
Chapter 7

Estimating the Goodman, Keyfitz and Pullum
Kinship Equations: An Alternative Procedure

7.1 Introduction

In a pioneering paper, Goodman et al. (1974) presented a general analytic system

for studying the relationships between mortality and fertility and kin numbers. For

stable populations with varying regimes of fertility and mortality, they provide

formulas to calculate average numbers of kin, by category of kin, for females of

various ages.

Of great substantive importance was their demonstration of the strong relation-

ship between kin numbers and fertility levels for all categories of kin except

ascendants in the direct line. The general relationship, obvious after the fact, was

not widely recognized before their work [more attention had been devoted to the

effect of mortality on kinship], nor had it been quantified even roughly. The

relationship, combined with current low levels of fertility in many societies [for

example, Italy with a total fertility rate of 1.3, or about 0.65 daughters born per

woman] points to a continuing decline in numbers of kin for the average person in

the future, and probably an associated decline in the importance of family and

kinship in everyday life.1

The potential importance of this finding can be illustrated by a mental experi-

ment. Suppose China’s ‘one-child’ policy were perfectly realized, with no one

having more than one birth. In a generation or two, collateral kinship would

The research underlying this chapter was carried out while I was Visiting Professor, Dipartimento

di Scienze Demographiche, Universit�a degli Studi di Roma, at the kind invitation of Prof.

Antonella Pinnelli. Originally published in Mathematical Population Studies 5 (1995)

pp. 161–170.

1A major qualification of this statement relates to the potential role of high levels of divorce and

remarriage in supplying an individual with ‘new’ kin – step kin – in addition to those resulting

from first marriage and birth.
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disappear: there would be no brothers or sisters, aunts or uncles, nieces or nephews,

or cousins—only, parents, grandparents, child, and grandchild.

Despite its substantive importance, their approach has not seen much further

development [for example, by the inclusion of data on proportions married, or the

relaxation of the stable population assumption] or widely used for the exploration of

substantive questions relating to kinship (with the major exceptions of Goldman

1978, 1984 and Coresh and Goldman 1988). One practical barrier has been the

difficulty of estimating the integral equations in which the basic relations are stated,

equations containing up to quadruple integrals.

In their original paper the authors comment: ‘Ordinarily, we cannot evaluate the
l(x) andm(x) functions for arbitrary values of x, since the data are usually collected
for 5-year age intervals’ (p. 24). To estimate the equations, they develop finite

approximations of the multiple integrals, programmed in Fortran by Pullum. In its

original form, this Fortran code ran to more than ten single-spaced pages. It has

been used in the later work by Goldman, and more recently by Keyfitz (1986), in an

analysis of Canadian kinship numbers. But such code, written by someone else, is

often difficult to master or to modify correctly.

This note illustrates an alternative procedure for evaluating the kinship integrals,

using computer software developed since their paper first appeared. The procedure

allows one in effect to ‘evaluate the l(x) and m(x) functions for arbitrary values of

x.’ It involves a minimum of programming, yields results that agree well with the

Pullum approximations, and has the advantage, both scientific and pedagogical, of

working directly with the theoretical equations rather than with long finite approx-

imation algorithms. Theory and computation are more closely linked.

The procedure involves two steps: (1) analytic expressions are found to represent

empirical data on age-specific fertility and survivorship; (2) these expressions are

substituted into the theoretical integral equations for kin numbers [with appropriate

arguments and limits of integration], which are then evaluated numerically.

