Skip to main content

Tumor Characterization by Ultrasound Elastography and Contrast-Enhanced Ultrasound

  • Chapter
  • First Online:
Quantification of Biophysical Parameters in Medical Imaging

Abstract

State-of-the-art techniques of ultrasound elastography can contribute to the characterization of focal breast lesions and detection of malignant tumors in various organs. Another area of current interest is the differentiation of focal liver lesions in terms of vascularization patterns measured by perfusion ultrasound. This chapter provides an overview of the different techniques and their diagnostic role in clinical routine based on a review of the current literature. The most important techniques are compression or vibration elastography, shear wave elastography (SWE), and contrast-enhanced ultrasound (CEUS). Currently available scientific evidence suggests that elastography provides important supplementary information for the differentiation of breast lesions under routine clinical conditions. The information is immediately available and improves specificity. Strain ratio (SR) is especially useful in women with a high pretest likelihood of breast cancer. Prostate cancer also shows characteristic differences in terms of elastographic properties compared with surrounding tissue. Here, elastography can improve targeted biopsy for the workup of suspicious focal lesions and is superior to routine prostate biopsy guided by B-mode ultrasound. CEUS has high diagnostic accuracy and is comparable to computed tomography (CT) and magnetic resonance imaging (MRI) in terms of tumor characterization. Having a low rate of adverse effects, CEUS can be used in patients with impaired renal function or contraindications to CT or MRI contrast agents. Quantifiable elastography and CEUS have recently started to expand the role of classic B-mode ultrasound in oncology. Quantification of tumor stiffness and perfusion can improve the differential diagnosis. These two ultrasound techniques are beginning to enter the clinic and offer a fascinating potential for further advances including improved standardization of ultrasound diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Céspedes I, Ophir J, Ponnekanti H, et al. Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo. Ultrason Imaging. 1993;15:73–88.

    Article  PubMed  Google Scholar 

  2. Garra BS, Cespedes EI, Ophir J, et al. Elastography of breast lesions: Initial clinical results. Radiology. 1997;202:79–86.

    Article  CAS  PubMed  Google Scholar 

  3. Krouskop TA, Wheeler TM, Kallel F, et al. Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging. 1998;20:260–74.

    Article  CAS  PubMed  Google Scholar 

  4. Konofagou E, Ophir J. A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson’s ratios in tissues. Ultrasound Med Biol. 1998;24:1183–99.

    Article  CAS  PubMed  Google Scholar 

  5. Frey H. Realtime-elastographie. Ein neues sonographisches verfahren für die darstellung der gewebeelastizität. Radiologe. 2003;43(10):850.

    Article  CAS  PubMed  Google Scholar 

  6. Klintworth N, Mantsopoulos K, Zenk J, et al. Sonoelastography of parotis gland tumours: initial experience and identification of characteristics patterns. Eur Radiol. 2012;22:947–56. https://doi.org/10.1007/s00330-011-2344-7.

    Article  PubMed  Google Scholar 

  7. Rubaltelli L, Corradin S, Dorigo A, et al. Differential diagnosis of benign and malignant thyroid nodules at elastosonography. Ultraschall Med. 2009;30:175–9. https://doi.org/10.1055/s-2008-1027442.

    Article  CAS  PubMed  Google Scholar 

  8. Hong Y, Liu X, Li Z, et al. Real-time ultrasound elastography in the differential diagnosis in benign and malignant thyroid nodules. J Ultrasound Med. 2009;28:861–7.

    Article  PubMed  Google Scholar 

  9. Kanamoto M, Shimada M, Ikegami T, et al. Real time elastography for noninvasive diagnosis in liver fibrosis. J Hepato-Biliary-Pancreat Surg. 2009;16:463–7. https://doi.org/10.1007/s00534-009-0075-9.

    Article  Google Scholar 

  10. Friedrich-Rust M, Nierhoff J, Lupsor M, et al. Performance of acoustic radiation force impulse imaging for the staging of liver fibrosis: a pooled meta-analysis. J Viral Hepat. 2012;19:e212–9. https://doi.org/10.1111/j.1365-2893.2011.01537.x.

