awFDij ¼ 1� pij
k

� �
FDij ð1Þ

where pij 2 0;½ 1Þ is the strength of DTI-based structural connectivity between the brain
regions i and j, k 2 1;½ 1Þ ¼ X is an unknown parameter that potentially attenuates the
anatomically weighting, and FDij is the functional distance between the fMRI profiles.
Equation (1) explicitly incorporates the brain anatomy for guiding a more accurate
inference of the functional connectivity between two brain regions. Following the
premise that structural connection is neither a sufficient nor necessary condition for the
functional connection [7], a parameter k was imposed in Eq. (1) to regulate the con-
tribution of the structural connection especially for the case where no fibers connect
two regions. The functional distance between the fMRI profiles of ROIs i and j at lag-o
is defined as [7]

FDij ¼ 1�min
o2O

FDij oð Þ ¼ 1�min
o2O

PT�o
t¼1 xiðtþ oÞ � �xi½ � xjðtÞ � �xj

� �
bribrj

( )
ð2Þ

where xiðtÞ denotes the fMRI time series of the ROI i at time t; T is the total number of
rs-fMRI volumes, r̂i and r̂j denote the standard deviations of samples xi and xj, �xi and �xj
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indicate the sample means of xi and xj, respectively. For the ease of explanation, we
considered only the positive correlation. In view of the potential differences in the
hemodynamic responses of resting-state neuronal activity between different brain
regions, we estimated the functional distance with a few lagging o in O ¼ �3; 3½ � and
obtained the minimum lag-o distance [7].

The structural distance, which represents the strength of the DTI-based structural
connectivity between pairs of ROIs, is defined as [7]

SDij ¼ ð1� pij
k
Þ ð3Þ

where pij, which is the average on-fiber FA, denotes the strength of structural con-
nection between ROIs i and j, and k denotes an unknown parameter that potentially
reduces the effect of structural data. The indirect structural connections were allowed
by defining pij ¼ max½pij;maxlðpil; pljÞ� [7]. The optimal k was determined empirically
through minimizing the impact of false positive structural connectivity [7].

Hyper-graph Construction. We employed a multimodal hyper-graph construction
method to estimate the anatomically weighted functional distance. Let V be the vertex
set and E the hyper-edge set of a hyper-graph G. For the n-th subject with P ROIs, a
hyper-graph Gn ¼ Vn;Enð Þ with P vertices can be constructed with each of its vertices
representing an ROI. We employed a star expansion method [6] to generate hyper-edges
among vertices. Specifically, for each distance matrix, a vertex was first selected as the
centroid vertex and a hyper-edge was then constructed by linking the centroid vertex to
its nearest neighbors within u�d distance [6]. Here, �d is the average anatomically
weighted distance between regions and u, which was set to 0.78 via grid search on
training data, is a hyper-parameter controlling the sparsity of the hyper-network. It is
noteworthy that the constructed hyper-edges were non-weighted edges.

Feature Extraction and Selection. Topological properties derived from a hyper-
connectivity network provide quantitative measures to effectively study the differences in
terms of brain organization between MCI subjects and normal controls (NC). In this
study, we extracted three different types of clustering coefficients from the constructed
multimodal hyper-connectivity network. Given a multimodal hyper-network
G ¼ V ;Eð Þ, let M vð Þ be the hyper-edges adjacent to the vertex v, i.e., M vð Þ ¼
e 2 E :f v 2 eg, and N vð Þ the neighboring vertices to v, i.e., N vð Þ ¼ u 2 V : 9e 2f

E; u; v 2 eg. Then, three different types of clustering coefficients [1] can be computed on
the vertex v as