In the present note, the first step has been accomplished using TableCurve, an

automated curve-fitting package using standard algorithms for linear or non-linear

fitting.2 Any general-purpose curve-fitting routine could be used. TableCurve has

the advantage, for this application, that the user does not have to supply a functional

form ahead of time, although user-defined functions are an option. The program has

a built-in library of over 3500 functions, and can successfully fit most sets of

demographic data by age or duration.3

The resulting analytic expressions and parameter estimates are used solely to

represent particular schedules of age-specific mortality and fertility. They do not

2Systat, Richmond, California.
3The ability of computer curve-fitting packages such as the one used here to find functions to

represent demographic data is a matter for further empirical investigation, To date I have

encountered only a few cases of demographic data for which TableCurve could not find a function

that fits reasonably close. An example: data on age-specific householder rates [female and

non-family] from recent Canadian censuses, rates which rise to around age 30, decline, and then

rise again in later life.
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have, nor need they have for this application, any theoretical rationale or interpre-

tation for their parameters. The only requirement is a close fit to the data at hand. Of

course, if functional forms better grounded either in mathematics, empirical

research, or substantive theory are available, their use in this application would

be possible and desirable.

The second step uses the numerical integration capabilities of Mathcad, a

numerical mathematics package.4 Again, other mathematics packages could be

used, so long as they can evaluate multiple integrals. Mathcad has an advantage

that basic formulas are entered and appear [on the screen and in hardcopy] in

standard mathematical notation, tying the calculations more closely to theoretical

equations. Note, however, that the results still are based on underlying numerical

approximation procedures not unlike those of Pullum’.5

The procedure is illustrated for children and grandchildren for 1981 Canadian

data, and the results compared with those in Keyfitz (1986). Since both techniques

start with data for 5-year age intervals to approximate theoretical integrals, neither

can be said to yield ‘correct’ estimates of kin numbers, so that Keyfitz’s results

cannot serve as an absolute standard against which to judge the new procedure

proposed. In any case, the agreement is close,6 and the choice between the two

computational techniques can be made on other grounds – ease of application,

transparency, and flexibility.

Canadian 1981 age-specific fertility rates from Keyfitz (1986) were modified by

adding zero values at ages 10 and 52.5, and fit by TableCurve.7 Perfect fits were

given by high-order polynomials, with eight to ten parameters. But for convenience

in further use, more compact functions, with three or four parameters, were

examined. The following function was chosen8:

4PTC Inc., Needham, Mass.
5It is conceivable that expressions for fertility and survivorship could be found that would lead to

closed-form solutions of the kinship equations. But these still would not be exact solutions given

the approximation involved in the underlying data.
6As it should be, given that both are using essentially the same data and similar numerical

approximation procedures. The small differences observed presumably relate to small differences

in input [for example, treatment of extreme ages of fertility or survivorship, age indexing, etc.] and

in numerical procedures.
7For fitting, age-specific fertility rates were associated with the mid-points of their respective age

intervals. This clearly involves error, especially in the intervals 10–14 and 45–49. With more

information [e.g., data on births by single-years of age], average ages instead of midpoints could be

used. Or one could simply assume that the rate for 10–14 should be associated with some age

greater than 12.5. But such refinements are not necessary for present purposes.
8For readability, only three digits are given for parameter values. For accurate graphing of these

functions more digits may be needed, especially if the function is non-linear. See Note to

Appendix A.1
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f xð Þ ¼ e aþ bx
ffiffi
x

p½ �þc
ffiffi
x

pð Þ

a ¼ �35:1 b ¼ �0:122 c ¼ 9:66

When the resulting function f(x) is integrated over the same reproductive span as

given by the original data (ages 10–50), the total fertility rate agrees with that

computed in the usual way to within 0.1%. As well, visual inspection and conven-

tional measures of goodness of fit suggest that f(x) provides a reasonable fit to the

fertility data at hand. To repeat, that is the only goal for the present application. No

theoretical or substantive claims are made for the resulting functions; we use them

as approximating functions, defined by TableCurve as ‘. . .nothing more than an

equation which is used to represent X-Y data’ (Systat 2002, pp. 20–1).9

To eliminate small non-zero values of f(x) outside the reproductive ages, the

function is redefined by inserting conditions on x which evaluate the function as

zero when x is less than 10 or greater than 52.5. The function is also re-defined to

adjust for the sex ratio at birth [since the kinship equations relate to one-sex, stable

population models], yielding m(x), a maternity function for female births.