    Article  CAS  PubMed  Google Scholar 

  11. Aigner F, Pallwein L, Junker D, et al. Value of real-time elastography targeted biopsy for prostate cancer detection in men with prostate specific antigen 1.25 ng/ml or greater and 4.00 ng/ml or less. J Urol. 2010;184:913–7. https://doi.org/10.1016/j.juro.2010.05.026.

    Article  PubMed  Google Scholar 

  12. Thomas A, Kümmel S, Gemeinhardt O, et al. Real-time sonoelastography of the cervix: tissue elasticity of the normal and abnormal cervix. Acad Radiol. 2007;14:193–200.

    Article  PubMed  Google Scholar 

  13. Thomas A, Kümmel S, Fritzsche F, et al. Real-time sonoelastography performed in addition to B-mode ultrasound and mammography: improved differentiation of breast lesions? Acad Radiol. 2006;13:1496–504.

    Article  PubMed  Google Scholar 

  14. Wojcinski S, Farrokh A, Weber S, et al. Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS®-US classification system with sonoelastography. Ultraschall Med. 2010;31:484–91. https://doi.org/10.1055/s-0029-1245282.

    Article  CAS  PubMed  Google Scholar 

  15. Thomas A, Degenhardt F, Farrokh A, et al. Significant differentiation of focal breast lesions: calculation of strain ratio in breast sonoelastography. Acad Radiol. 2010;17:558–63. https://doi.org/10.1016/j.acra.2009.12.006.

    Article  PubMed  Google Scholar 

  16. Itoh A, Ueno E, Tohno E, et al. Breast disease: clinical application of US elastography for diagnosis. Radiology. 2006;239:341–50.

    Article  PubMed  Google Scholar 

  17. Thomas A, Fischer T, Ohlinger R, et al. An advanced method of ultrasound - real-time elastography: first experience on 106 patients with breast lesions. Ultrasound Obstet Gynecol. 2006;28:335–40.

    Article  CAS  PubMed  Google Scholar 

  18. D’Orsi CJ, Sickles EA, Mendelson EB, et al. ACR BI-RADS® atlas, breast imaging reporting and data system. Reston: American College of Radiology; 2013.

    Google Scholar 

  19. Fischer T, Peisker U, Fiedor S, et al. Significant differentiation of focal breast lesions: raw data-based calculation of strain ratio. Ultraschall Med. 2012;33:372–9.

    Article  CAS  PubMed  Google Scholar 

  20. Thomas A, Warm M, Diekmann F, et al. Tissue doppler and strain imaging for evaluating tissue elasticity of breast lesions. Acad Radiol. 2007;14:522–9.

    Article  PubMed  Google Scholar 

  21. Sadigh G, Carlos RC, Neal CH, et al. Ultrasonographic differentiation of malignant from benign breast lesions: a meta-analytic comparison of elasticity and BIRADS scoring. Breast Cancer Res Treat. 2012;133:23–35. https://doi.org/10.1007/s10549-011-1857-8.

    Article  PubMed  Google Scholar 

  22. Sadigh G, Carlos RC, Neal CH, et al. Accuracy of quantitative ultrasound elastography for differentiation of malignant and benign breast abnormalities: a meta-analysis. Breast Cancer Res Treat. 2012;134:923–31. https://doi.org/10.1007/s10549-012-2020-x.

    Article  PubMed  Google Scholar 

  23. Friedrich-Rust M, Schwarz A, Ong M, et al. Real-time tissue elastography versus FibroScan for noninvasive assessment of liver fibrosis in chronic liver disease. Ultraschall Med. 2009;30:478–84. https://doi.org/10.1055/s-0028-1109488.

    Article  CAS  PubMed  Google Scholar 

  24. Stock KF, Klein BS, Vo Cong MT, et al. ARFI-based tissue elasticity quantification in comparison to histology for the diagnosis of renal transplant fibrosis. Clin Hemorheol Microcirc. 2010;46:139–48. https://doi.org/10.3233/CH-2010-1340.