HCC1 vð Þ ¼ 2
P

u;q2NðvÞ I u; q;:vð Þ
N vð Þj j N vð Þj j � 1ð Þ ð4Þ

HCC2 vð Þ ¼ 2
P

u;q2NðvÞ I
0 u; q; vð Þ

N vð Þj j N vð Þj j � 1ð Þ ð5Þ
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HCC3 vð Þ ¼ 2
P

e2MðvÞ ej j � 1ð Þ � N vð Þj j
N vð Þj j M vð Þj j � 1ð Þ ð6Þ

where u; q; v 2 V and e 2 E, I u; q;:vð Þ ¼ 1 if there exists e 2 E such that u; q 2 e but
v 62 e, and 0 otherwise. I

0
u; q; vð Þ ¼ 1 if there exists e 2 E such that u; q; v 2 e, and 0

otherwise. Three types of clustering coefficient features represent the topological
properties of the multimodal hyper-connectivity network from three different per-
spectives. Specifically, the HCC1 denotes the number of neighboring nodes that have
connections not facilitated by node v. In contrast, the HCC2 denotes the number of
neighboring nodes with connections facilitated by node v, giving that these nodes may
share some brain functions with each other and node v. The HCC3 denotes the amount
of overlap among adjacent hyper-edges of node v. We jointly selected features from
these three types of clustering coefficients using a manifold regularized multi-task
feature selection method (M2TFS) defined as [1]

min
W

1
2

XC

c¼1
Yk � Zcwc 2

2

�� þ b
XC

c¼1
Zcwcð ÞTLc Zcwcð Þþ c Wk k2;1 ð7Þ

Sc n;mð Þ ¼ exp � zcn
�� � zcm

��2=h
� �

ð8Þ

where Zc ¼ zc1; � � � ; zcn; � � � ; zcN
� �T2 RN�P denotes a set of features from a total of N

training subjects, each with P regions, and zcn ¼ HCCc við Þ½ �i¼1:P2 RP is the vector of
clustering coefficients from the n-th training subject on task c (in our case, a task
represents selecting features from one type of clustering coefficients), Y ¼
y1; � � � ; yn; � � � ; yN½ �T2 RN is the response vector for those N training subjects, where yn
is the class label for the n-th training subject. Lc ¼ Dc � Sc is the combinatorial
Laplacian matrix on task c: Sc is a matrix that describes the similarity on the c-th task
across training subjects, where Dc is a diagonal matrix defined as

Dc n; nð Þ ¼ PN
m¼1

Sc n;mð Þ. W ¼ w1;w2; � � � ;wC½ � 2 RP�C is a weight matrix with C

being the total number of tasks (i.e., C ¼ 3), and Wk k2;1¼
PP

i¼1 wik k2 is the group
sparsity regularizer that encourages features from different tasks to be jointly selected.
Here, wi is the i-th row vector of W . b and c are the corresponding regularization
coefficients. h is a free parameter to be tuned empirically. The values of h; b and c can
be determined via inner cross-validation on the training subjects.

Classification. We employed a multi-kernel SVM to fuse three types of clustering
coefficient features for MCI classification. Specifically, let f cn be the selected features
from the c-th task of the n-th subject. We computed a linear kernel based on the
features selected by the M2TFS method for each type of clustering coefficients and then
fused them via a multi-kernel technique given as follows:

Multimodal Hyper-connectivity Networks for MCI Classification 437



k fn; fmð Þ ¼
XC

c¼1
lckc f cn ; f

c
m

� � ð9Þ

where kc f cn ; f
c
m

� �
denotes the linear kernel function between the n-th and m-th

subjects for the c-th set of selected clustering coefficients, and lc is a non-negative

weight coefficient with
PC
c¼1

lc ¼ 1. A coarse-grid search was used to optimize lc

through a nested cross-validation on the training subjects.

3 Experiment Results

Due to the limited sample size, we employed a nested leave-one-out cross-validation
(LOOCV) scheme to evaluate the performance and generalization power of our pro-
posed method. In the inner LOOCV loop, the training data was used to optimize the
parameters h, b and c that identify a set of the most discriminative features for clas-
sification. To determine the weights lc for integrating multiple kernels, we used a grid
search with the range [0, 1] at a step size of 0.1.