A similar curve-fitting procedure was applied to Lx values from the 1981

abridged life table for Canada [the data used by Keyfitz] to fit a survivor function.10

In this case, four parameter functions were required to get an adequate fit. The

chosen function:

s xð Þ ¼ aþ b

1þ e
c�x
d

a ¼ �0:741 b ¼ 5:66 c ¼ 84:4 d ¼ �8:85

As with the fertility function, conditions on x were inserted to assure that the

curve behaves properly at ages outside the range of observation.11 And, the values

were adjusted to take account of the 5-year intervals of the original Lx data, yielding

a survivorship function p(x) (See Appendix A.1).

9The parameters relate to geometric properties of the graph – intercept, height, center, and width.

But they have no further meaning in terms of a theory of kinship.
10The same Lx data were used for the sake of comparability. Given the continuous formulation of

the present approach, fitting lx values from the complete life table at ages 0,5. . .100 would have

been more natural.
11With TableCurve, one can zoom out to see the behavior of a fitted function well outside the range

of observation, and can quickly calculate predicted values for arguments outside that range. But

this further step [for example, requiring zero survivors beyond some maximum age] seems

warranted given the somewhat blind/mechanical procedure of curve-fitting. A skilled mathema-

tician, of course, might define a function with the correct asymptotic properties.
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7.2 Estimating Kin Numbers

Figure 7.1 defines the Goodman, Keyfitz and Pullum equations for daughters born,

living daughters, granddaughters born and living granddaughters by age a of an

average woman [ego]. The fertility and survivorship functions m(a) and p(a) are as
defined above. Given these equations and function definitions, Mathcad evaluates

the integrals (see Appendix A.2). The results are given in Fig. 7.2.

Estimates by the proposed procedure are in close agreement with those of

Keyfitz (1986), presented for comparison. Agreement is to within 1.1 per 100 kin

for all categories and ages. The largest relative errors are for daughters and living

daughters at age 20 of the reference woman – about 15%. These presumably relate

to differences in procedures for dealing with fertility rates in the earliest ages of

childbearing. But notice that the substantive story is not appreciably different, 6 or

7 daughters born per 100 women by age 20.

7.3 Discussion

The differences between the results of the proposed computational procedure and

those produced by the Pullum algorithm are negligible, within the bounds of error

of the original data. Moreover, the results are precise enough for any likely

substantive use to which they might be put, given that they relate to a highly

abstract model of kinship [a one-sex stable population model, with no input for

marriage patterns].

Fig. 7.1 Estimating Kin Numbers

7.3 Discussion 115



The general approach used above clearly has applications to other areas of

population mathematics. The approach is not entirely novel, but until recently it

was impractical and beyond the capabilities of many researchers. Finite sums using

grouped data became conventional. Writing as recently as 1985, for example,

Keyfitz could note correctly with respect to an expression for the intrinsic growth

rate r: ‘no direct use can be made of a continuous form like (5.1.4) – it must be

converted to the discrete form for calculations’ (1985, p. 115), and more generally:

‘Although the stable age distribution is easier to think about in the continuous

version, application requires a discrete form’ (1985, p. 81).
Due to recent developments in computer software, this is no longer the case. As

illustrated above, it is now relatively easy to find continuous functions to represent

many demographic data sets, and to do direct numerical evaluation of integrals and

other analytic expressions. In some contexts, working with analytic expressions for

processes such as fertility, survivorship and marriage may be a more effective way

to derive numerical results than traditional finite sums. At the very least, one now

has a choice.

Approximating functions also can be effective for interpolation and – with due

caution – extrapolation.