    CAS  PubMed  Google Scholar 

  25. Evans A, Whelehan P, Thomson K, et al. Differentiating benign from malignant solid breast masses: value of shear wave elastography according to lesion stiffness combined with greyscale ultrasound according to BI-RADS classification. Br J Cancer. 2012;107:224–9. https://doi.org/10.1038/bjc.2012.253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Berg WA, Cosgrove DO, Doré CJ, et al. Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology. 2012;262:435–49. https://doi.org/10.1148/radiol.11110640.

    Article  PubMed  Google Scholar 

  27. Engelken FJ, Sack I, Klatt D, et al. Evaluation of tomosynthesis elastography in a breast-mimicking phantom. Eur J Radiol. 2012;81:2169–73. https://doi.org/10.1016/j.ejrad.2011.06.033.

    Article  PubMed  Google Scholar 

  28. Carneiro-Pla D. Ultrasound elastography in the evaluation of thyroid nodules for thyroid cancer. Curr Opin Oncol. 2013;25:1–5. https://doi.org/10.1097/CCO.0b013e32835a87c8.

    Article  PubMed  Google Scholar 

  29. Bhatia KS, Rasalkar DP, Lee YP, et al. Cystic change in thyroid nodules: a confounding factor for real-time qualitative thyroid ultrasound elastography. Clin Radiol. 2011;66:799–807. https://doi.org/10.1016/j.crad.2011.03.011.

    Article  CAS  PubMed  Google Scholar 

  30. Shuzhen C. Comparison analysis between conventional ultrasonography and ultrasound elastography of thyroid nodules. Eur J Radiol. 2012;81:1806–11. https://doi.org/10.1016/j.ejrad.2011.02.070.

    Article  PubMed  Google Scholar 

  31. Kim JK, Baek JH, Lee JH, et al. Ultrasound elastography for thyroid nodules: a reliable study? Ultrasound Med Biol. 2012;38:1508–13. https://doi.org/10.1016/j.ultrasmedbio.2012.05.017.

    Article  PubMed  Google Scholar 

  32. Xing P, Wu L, Zhang C, et al. Differentiation of benign from malignant thyroid lesions: calculation of the strain ratio on thyroid sonoelastography. J Ultrasound Med. 2011;30:663–9.

    Article  PubMed  Google Scholar 

  33. Ragazzoni F, Deandrea M, Mormile A, et al. High diagnostic accuracy and interobserver reliability of real-time elastography in the evaluation of thyroid nodules. Ultrasound Med Biol. 2012;38:1154–62. https://doi.org/10.1016/j.ultrasmedbio.2012.02.025.

    Article  PubMed  Google Scholar 

  34. Lim DJ, Luo S, Kim MH, et al. Interobserver agreement and intraobserver reproducibility in thyroid ultrasound elastography. Am J Roentgenol. 2012;198:896–901. https://doi.org/10.2214/AJR.11.7009.

    Article  Google Scholar 

  35. Friedrich-Rust M, Romenski O, Meyer G, et al. Acoustic radiation force impulse-imaging for the evaluation of the thyroid gland: a limited patient feasibility study. Ultrasonics. 2012;52:69–74. https://doi.org/10.1016/j.ultras.2011.06.012.

    Article  PubMed  Google Scholar 

  36. Sebag F, Vaillant-Lombard J, Berbis J, et al. Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules. J Clin Endocrinol Metab. 2010;95:5281–8. https://doi.org/10.1210/jc.2010-0766.

    Article  CAS  PubMed  Google Scholar 

  37. Djavan B, Ravery V, Zlotta A, et al. Prospective evaluation of prostate cancer detected on biopsies 1, 2, 3 and 4: when should we stop? J Urol. 2001;166:1679–83.

    Article  CAS  PubMed  Google Scholar 

  38. Presti JC Jr. Repeat prostate biopsy–when, where, and how. Urol Oncol. 2009;27:312–4. https://doi.org/10.1016/j.urolonc.2008.10.029.