The proposed method was compared to three single-modal models, i.e., hyper-
networks derived either from fMRI or DTI data individually and also hyper-networks
constructed from fMRI using sparse representation (fMRI-SR) [1]. Multiple values of
the regularization parameter that determines the sparsity level of hyper-networks in the
fMRI-SR model were set to [0.1, 0.2, …, 0.9]. As shown in Table 1, the proposed
method yielded an accuracy of 96.3%, which is 7.4% better than the second best
performed DTI-based hyper-network model. The fMRI-based hyper-network model
performed the worst with an accuracy of 74.1%. The area under receiver operating
characteristic curve (AUC) was used to evaluate the generalization performance and the
proposed method achieved an AUC of 0.98, indicating an excellent generalization
performance.

As shown in Table 2, there were 11 most discriminative features that were always
selected in each LOOCV fold. These brain regions included regions located in the
frontal lobes (e.g., left inferior frontal gyrus (triangular) [12] and left rectus gyrus [13]),
the temporal lobes (e.g. left temporal pole and middle temporal gyrus [14]), cerebel-
lum, and other regions including hippocampus [14] and occipital gyrus [14]. Our
findings are consistent with previous findings that (1) atrophies of regions in the
temporal lobe and frontal lobe were found at the early AD [15], and (2) gial

Table 1. Classification performance for four comparison approaches.

Approach Accuracy (%) AUC SEN (%) SPE (%) BAC (%)

fMRI-SR [1] 85.2 0.92 82.4 90.0 86.2
fMRI 74.1 0.87 76.5 70.0 73.2
DTI 88.9 0.94 88.2 90.0 89.1
Proposed 96.3 0.98 100.0 94.1 97.1

438 Y. Li et al.



accumulation of redox-active iron in the cerebellum was found significant in preclinical
Alzheimer’s disease patients [16]. Figure 1 graphically illustrates the significant dif-
ferences in terms of hypergraph structure between MCI and NC [1]. For example, in
Fig. 1(b), the right hippocampus (HIP.R) was connected to the left hippocampus (HIP.
L), left thalamus (THA.L), right thalamus (THA.R), right parahippocampal gyrus
(PHG.R), right lenticular nucleus (pallidum) (PAL.R) and right cerebellum 3
(CRBL3.R) in MCI, while it was connected to the left hippocampus (HIP.L), left
thalamus (THA.L), right thalamus (THA.R), right parahippocampal gyrus (PHG.R),
right temporal pole (superior) (TPOsup.R) and right cerebellum 6 (CRBL6.R) in NC.
As the hippocampus is highly associated with the memory performance, this pattern of
alteration in functional connectivity involving the hippocampus may provide clues on
the underpinnings of cognitive deficit in MCI.

Table 2. The most discriminative ROIs that were selected during MCI classification.

No. ROI No. ROI No. ROI

1 IFGtraing.L 5 TPOmid.L 9 Vermis1
2 REC.L 6 CRBLCrus1.R 10 Vermis6
3 HIP.L 7 CRBLCrus2.L 11 Vermis8
4 MOG.L 8 CRBL9.L

Fig. 1. The average degree of hyper-edges for NC and MCI for the 4 brain regions listed in
Table 2. Each sub-figure represents a hyper-edge between the corresponding brain region
(indicated by the red node) and other nodes. The average degree of hyper-edges for a node is
computed from the top d ROIs with the highest occurrence number among all subjects.
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4 Conclusion

In this paper, we proposed a novel multimodal hyper-network modelling method for
improving the diagnostic accuracy of MCI. The proposed hyper-connectivity network
encodes complementary information from multiple modalities to provide a more
comprehensive representation on the brain structural and functional organizations. We
demonstrated the superiority of our proposed method via MCI classification. Compared
to the single-modal method, our proposed method achieved a higher classification
accuracy and a better generalization performance. In the future, we will evaluate the
performance of the proposed method on larger datasets.
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