The suggested procedure is a reminder of Hakkert‘s (1992) argument that many

standard demographic algorithms were derived for purposes of hand calculation,

and may need to be revised to make greater use of modern developments in

statistics and computer software.12

Number of Kin per 100 Women

Age   Daughters  Living Daughters Granddaughters  Living Granddaughters

Results from equations in Figure 1:

50.9

Results from Keyfitz [1986]:

20 7.4 7.3 0 0

40 80.5 79.2 1.8 1.8

60 81.3 79.7 51.8

80 81.3 77.0 64.9 63.7

20 6.3 6.3 0 0

40 80.4 79.5 1.9 1.9

60 81.3 79.7 50.9 50.3

80 81.3 77.6 64.9 63.9

Fig. 7.2 Comparison of estimates

12Caswell (1989) makes the interesting historical observation that much of Leslie’s (1945) paper
on matrices in demography is spent developing transformations suited to hand calculation, trans-

formations now largely outmoded by the computer.
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As with any use of computerized ‘black box’ procedures, of course, one must

balance the potential advantages in ease, speed and flexibility of computation

against the possibility of unrecognized pitfalls leading to seriously incorrect results.

In the case at hand, for example, it would be easy to select a survivorship function

that rises after age 100 or so. The careless use of such a function in the kinship

equations would lead to meaningless results for some kinship categories. Computer

mathematics software is at best a partial substitute for mathematical skill, and no

substitute at all for thoughtful analysis.

Finally, it should be emphasized once more that in this approach, the analytic

expressions are used solely to represent specific sets of data. Fertility schedules for a

high-fertility populationmight lead to different functions being selected. The discovery

of general analytic expressions for such processes, especially expressions with theo-

retically meaningful parameters, is another, more difficult and more important task.

Appendices

Appendix A: Tablecurve Output for Fit of Survival Curve

Note. This is a facsimile of the TableCurve graphic output for the function fit to Lx

data, to represent survivorship. Parameter values and measures of goodness of fit

are given to 15-digit accuracy. This is not justified by the accuracy of the basic data.

But if one wishes to graph the function independently of TableCurve, many digits

may be required to get an accurate graph, for example, with the correct range or

specific values of y. Other output, not shown here, gives summary statistics and

confidence intervals for parameters.
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Appendix B: Facsimile of Mathcad Worksheet for Kin
Numbers

Note: In Mathcad, this would be a live worksheet, with results recalculated after

changes to numbers, expressions, etc., as in a spreadsheet. Notation inconsistency:

P(x) and S(x) are the same as p(x) and s(x) used in text earlier.

Start of reproductive period : α≔ 0 Age of ego : a≔ 0 , 20 . . 80

Fertility functions:

a≔� 35:134315 b≔� 0:122003 c≔9:656093

f xð Þ≔e aþ b�x� ffiffi
x

pð Þþc� ffiffi
x

p½ �

m xð Þ≔f xð Þ � 0:4867 � x � 10ð Þ x � 50ð Þ Female births only; range limitedð
to 10 to� 50 by conditions on xÞ

p≔� 0:741013 q≔5:658693 r≔84:446801 s≔� 8:853886

S xð Þ≔pþ q

1þ e
� x�rð Þ

s½ �

p xð Þ≔ S xð Þ � x � 0ð Þ � x � 100ð Þ
5

Range limited to 0 to� 100 byð Þ
conditions on xÞ

a≔0, 20:: 80 x≔0:: 100

Daughters born by age a Daughters living at age a

B1 að Þ≔ R a

α m að Þda BL1 að Þ≔ R a

α P a� xð Þ �m xð Þdx

Age range for daughter generation y≔0::50

B1(a)¼
0.000

0.074

0.805

0.813

BL1(1)¼
0.000

0.073

0.792

0.770
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B2 að Þ≔
Z a

α

�Z a�x

α
P yð Þ �m yð Þdy

�
�m xð Þdx BL2 að Þ≔

Z a

α

�Z a�x

α
P yð Þ �m yð Þ�

P a� x� yð Þdy
�
�m xð Þdx

B2(a)¼ B2(a)¼
0.000 0.000

0.000 0.000

0.018 0.018

0.518 0.509

0.649 0.637
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indicate if changes were made.
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included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.
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