    Article  PubMed  Google Scholar 

  39. Frauscher F, Pallwein L, Klauser A, et al. Ultrasound contrast agents and prostate cancer. Radiologe. 2005;45:544–51.

    Article  CAS  PubMed  Google Scholar 

  40. Fischer T, Paschen CF, Slowinski T, et al. Differentiation of parotid gland tumors with contrast-enhanced ultrasound. RöFo. 2010;182:155–62. https://doi.org/10.1055/s-0028-1109788.

    CAS  PubMed  Google Scholar 

  41. Pallwein L, Mitterberger M, Gradl J, et al. Value of contrast-enhanced ultrasound and elastography in imaging of prostate cancer. Curr Opin Urol. 2007;17:39–47.

    Article  PubMed  Google Scholar 

  42. Yan Z, Jie T, Yan-Mi L, et al. Role of transrectal real-time tissue elastography in the diagnosis of prostate cancer. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2011;33:175–9. https://doi.org/10.3881/j.issn.1000-503X.2011.02.015.

    PubMed  Google Scholar 

  43. Nelson ED, Slotoroff CB, Gomella LG, et al. Targeted biopsy of the prostate: the impact of color Doppler imaging and elastography on prostate cancer detection and Gleason score. Urology. 2007;70:1136–40.

    Article  PubMed  Google Scholar 

  44. Maxeiner A, Stephan C, Durmus T, et al. Added value of multiparametric ultrasonography in magnetic resonance imaging and ultrasonography fusion-guided biopsy of the prostate in patients with suspicion for prostate cancer. Urology. 2015;86(1):108–14. https://doi.org/10.1016/j.urology.2015.01.055.

    Article  PubMed  Google Scholar 

  45. Correas JM, Tissier AM, Khairoune A, et al. Prostate cancer: diagnostic performance of real-time shear-wave elastography. Radiology. 2015;275(1):280–9. https://doi.org/10.1148/radiol.14140567.

    Article  PubMed  Google Scholar 

  46. Schneider M. SonoVue, a new ultrasound contrast agent. Eur Radiol. 1999;9:S347–8.

    Article  PubMed  Google Scholar 

  47. Greis C. Ultrasound contrast agents as markers of vascularity and microcirculation. Clin Hemorheol Microcirc. 2009;43(1):1–9. https://doi.org/10.3233/CH-2009-1216.

    PubMed  Google Scholar 

  48. Clevert DA, Jung EM. Interventional sonography of the liver and kidneys. Radiologe. 2013;53:962–73. https://doi.org/10.1007/s00117-012-2459-0.

    Article  PubMed  Google Scholar 

  49. Jung EM, Clevert DA. Possibilities of sonographic image fusion: current developments. Radiologe. 2015;55:937–48. https://doi.org/10.1007/s00117-015-0025-2.

    Article  CAS  PubMed  Google Scholar 

  50. Schwarz F, Sommer WH, Reiser M, et al. Contrast enhanced sonography for blunt force abdominal trauma. Radiologe. 2011;51:475–82. https://doi.org/10.1007/s00117-010-2103-9.

    Article  CAS  PubMed  Google Scholar 

  51. Valentino M, Serra C, Pavlica P, et al. Contrast-enhanced ultrasound for blunt abdominal trauma. Semin Ultrasound CT MR. 2007;28:130–40.

    Article  PubMed  Google Scholar 

  52. Claudon M, Cosgrove D, Albrecht T, et al. Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) - update 2008. Ultraschall Med. 2008;29:28–44. https://doi.org/10.1055/s-2007-963785.

    Article  CAS  PubMed  Google Scholar 

  53. Piscaglia F, Bolondi L, Italian Society for Ultrasound in Medicine and Biology (SIUMB) Study Group on Ultrasound Contrast Agents. The safety of Sonovue® in abdominal applications: retrospective analysis of 23188 investigations. Ultrasound Med Biol. 2006;32(9):1369–75.

    Article  PubMed  Google Scholar 

  54. Strobel DB. Diagnostik bei fokalen Leberläsionen. Dtsch Arztebl Int. 2006;103:789–93.

    Google Scholar 

  55. Oldenburg A, Hohmann J, Foert E, et al. Detection of hepatic metastases with low MI real time contrast enhanced sonography and SonoVue. Ultraschall Med. 2005;26:277–84.

    Article  CAS  PubMed  Google Scholar 

  56. Harvey CJ, Blomley MJ, Eckersley RJ, et al. Developments in ultrasound contrast media. Eur Radiol. 2001;11:675–89.

    Article  CAS  PubMed  Google Scholar 

  57. Clevert DA, D'Anastasi M, Jung EM. Contrast-enhanced ultrasound and microcirculation: efficiency through dynamics–current developments. Clin Hemorheol Microcirc. 2013;53(1-2):171–86. https://doi.org/10.3233/CH-2012-1584.

    CAS  PubMed  Google Scholar 

  58. Regge D, Campanella D, Anselmetti GC, et al. Diagnostic accuracy of portal-phase CT and MRI with mangafodipir trisodium in detecting liver metastases from colorectal carcinoma. Clin Radiol. 2006;61(4):338–47.

    Article  CAS  PubMed  Google Scholar 

  59. Jung EM, Wiggermann P, Stroszczynski C, et al. Ultrasound diagnostics of diffuse liver diseases. Radiologe. 2012;52(8):706–16. https://doi.org/10.1007/s00117-012-2307-2.

    Article  CAS  PubMed  Google Scholar 

  60. Kinkel K, Lu Y, Both M, et al. Detection of hepatic metastases from cancers of the gastrointestinal tract by using noninvasive imaging methods (US, CT, MR imaging, PET): a meta-analysis. Radiology. 2002;224(3):748–56.

    Article  PubMed  Google Scholar 

  61. Weskott HP. Detection and characterization of liver metastases. Radiologe. 2011;51:469–74. https://doi.org/10.1007/s00117-010-2100-z.

    Article  PubMed  Google Scholar 

  62. Strobel D, Seitz K, Blank W, et al. Contrast-enhanced ultrasound for the characterization of focal liver lesions – diagnostic accuracy in clinical practice1 (DEGUM multicenter trial). Ultraschall Med. 2008;29:499–505. https://doi.org/10.1055/s-2008-1027806.

    Article  CAS  PubMed  Google Scholar 

  63. Claudon M, Dietrich CF, Choi BI, et al. Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) in the liver–update 2012: a WFUMB-EFSUMB initiative in cooperation with representatives of AFSUMB, AIUM, ASUM, FLAUS and ICUS. Ultraschall Med. 2013;34:11–29. https://doi.org/10.1055/s-0032-1325499.

    CAS  PubMed  Google Scholar 

  64. Clevert DA, Helck A, Paprottka PM, et al. Latest developments in ultrasound of the liver. Radiologe. 2011;51:661–70. https://doi.org/10.1007/s00117-010-2124-4.

    Article  PubMed  Google Scholar 

  65. Clevert DA, Paprottka PM, Helck A, et al. Image fusion in the management of thermal tumor ablation of the liver. Clin Hemorheol Microcirc. 2012;52:205–16. https://doi.org/10.3233/CH-2012-1598.

    CAS  PubMed  Google Scholar 

  66. Clevert DA, Helck A, Paprottka PM, et al. Ultrasound-guided image fusion with computed tomography and magnetic resonance imaging. Clinical utility for imaging and interventional diagnostics of hepatic lesions. Radiologe. 2012;52:63–9. https://doi.org/10.1007/s00117-011-2252-5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Fischer, T., Thomas, A., Clevert, DA. (2018). Tumor Characterization by Ultrasound Elastography and Contrast-Enhanced Ultrasound. In: Sack, I., Schaeffter, T. (eds) Quantification of Biophysical Parameters in Medical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-65924-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65924-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65923-7

  • Online ISBN: 978-3-319-65924-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics