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Abstract. For a linear function f , a vector x with small coefficients,
and a vector y = f(x), we would like to be able to give a zero-knowledge
proof for the knowledge of an x′ with small coefficients that satisfies
f(x′) = y. This is a common scenario in lattice-based cryptography, and
there is currently no satisfactory solution for this problem. All known
protocols are built via the repetition of a basic protocol that only has
constant (1/2 or 2/3) soundness error. This implies that the communi-
cation complexity of the final protocol will be at least a factor of k larger
than that of the basic one, where k is the security parameter.

One can do better if one considers simultaneously proving the knowl-
edge of many instances of the above linear equation. The protocol that
has the smallest amortized communication complexity while achieving
close-to-optimal slack (i.e. the ratio between the coefficients in the secret
and those that can be extracted from the proof) is due to Cramer et al.
(Eurocrypt ’17) which builds on an earlier work of Baum et al. (Crypto
’16). The main downside of this protocol is that the amortization only
kicks in when the number of equations is rather large – 4k2. This means
that for k = 128, it is only truly optimal when one has more than 216

equations to prove. The aforementioned work of Cramer et al. also shows
how to achieve a protocol requiring o(k2) samples, but it is only applica-
ble for much larger values of k and the number of required samples ends
up being larger than 216.

The main result of our work is reducing the concrete minimal number
of equations required for the amortization, while keeping the communi-
cation complexity almost unchanged. The cost of this is an increase in
the running time of the zero-knowledge proof. More specifically, we show
that one can decrease the required number of equations by a factor of
Ω(log2 α) at the cost of increasing the running time by a factor of Ω(α).
For example, increasing the running time by a factor of 8 allows us to
decrease the required number of samples from 69000 to 4500 – a factor
of 15. As a side benefit, the slack of our protocol decreases by a factor
of log α as well.

We also show that in the case that f is a function over the polynomial
ring Z[X]/(Xd + 1) and we would like to give a proof of knowledge of
an x′ with small coefficients such that f(x′) = 2y, then the number of
samples needed for amortization is even lower. Without any trade-offs
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in the running time, our algorithm requires around 2000 samples, and
for the same factor 8 increase in the running time, the requirement goes
down to 850.

1 Introduction

Every lattice-based cryptographic construction relies on the fact that when given
a matrix A and a vector y over some ring R (such as Zq or Zq[X]/(Xd +1) with
the usual addition and multiplication operations), it is hard to recover a vector
x with small coefficients such that

Ax = y. (1)

In many instances, one would also like to construct a zero-knowledge protocol
where the prover, who knows x, is able to convince a verifier (who only has A
and y) that he possesses this knowledge.

There are several known approaches for constructing such protocols. The
first method is to adapt the classic Stern protocol [Ste93], which was used for
a similar code-based problem, to working over larger rings [KTX08,LNSW13].
The main issue with this protocol is that each round has soundness error 2/3
and therefore needs to be repeated 192 times (to achieve 128 bits of security).
For most practical applications, this technique is therefore unsuitable.

A second approach is to use the “Fiat-Shamir with Aborts” idea of Lyuba-
shevsky [Lyu08,Lyu09,Lyu12] whose original application was to digital signa-
tures. If one uses a ring R that contains a lot of elements with small coefficients
(e.g. R = Zq[X]/(Xd + 1)), then one can prove the knowledge of a short x′ and
c ∈ R such that Ax′ = cy. This is not exactly equivalent to proving (1), but it
suffices for the purposes of digital signatures, commitments [BKLP15], and to
some applications of verifiable encryption [LN17].

The most natural and useful scenario, however, is proving the knowledge of
some s′ that exactly satisfies (1). One could directly apply the “Fiat-Shamir
with Aborts” technique with 0/1 challenges, but this leads to protocols with
soundness error 1/2, which is essentially as inefficient as those using the Stern
technique. When working over the ring R = Zq[X]/(Xd + 1), it was shown that
one can decrease the soundness error to 1/(2d + 1) [BCK+14] and prove the
knowledge of an x′ such that Ax′ = 2y. The main observation in that paper
was that rather than using challenges from the set 0/1, one could use them from
the set {0,Xi} for 0 ≤ i < 2d. Even though this latter proof does not exactly
prove (1), the fact that one can prove the knowledge for a constant multiple of y
(rather than some arbitrary, unknown c) makes this type of proof suitable for a
variety of applications. But still, the soundness error of 1/(2d+1) would require
the proof to be repeated around a dozen times for typical values of d = 1024.

Amortized Proofs. A very interesting line of work, which built upon ideas from
[CD09], considered the amortized complexity of the [Lyu08,Lyu09] protocol. In
[DPSZ12], it was shown that one could prove the knowledge of a linear (in the
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security parameter) number of equations with essentially optimal communication
per equation. The main downside was that, for a security parameter k, while the
prover may have known xi with small coefficients that satisfied Axi = yi, he
would only be able to prove knowledge of x′

i whose coefficients were on the order
of 2Ω(k) larger. In practice, this slack is quite bad as it would require setting all
the parameters to be very large so as to make the proofs non-vacuous (i.e. so
that there isn’t an efficient algorithm that can simply compute such x′ from A
and y).

More recently, using different and novel ideas, Baum et al. [BDLN16] showed
how to reduce the slack to super-polynomial in the security parameter, and the
most recent work of Cramer et al. [CDXY17] reduced this slack to being only
a factor k larger than what one would get by running the basic protocol from
[Lyu08,Lyu09] with 0/1 challenges. The main downside of this latter algorithm
is that it requires doing at least 4k2 proofs at the same time. So for k = 128,
this implies that one needs to have at least 216 equations that one wishes to
prove simultaneously. When wanting to prove fewer than that, one could include
some “dummy” values, but this will have the effect of increasing the per-proof
communication complexity and running time. The main open direction in this
line of work is therefore to reduce the necessary number of equations while
keeping the slack and communication to be as low as in [CDXY17]. This is the
main result of the current paper.

1.1 Prior Work

High-level overview of [BDLN16,CDXY17]. We will use the notation from
[CDXY17]. The setup is that the prover has a linear function f and ordered pairs
(y1,x1), . . . , (yn,xn) such that f(xi) = yi (in (1), the function f is defined by
the matrix A). He wishes to prove the knowledge of x′

i with small coefficients
such that f(x′

i) = yi. The algorithm from [CDXY17] works in two stages. In
the first stage, it runs the “imperfect prover” from [BDLN16] which proves the
knowledge of all-but-k x′

i. The main issue is that after the first stage, we do not
know which k secrets the extractor cannot extract.

In the second stage, the prover creates 4k2 additive combinations of yi, for
which the pre-image is the corresponding additive combination of the xi due
to the linearity of the function f .1 The main result of the paper is showing a
strategy for producing these combinations such that for any set S of xi of size k,
each xi from S appears in at least k+1 combinations without any other xi from
S. One can then run the imperfect proof on the 4k2 linear combinations and
again get the guarantee that all but k secrets can be extracted. Each element in
S therefore appears in some extracted combination in which all other elements
were already extracted in the first stage. And due to the linearity of f , we can
now extract the sole element from the set S appearing in the combination.

1 To be more precise, the number of combinations is p2, with p the first prime greater
than 2k + 1.
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An asymptotically more efficient construction is also given in [CDXY17].
This construction uses two different additive combinations of the yi, the first
one is a relaxed version in which for any set S of xi of size k, all but k − 5k0.75

of the xi from S appears in at least k + 1 combinations without any other xi

from S. By running the imperfect proof on these sums all but 5k0.75 secrets can
now be extracted. The second additive combination is identical to the one of the
previous proof but is now used on sets of size 5k0.75, ensuring that after another
execution of the imperfect proof all secrets can be extracted. This improved
version requires at least 4(5k0.75)2 = 100k1.5 = O(k1.5) secrets. However it is
clear that this construction only makes sense if k > 5k0.75, i.e. k > 625. So while
this construction is more efficient asymptotically we only consider the previous
one which is better for all reasonable security parameters.

More concrete description of the “imperfect proof” from [BDLN16].
The original protocol from [BDLN16] is a Σ-protocol that can be seen as a very
particular type of parallel composition of the protocol from [Lyu08]. The basic
protocol from [Lyu08] for proving the knowledge of x′ such that f(x′) = y is
as follows: The prover starts by choosing a mask g from some distribution and
sends h = f(g). The verifier then chooses a random bit c ∈ {0, 1} as a challenge
and sends it to the prover. The prover computes cx+g and performs a rejection
sampling step, i.e. he aborts with a probability that depends on the value of
cx+ g (this is necessary for zero-knowledge). If it passes, then the prover sends
cx + g to the verifier. The verifier checks that f(cx + g) = cy + h.

The idea in [BDLN16] for giving “imperfect proofs” for n equations was
to choose T = 2κn masking parameters gj (for some small constant κ) and
send hj = f(gj) to the verifier. The verifier then sends a T -bit challenge string
c1, . . . , cT , and the prover sends the gj for which cj = 0. For every 1 ≤ i ≤ n, the
prover also tries to send xi +gj for the first non-used gj (a gj is considered used
if it was revealed in the clear or was previously tried to be used for masking
another xi′ with i′ < i – there should initially be approximately κn unused
gj). If the rejection sampling step passes, then the prover indeed sends the
xi +gj . Otherwise, he tries to send xi +gj′ where gj′ is the next unused g. The
verifier checks that all the revealed gj satisfy f(gj) = hj , and then checks that
yi + hj = f(xi + gj) for all i. It is then shown that if a prover succeeds with
probability 2−k+1, then an extractor can extract n − k vectors x′

i that satisfy
f(x′

i) = yi. Thus the protocol is a proof of knowledge of all-but-k pre-images.

1.2 Our Results

Our main result builds upon the works of [BDLN16,CDXY17] and allows us
to reduce the required minimum number of proofs at the expense of a higher
running time. Most importantly, the communication complexity per equation
does not increase too much. As an example, if we increase the running-time
by a factor of 8, we can decrease the required number of equations from 69000
to around 4500 (see Table 1). We also construct a protocol for proving knowl-
edge of si with small coefficients over the ring R = Zq[X]/(Xd + 1) such that
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Asi = 2ti. This protocol gets an even better trade-off between running time and
the minimum number of samples. For the same factor of 8 increase in running
time, we only now need to have 841 equations.

The importance of these trade-offs becomes even more substantial in the
quantum setting. If we model a hash function with k bits of output as a random
oracle, it is commonly assumed that while finding a preimage takes classical
time 2k, by using Grover’s algorithm one only needs time 2k/2 on a quantum
computer. In most practical uses the Fiat-Shamir transform [FS86] is used to
make the zero-knowledge protocol non interactive by replacing the verifier by a
random oracle. This entails that to achieve 128 bits of security one would use a
security parameter k= 256, in turn forcing amortization to be done on at least
4k2 = 218 equations. When using our construction we obtain the same factor
4 between the number of equations needed to achieve 128 bits of classical and
quantum security (see Table 1).

Table 1. Trade-offs between the running time and the minimum number of samples for
either 128 bits of classical or quantum security. We are considering proofs for (Ring)-
LWE instances of dimension 1024 where the secrets and errors have coefficients drawn
from {−1, 0, 1}.

[CDXY17] 0/1 challenges xi challenges

variable parameter α 2 16 64 256 2 16 64 256

Minimum equations n
(128 bit classical security)

69169 4489 2209 1369 2209 841 529 361

Communication/equation
(kB) (128 bit classical
security)

8.8 9.2 9.7 10.3 8.2 8.9 9.5 10.1

Minimum equations n
(128 bit quantum security)

249001 16129 7921 4489 7921 2209 1681 1369

Communication/equation
(kB) (128 bit quantum
security)

9.1 9.5 10.0 10.6 8.4 9.1 9.7 10.3

Time/equation (OWF
evaluation)

16 128 512 2048 16 128 512 2048

Figure 1 shows a graph that illustrates how increasing the running time by
a factor α reduces the minimum number of required equations. The implication
is that for larger values of α, the added reduction in the minimum number of
equations is not worth the increase in the running time. For practical purposes,
the best trade-offs are achieved for small α’s. Figure 2 illustrates the small effect
that increasing α has on the communication complexity of the protocol. Even
increasing α by 220, which is not advisable as we just mentioned, would result
in the communication complexity growing by less than a factor of 2.
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Fig. 1. The minimum number of samples required for amortization as a function of
log α. The squares represent our first protocol (with 0/1 challenges) and the triangles
represent the second (with challenges of the form Xi) when working over the ring
Z[X]/(Xd + 1) for d = 1024.

Techniques. We achieve this improvement by modifying the first stage of the
protocol – that is, the “imperfect proof” from [BDLN16]. Improving this protocol
to make it a proof of knowledge of all-but-τ pre-images for some τ < k, allows
us to only do the amortized second stage of [CDXY17] with only 4τ2 < 4k2

equations. A way to reduce τ is for the prover to produce a larger number of
hj in the first step of the Σ-protocol and then for the verifier to demand that
the prover reveal the pre-images of a larger fraction of the hj . The protocol of
[BDLN16] can be thought of as a cut-and-choose protocol, thus more reveals
intuitively implies a higher probability of the correctness of the non-revealed
parts. If we introduce a parameter α, then the prover produces T = ακn elements
hj in the first part, sends them to the verifier, and receives a challenge c1, . . . , cT

where a 1 − 1/α fraction of the cj are 0. The prover reveals the pre-images of
the corresponding hj and then uses the non-revealed gj (of which there are κn)
to send xi + gj in the same manner as in [BDLN16] described in Sect. 1.1. We
prove that this results in a protocol that proves the knowledge of all-but-τ pre-
images for τ = k/ log α. Therefore, now only 4(k/ log α)2 equations are needed
for amortization to kick in.

One issue that still needs to be resolved is the communication complexity.
Naively, it seems that one would need to send T = ακn elements hj which
would increase the communication complexity by a factor α. We instead give
an approach in which the communication is only logarithmically dependent on
α – furthermore it will only be small additive factors that have a dependence
on log α. Rather than sending h1, . . . , hT , the prover can instead send a hash
h = H(h1, . . . , hT ) where H is a collision-resistant hash function. This does not
completely solve the problem because at some point the prover will need to send
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Fig. 2. Proof sizes as a function of log α. We are considering proofs for the same types
of instances as in Table 1. The squares represent our first protocol (with 0/1 challenges)
and the triangles represent the second (with Xi challenges) when working over the ring
Z[X]/(Xd + 1) for d = 1024.

the hj so that the verifier can check the validity of h. But here we use the fact
that all except κn of the hj will have their pre-images simply revealed. Our
strategy is therefore as follows: we create the gj from 256-bit seeds sj which are
leaves on a tree generated by a pseudorandom function. That is, from the root of
the tree, one can generate the entire tree. When required to reveal pre-images of
a set of hj , the prover does not need to send the gj (or their seeds) individually.
He can instead send roots of sub-trees which only include the seeds that will be
revealed. We prove that with this strategy, rather than sending ακn seeds, one
only needs to send a maximum of κn log α many elements from the tree (which
are themselves 256 bits each).

Putting everything together, we show that at the expense of increasing the
running time by a factor of α, one can reduce the minimum number of samples
required for amortization by a factor of log2 α. Our second contribution is show-
ing that when working over the ring Z[X]/(Xd + 1), proving the knowledge of
xi such that f(xi) = 2yi has an even better trade-off between running-time and
the minimum number of samples. In particular, we show that at the expense
of an α-fold increase in running time, one can reduce the minimum number of

vectors by a factor of
(

log α+log 2d
1+1/ log α

)2

.
To obtain such an improvement we adapt the proof of [BCK+14] to the frame-

work of [BDLN16]. Though merging the two protocols is rather straightforward,
the knowledge extractors of both of these schemes don’t combine as nicely. The
knowledge extractor of [BDLN16] first recovers a set of all but k of the masking
parameters gj and then simply extracts xi from xi +gj . This method falls apart
when used with the protocol of [BCK+14] as the latter scheme uses rewinding
to obtain two equations Xax + g and Xbx + g and recovers a pre-image from
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their difference. The same rewinding is still possible in our scheme but will yield
two equations of the form Xaxi + gj and Xbxi + gj′ and extraction will be
only possible if j = j′, which cannot be guaranteed. We resolve this issue by
conditioning our extractor on the fact that j = j′ which results in a slightly
sub-optimal number of extracted preimages: n − k·(1+1/ log α)

log α+log 2d instead of simply
n− k

log α+log 2d . It is not clear to us whether this small loss is necessary or simply
an artifact of our proof.

1.3 Paper Organization

In Sect. 2, we introduce the notation and definitions that we will be using
throughout the paper. In Sect. 3 we present a modification of the “imperfect
proof” protocol of [BDLN16], which is a proof of knowledge of all-but-τ pre-
images for τ = k/ log α. This protocol only serves as intuition, and we do not
formally prove its correctness or security because the communication complexity
(i.e. the proof size) grows linearly in α. In Sect. 4, we show how to reduce the
communication complexity of the interactive protocol from Sect. 3 and prove its
correctness, zero-knowledge, and soundness. We only show honest-verifier zero-
knowledge because this is enough to convert the protocol to a non-interactive one
using the Fiat-Shamir transform, which is the manner in which one would use
these schemes in practice. Analyzing the size of the communication is delayed
until in Sect. 6 because this analysis also applies to the protocol in Sect. 5. In
Sect. 5, we show that if the proof is done over the ring Z[X]/(Xd + 1), then the
number of required equations can be made even smaller if one wants to prove
f(x′) = 2y.

2 Preliminaries

2.1 Notation

We will write vectors such as b or B in bold face. We refer to the ith position
of a vector b as b [i]. Define [r] = {1, . . . , r}. The Euclidean norm of a vector,

b ∈ Z
r is ‖b‖ =

√∑
i∈[r] b [i]2. For a set S, we write s

$← S to denote that s

was drawn uniformly at random from S. For a distribution D, we write s ← D
to denote that s is drawn from D.

2.2 Homomorphic OWF

In this section we follow the framework of [BDLN16] in defining homomorphic
one-way functions over integer vectors (which includes polynomial rings) as well
as amortized zero-knowledge proofs of preimage for these functions. Let λ ∈ N

be a security parameter, G be an Abelian group, β, r ∈ N, f : Zr → G be a
function and A be any algorithm. Consider the following game:
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InvertA,f,β(λ):

1. Choose x ∈ Z
r, ‖x‖ ≤ β and compute y = f(x).

2. On input (1λ, y) the algorithm A computes an x′.
3. Output 1 iff f(x′) = y, ‖x′‖ ≤ β, and 0 otherwise.

Definition 2.1 (Homomorphic OWF over Integer Vectors (ivOWF)).
A function f : Z

r → G is called a homomorphic one-way function over the
integers if the following conditions hold:

– There exist a polynomial time algorithm evalf such that evalf (x) = f(x) for
all x ∈ Z

r.
– for all x,x′ ∈ Z

r it holds that f(x) + f(x′) = f(x + x′).
– for every PPT algorithm A there exists a negligible function negl(λ) such

that:
Pr [InvertA,f,β(λ) = 1] ≤ negl(λ).

2.3 Rejection Sampling and the Normal Distribution

For a protocol to be zero-knowledge, the output of the prover needs to be inde-
pendent of his secret. In certain situations achieving this independence requires
rejection sampling. While [BDLN16] used rejection sampling in the infinity norm
(as in [Lyu08,Lyu09]) we use the euclidean norm and thus rejection sampling
over the �2 norm using normal distributions (as in [Lyu12]), which allows for
tighter parameters. But all our techniques easily work for the �∞ norm as well.

Definition 2.2 (Continuous Normal Distribution). The continuous Nor-
mal distribution over R

r centered at v with standard deviation σ is defined by

the probability density function ρr
v,σ(x) =

(
1√

2πσ2

)r

e− ‖x−v‖2

2σ2 .

Definition 2.3 (Discrete Normal Distribution). The discrete Normal dis-
tribution over Z

r centered at v with standard deviation σ is defined by the prob-
ability mass function Dr

v,σ(x) = ρr
v,σ(x)/ρr

v,σ(Zr).

Lemma 2.4 (Tail-Cut Bound [Ban93]). Pr [‖z‖ ≥ 2σ
√

r; z ← Dr
σ] < 2−r.

Theorem 2.5 (Rejection sampling [Lyu12] Theorem4.6). Let V be a sub-
set of Zr with elements of norm less than T , let h be a distribution over V. Let
σ = 11T , for v, z ∈ Z

r let Rej(v, z) be the algorithm that outputs 1 with proba-
bility min

(Dr
σ(z)/(3Dr

v,σ(z)), 1
)

and 0 otherwise. Then we have:

(v, z | Rej(v, z) = 1) ∼s (v, z′)

where v ← h, z ← Dr
v,σ, and z′ ← Dr

σ, i.e. the distribution of z conditioned on
Rej(v, z) = 1 is exactly a discrete Normal distribution centered on 0. Moreover
the probability, taken over the choice of v ← h and z ← Dr

v,σ that Rej outputs
1 is exponentially close to 1/3:

∣∣∣∣ Pr
v←h,z←Dr

v,σ

[Rej(v, z) = 1] − 1
3

∣∣∣∣ ≤ 2−100
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2.4 Zero-Knowledge Proofs of Knowledge

We will consider amortized proofs of knowledge for preimages of an ivOWF.
Formally, given an ivOWF f the relation we want to give a zero-knowledge
proof of knowledge for is:

RKSP(n, f, β) =
{

(Y,X) ∈ (G × Z
r)n

∣∣∣∣Y = (y1, . . . , yn) ∧ X = (x1, . . . ,xn)

∧ [yi = f(xi) ∧ ‖xi‖ ≤ β]i∈[n]

}

We define a second binary relation R′, such that R ⊂ R′, which characterizes
the soundness slack of the protocol, i.e. while the input to the protocol is a pair
(Y,X) ∈ R the knowledge extractor can only extract values in R′. Typically the
relation R′ is identical to R except for the fact that the components of X are
bounded in norm by a constant β′ > β. We will however see in Sect. 5 a ZKPOK
for a different relation R′.

Definition 2.6 (Zero-Knowledge Proof of Knowledge). Let PZK be a two-
party protocol, let R,R′ be binary relations such that R ⊆ R′, let k be a statistical
security parameter. PZK is a zero-knowledge proof of knowledge if the following
properties hold:

Correctness: If P,V are honest and run PZK on an instance of R, then the
protocol terminates with probability greater than 1 − 2O(k).

Computational Honest-Verifier Zero-Knowledge: There exists an expected
PPT simulator S such that for any (a, b) ∈ R, and for any PPT algorithm A. A
has advantage negl(k) in distinguishing between the two following distributions:

– V iewV [P(a, b) ↔ V(a)] the view of V consisting in the transcript of the pro-
tocol as well as the random coins of V.

– S(a).

Soundness: For any pair (a, b) ∈ R, for any deterministic prover P̂ that suc-
ceeds with probability p > 2−k one can extract b′ such that (a, b′) ∈ R′ in expected
time poly(s, k) · 1/p, where s is the size of the input to the protocol.

2.5 Imperfect Proof of Knowledge and a Compiler

In [BDLN16], the authors introduce the concept of an imperfect proof of knowl-
edge. An imperfect proof of knowledge is a protocol that proves knowledge of
pre-images in the relation RKSP, however the knowledge extractor is not required
to be able to extract all the pre-images.

Definition 2.7 (Imperfect Proof of knowledge). Let PIProof be a two-party
protocol, let f be an ivOWF, let RKSP(n, f, β) and RKSP(n, f, β′) be two binary
relations on f , k be the security parameter. The protocol PIProof is an imperfect
proof of knowledge with imperfection τ(k) if the following properties hold:
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Correctness: PIProof is correct as in Definition 2.6.

Computational Honest-Verifier Zero-Knowledge: PIProof is honest veri-
fier zero-knowledge as in Definition 2.6.

Impefect Soundness: For any pair (Y = (y1, . . . , yn),X = (x1, . . . ,xn)) ∈
RKSP(n, f, β), for any deterministic prover P̂ that succeeds with probability p >
2−k one can extract at least n−τ(k) values x′

i such that f(x′
i) = yi and ‖x′

i‖ ≤ β′

in expected time poly(s, k) · 1/p, where s is the size of the input to the protocol.

[BDLN16] introduced a ZKPOK that uses an imperfect proof as a building block.
The construction was later improved in [CDXY17] allowing for very efficient
proofs that only require two executions of the imperfect proof system, while only
introducing an additional soundness slack of k. The protocol, however, requires
the amortization to be done on at least 4k2 secrets, which can be impractical. We
give a somewhat refined statement of this construction as the proof of [CDXY17]
can be straightforwardly adapted to using the imperfection τ(k) instead of k.

Theorem 2.8 (Compiler [CDXY17] Theorem2). Let f be an ivOWF, let
k be a statistical security parameter, let RKSP(n, f, β) and RKSP(n, f, β′) be
two binary relations on f . Let PIProof be an imperfect proof with imperfection
τ(k). If n ≥ 4τ(k)2 + O(log k) then there exists an efficient construction for a
zero-knowledge proof of knowledge PCProof with soundness slack τ(k)β′.

In this paper, we give constructions that can reduce the imperfection τ(k) of
the imperfect proof to values less than k, thus allowing for more efficient zero-
knowledge protocols in cases where the number of available equations is less
than τ(k).

3 Warmup Construction

We present a first construction that achieves imperfection τ(k) = k/log(α) + 1
for any parameter α, but has proof size that grows linearly in α. This first
construction is similar to the one of [BDLN16]. Their protocol works in two
phases: first the prover samples masking parameters gj , j ∈ [T ] and a cut-and-
choose protocol reveals each one with probability one half. After this step, the
verifier is convinced that with probability 1 − 2−k all but k of them are well
formed. In the second phase the masking parameters that were not revealed are
used to hide the secrets of the prover. We modify the first phase of this protocol
so that the prover reveals each masking parameter with probability 1−1/α. For
α ≥ 2, this reduces the percentage of gj on which the prover can cheat and, in
turn, reduces the imperfection of the proof. However, the number of masking
parameters necessary for the second phase is on the order of n, meaning that,
since the prover will reveal a fraction 1−1/α of them, the protocol then requires
T = Θ(αn) masking parameters.

We describe this protocol in Fig. 3. We do not give a formal proof that it is
an imperfect proof of knowledge with imperfection k/ log α + 1 as the protocol
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Fig. 3. Warm-up construction. For α ≥ 2, we fix T = 5αn and χ the bernouilli distribu-
tion of parameter 1/α. Resulting in an imperfect proof of knowledge with imperfection
k/ log α + 1 and communication that grows linearly with α

presented in the next section is a strict improvement upon this one. While this
first protocol achieves better imperfection than the one of [BDLN16], it has a
major downside in that the communication cost grows linearly with α, since
we need T ≥ αn. This voids any improvement over the previous protocol. To
remedy this problem we will modify this protocol as follows:

– Rather than sending the hash of every ai in the first round the prover will only
send h = H(h1, . . . , hT ), thus making the first flow of the protocol constant
size.

– In his second move, the prover sends gj , j ∈ O. This is an issue because
|O| � (α − 1)4n, but also because the gi can be rather large. We solve these
problems by sending a set of seeds from which a PRG will be used to derive
the gi. This way only 256 bits need to be sent for each seed. Most crucially,
by using a tree data-structure, we show that the prover only needs to send
4n log α seeds in his second move.



Amortization with Fewer Equations for Proving Knowledge of Small Secrets 377

4 Amortized Proof for f(xi) = yi with Fewer Equations

In this section we describe our first concrete imperfect proof of knowledge and
prove that it has imperfection τ(k) = k/ log α + 1. We show that the proof is
only slightly dependent on α in Sect. 6.

We will need the following two functions, which can both be efficiently imple-
mented using an extendable output function (e.g. SHAKE128 [BDPA16]):

– PRF: {0, 1}256 → {0, 1}512 a size doubling pseudo-random function
– PRG: {0, 1}256 → {0, 1}∗ a pseudo-random generator

For a randomized algorithm h and a seed s ∈ {0, 1}256 we will write h [PRG(s)]
to denote an execution of h using as randomness the bits output by PRG(s).

We first describe the tree structure that we will use. From now on we will only
consider T = 2t a power of two, which simplifies the description of the protocols
and does not affect efficiency – all the results we obtain can be adapted to
general T. A tree Γ is a binary tree with nodes labeled in {0, 1}∗ (the root will
have the label ∅, its left child will have label 0, its right child will have label
1, etc.). We consider complete binary trees of depth t, which implies that the
leaves will be labeled in {0, 1}t. We map the range [T ] to the labels of the leaves
through the mapping where the image of t ∈ [T ] is the leaf labeled by the binary
decomposition of t−1. Each node will have two extra attributes, one will be the
seed associated to the node (which can be bottom for the verifier since he will
not know all the seeds), the other will be a bit indicating whether the associated
seed must be sent to the verifier in the first flow.

The purpose of this seed tree is twofold. We will use the leaves as seeds for
the PRG when generating the gj , j ∈ [T ]. This way sending the seeds to the
verifier in the first flow will be sufficient as he can then reconstruct the gj , j ∈ O
using the PRG. More importantly, rather than directly sending the leaves of
the seed tree, it will be more efficient to send the smallest set of nodes needed
to recover the leaves for indices that lie in O. We define the tree structure as
follows:

Tree T:

– Label ⊂ {0, 1}∗

– Left ∈ Tree ∪ ⊥
– Right ∈ Tree ∪ ⊥
– Leaf ∈ {0, 1}
– Sel ∈ {0, 1}
– Seed ∈ {0, 1}256 ∪ ⊥
For j ∈ {0, 1}∗ we denote by Γ [j] the node with label j. We will describe four
algorithms: the first to initialize the tree will be performed by both parties, the
second to initialize the seeds will only be used by the prover, the third to compute
the indexes of the seeds that will be sent in the first flow of the protocol will be
used by both parties, and the fourth to recover the seeds needed to compute the
gj , j ∈ O will only be used by the verifier.
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Fig. 4. Our first construction: For α ≥ 2, we fix T = 5αn and χ the bernouilli distrib-
ution of parameter 1/α. We obtain an imperfect proof of knowledge with imperfection

k
log α

+ 1. The communication complexity only has a small dependence on log α.
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Algorithm 1. Initialize(Γ, l, d)
Require: A tree Γ , a label l ⊂ {0, 1}t, a depth d
1: Γ.Label := l
2: Γ.Sel := 0
3: Γ.Seed :=⊥
4: if d = 0 then
5: Self.Leaf := 1
6: Self.Left :=⊥
7: Self.Right :=⊥
8: else
9: Self.Leaf := 0

10: Initialise(Γ.Left, (l, 0), d − 1)
11: Initialise(Γ.Right, (l, 1), d − 1)
12: end if

The second algorithm Initialize will use a seed fixed by the prover and
compute the seed associated with the children of each node as the first and
second half of PRF applied on the seed of the parent node.

Algorithm 2. SeedTree(Γ, v)
Require: A tree Γ , v ∈ {0, 1}256

1: Γ.Seed := v
2: if Γ.Leaf = 0 then
3: (v1, v2) := PRF(v)
4: SeedTree(Γ.left, v1)
5: SeedTree(Γ.right, v2)
6: end if

The Prefix algorithm will compute the prefix of a set of nodes and set their
attribute Sel to 1. A node n will be in the prefix of a set O if all the leaves that
descend from n are in O and none of the ancestors of n are in the prefix of O.
The algorithm ensues directly from this definition.

The Reconstruct algorithm will use a tree in which the prefix S of O has
been computed as well as a set of seeds sj , j ∈ S and will reconstruct the seeds
sj , j ∈ O by using SeedTree for each node in S.

We give in Fig. 5 an example of a seed tree as well as a set O and its prefix.
We describe our improved protocol in Fig. 4.

Theorem 4.1. Let f be an ivOWF, k be a statistical security parameter, H a
collision resistant hash function, r ≥ 128 be an integer, χ the bernouilli dis-
tribution of parameter 1/α (i.e. P [χ = 0] = 1 − P [χ = 1] = 1 − 1/α). Let
T = 5αn, σ = 11β, B = 2σ

√
r. The protocol PIProof given in Fig. 4 is an

imperfect proof of knowledge for inputs in RKSP(n, f, β), with soundness extrac-
tor in RKSP(n, f, 2B) and imperfection k

log α + 1.
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Algorithm 3. Prefix(Γ,O)
Require: A tree Γ , a set of indices O ⊂ [T ]
1: if Γ.Leaf = 1 ∧ Γ.label ∈ O then
2: Γ.Sel := 1
3: return 1
4: else if Γ.Leaf = 0 ∧ Prefix(Γ.Left, O) = 1 ∧ Prefix(Γ.Right, O) = 1 then
5: Γ.Sel := 1
6: Γ.Left.Sel := 0
7: Γ.Right.Sel := 0
8: return 1
9: end if

10: return 0

Algorithm 4. Reconstruct(Γ, S,O)
Require: A tree Γ , a list of seeds S = [sj ], a set O ⊂ [T ]. We assume that Prefix(Γ, O)

was applied.
1: if Γ.Sel = 1 then
2: SeedTree(Γ, S[0])
3: S := S[1 :]
4: else
5: Reconstruct(Γ.Left, S)
6: Reconstruct(Γ.Right, S)
7: end if

Proof. We prove correctness in Lemma 4.2, honest-verifier zero-knowledge in
Lemma 4.3, and soundness in Lemma 4.4.

We first prove correctness.

Lemma 4.2 (Correctness). With parameters set as in Theorem4.1, the pro-
tocol PIProof described in Fig. 4 completes with probability greater than 1−2−100.

Proof. By the homomorphic property of f and by construction of Initialize,
SeedTree, Prefix, and Reconstruct all the checked equalities hold. We fist
consider the probability that P aborts. P will abort if he runs out of samples
during the rejection sampling. For each gj , j ∈ [T ] the probability that gj will
not be revealed is 1/α, and by Theorem2.5 the probability that the rejection
sampling will succeed is 1/3, in which case the vector obtained will be of norm
less than B with overwhelming probability (2.4). We can model the probability
that each gj will not be revealed and will pass both checks of the rejection step
by a Bernoulli variable Xj s.t Pr [Xj = 1] = 1/(3α) − 2−O(n). P will abort if∑

j∈[T ] Xj < n. Using the Chernoff bound we obtain:
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s

s0

s00

s000 s001

s01

s010 s011

s1

s10

s100 s101

s11

s110 s111

Fig. 5. Seed tree for t = 3, and O = {1, 2, 3, 5, 6, 7, 8}, the nodes needed to reconstruct
(sj)j∈O are those in prefix(O) = {00, 010, 1}.

Pr

⎡
⎣ ∑

j∈[T ]

Xj < n

⎤
⎦ ≤ exp

(
− (T − 3αn)2

3αT
+ 2−O(n)

)

= exp
(

−4n

15
+ 2−O(n)

)
,

which is negligible asymptotically (and in practice less than 2−100 whenever we
amortize over n ≥ 260 secrets.)

We now consider the probability that V aborts. V will abort if there exists
either j ∈ O such that ‖gj‖ > B or i ∈ [n] such that ‖zi‖ > B. Since the gj

and the zi are drawn independently from the distribution Dr
σ by using a union

bound we have that the probability that the norm of one of them exceeds B is
less than (T + n)2−r. ��
We now show that this protocol is honest-verifier zero-knowledge.

Lemma 4.3 (HVZK). With parameters set as in Theorem4.1, the protocol
PIProof described in Fig. 4 is computationally honest-verifier zero-knowledge.

Proof. The honest-verifier zero-knowledge proof is very close to that of [BDLN16],
but we still include it here for completeness as there are slight differences. Consider
the following algorithm SIProof :

– On input (Y = (y1, . . . , yn), β) sample s
$← {0, 1}256 and (sj)j⊂{0,1}t using

SeedTree.
– Sample c ← χT , compute the sets O and C.
– Set Φ′ = ∅, for j ∈ C sample zj ← Dr

σ and do the following:
• Sample b

$← {0, 1, 2}
• If b = 0 ∧ ‖zj‖ ≤ B then Φ′ = Φ′ ∪ j

– For j ∈ O set hj = H(f(Dr
σ [PRG(sj)])).

– If |Φ′| < n then for j ∈ C set hj
$← {0, 1}256, h = H(h1, . . . , hT ), output

(h, c, (sj)j∈prefix(O), (hj)j∈C) and abort.
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– If |Φ′| ≥ n set Φ to be the first n elements of Φ′ and for i ∈ [n] rename zΦ[i]

as zi. For j ∈ C\Φ set hj
$← {0, 1}256.

– For i ∈ [n] set aΦ[i] = f(zi) − yi, hΦ[i] = H(aΦ[i]).
– Set h = H(h1, . . . , hT ), output

(h, c, (sj)j∈prefix(O), (hj)j∈C , Φ, (zΦ[i])i∈[n]).

We first consider the abort probability of the simulator: S will abort if |Φ′| < n.
For each j ∈ [T ] the simulator adds a zj to Φ′ iff c [j] = 1 ∧ b = 0 ∧ ‖zj‖ ≤ B,
the probability of this event is 1/(3α) − 2−O(n), thus the probability of abort
will be exponentially close to the one of PIProof . Regardless of whether the
simulator aborts or not, all the checks performed by the verifier will accept: h
is set to be h = H(h1, . . . , hT ), and when S does not abort he sets hΦ[i] so that
H(f(zi)−yi) = hΦ[i]. The sets O and C are defined in the same way as in PIProof

and the sj , j ∈ prefix(O) are also sampled according to the protocol. Note that
in PIProof for j ∈ C\Φ the hj are distributed uniformly since H is modeled as a
random oracle and no preimages of the hj are given (note that for some leaves of
the tree the verifier knows half of the output of PRF on the parent node, even
conditioning on this knowledge the second half of the output is uniform as PRF
is modeled as a random oracle). It remains to analyze the distribution of zi for
i ∈ [n]. We have by Theorem 2.5 that the distribution of zi, i ∈ [n] in PIProof

is that of a discrete gaussian centered in 0 with standard deviation σ and thus
identical to the distribution of zi in S. ��
We finally show the soundness of the protocol, i.e. that one can extract all but
τ(k) = k/ log α + 1 preimages from a prover that succeeds with probability
greater than 2−k.

Lemma 4.4 (Soundness). With parameters set as per Theorem4.1, the pro-
tocol PIProof has imperfection τ(k) = k/ log α + 1 and slack 2B.

Proof. The soundness proof is similar to the one of [BDLN16] as the use of the
hashes and seed trees does not affect it significantly. We will however give a
detailed proof, first to address the differences with the proof of [BDLN16], and
second because the soundness proof of the protocol described in Sect. 5 will build
upon this first proof.

Let k′ = k/ log α + 1, let P̂ be a deterministic prover that makes an honest
verifier accept with probability p > 2−k. We will construct an extractor E that
extracts n − k′ values x′

i, i ∈ I ⊂ [n] such that f(x′
i) = yi and ‖x′

i‖ ≤ 2B. E will
run in expected time poly(s, k) · 1/p where s is the size of the input to PIProof .

We first give a high-level overview of the proof. Remark that by collision
resistance of H we can consider g1, . . . ,gT as being fixed by the value of h. E
will begin by running P̂ on random challenges, and thus random sets O ⊂ [T ].
Each time P̂ is successful E will be able to extract gj for j in O (since the
prover is effectively revealing gj , j ∈ O in his first message after the challenge).
E will repeat this step until he has extracted all but k′ vectors gj , we will
prove that this takes expected time O(1/p). Once this is done E can run P̂ until
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he succeeds and obtain vectors zi, i ∈ [n] such that, by collision resistance of H,
f(zi) = yi +f(gΦ[i]). If E has previously extracted gΦ[i] he can compute zi −gΦ[i]

which is a preimage of yi. Since E knows all but k′ vectors gj , E will be able to
obtain preimages for all but k′ secrets yi.

Formally: E starts P̂ who outputs h and runs the protocol on random chal-
lenges until he outputs (sj)j∈prefix(O) and (hj)j∈C , from this E can recover
hashes (hj)j∈[T ] such that H(h1, . . . , hT ) = h, fix h := h and hj := hj . Set
A := ∅ and run T instances of P̂ in parallel, which we denote P̂1, . . . , P̂T . Do
the following until |A| ≥ T − k′:

– For each P̂j sample a random challenge cj ← χT subject to cj [j] = 0 and
run P̂j on challenge cj .

– For each instance P̂j that does not abort, reconstruct sj from the prover’s
response and set gj = Dr

σ [PRG(sj)]. Verify the proof output by P̂j and set
A = A ∪ gj . Note that if the proof is valid then the verifier can reconstruct
h1, . . . , hT s.t

H(h1, . . . , hT ) = h = H(h1, . . . , hT )

since H is collision resistant we have in particular that hj = hj which implies
H(f(gj)) = hj . We also have ‖gj‖ ≤ B.

Observe that if this algorithm terminates we obtain a set A of at least T − k′

preimages of the hj by the function H ◦ f . We will now show that this extractor
finishes in expected polynomial time. This proof is very similar to the one of
[BDLN16] but we choose to present it anyway as it will be reused in the next
section.

Let pj be the probability that P̂j outputs a good gj (i.e. such that H(f(gj)) =
hj ∧ ‖gj‖ ≤ B). We say that pj is bad if pj < p/k′ and good otherwise. Let Xj

be the event that P̂j eventually outputs a good gj , where Xj = 1 if the event
happens and Xj = 0 otherwise. If pj is good then after l iterations:

Pr [Xj = 0] ≤ (1 − p/k′)l ≤ e−lp/k′

so after at most l = k · k′/p iterations we can expect that gj was extracted
except with probability negligible in k. This can be generalized to the success
of all P̂j (where pj is good) by a union bound, and the probability of failing is
still negligible because T is polynomial in k. The resulting extractor thus runs
in time O(Tk2/p log α) provided there are less than k′ bad pj .

Assume there are k′ bad pj which, for simplicity, are p1, . . . , pk′ . In the pro-
tocol the challenge is taken according to the distribution χT . The success prob-
ability of P̂ can be conditioned on the value of c [1] as

p = Pr
[ P̂ succeeds c [1] = 0

] · Pr [c [1] = 0]

+ Pr
[ P̂ succeeds c [1] = 1

] · Pr [c [1] = 1]

= p1

(
1 − 1

α

)
+

1
α

Pr
[ P̂ succeeds c [1] = 1

]
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Conditioning additionally on c [2] yields

p ≤ p1

(
1 − 1

α

)
+

1
α

((
1 − 1

α

)
αp2 +

1
α

Pr
[ P̂ succeeds c [1] = 1 ∧ c [2] = 1

])

=
(

1 − 1
α

)
(p1 + p2) +

1
α2

Pr
[ P̂ succeeds c [1] = 1 ∧ c [2] = 1

]

The reason the inequality holds is as follows: the probability that a random
challenge s.t c [2] will yield a preimage of h2 is p2. Now conditioning on c [1] = 1,
which occurs with probability 1/α, will increase that probability from p2 to at
most αp2.

Repeating the above argument generalizes to

p≤
(

1 − 1
α

)
(p1 + p2 + . . . + pk′)

+
1

αk′ Pr
[ P̂ succeeds c [1] = 1 ∧ . . . ∧ c [k′] = 1

]

<

(
1 − 1

α

)
p +

1
αk′

This entails that

p <
1

αk′−1
= α−k/logα = 2−k

From this we conclude that there are less than k’ bad pj , and thus that E has
extracted a set A of size at least T − k′ of elements gj s.t

H(f(gj)) = hj ∧ ‖gj‖ ≤ B.

We will now show how to use this set A to extract n − k′ secrets x′
i.

E runs P̂ on random challenges until it succeeds. Call this successful instance
P̃, this takes expected time 1/p. From the output of P̃, E obtains a set Φ̃ as
well as (z̃i)i∈[n] s.t H(f(z̃i) − yi) = h

˜Φ[i] (by collision resistance of H and by

the fact that H(h̃1, . . . , h̃T ) = h) and ‖z̃i‖ ≤ B. For each i ∈ [n] if there exists
g
˜Φ[i] ∈ A, then we have H(f(z̃i)−yi) = H(f(g

˜Φ[i])), setting x′
i = z̃i −g

˜Φ[i] gives

f(x′
i) = yi and ‖x′

i‖ ≤ 2B. Since |A| ≥ T − k′ there are at most k′ of the Φ̃ [i]
that are not in this set and E can extract n − k′ preimages x′

i. ��
Using this imperfect proof with the compiler of Theorem2.8 results in a
proof of knowledge with soundness slack 4k

√
rβ/ log α, communication over-

head O(1) (we will discuss this in further details in Sect. 6) and amortization

over 4
(

k
log α + 1

)2

secrets. e.g. for α = 210 one can create amortized proofs for
as few as 853 secrets with a security parameter k = 128, while the construction
of [CDXY17] needs to amortize over at least 67103 secrets for the same security.
However this protocol is not strictly better in the sense that the computation
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cost, which is essentially the number of evaluations of the function f , increases
multiplicatively in α for both the prover and the verifier, making this protocol
impractical for very large α. In the next section we describe a new variant of
the scheme inspired by the work of [BCK+14] that reduces the soundness errror
τ(k) without necessarily increasing the computational cost of the protocol.

5 Proving f(xi) = 2yi with Even Fewer Equations

In this section we use an idea from the zero-knowledge proof of [BCK+14] to
improve the imperfection of our previous scheme. In [BCK+14] the authors
prove knowledge of preimages for an ivOWF over a polynomial ring of dimension
d, they take advantage of this structure by replacing the binary challenge of
the classic 3-round ZKPOK with a challenge in

{
0,±1,±X, . . . ,±Xd−1

}
this

improves the soundness error of the protocol from 1/2 to 1/(2d + 1). We adapt
this technique to further improve the imperfection of our imperfect proof. The
knowledge extractor becomes however substantially more complicated.

Let R be the polynomial ring Z[X]/〈Xd + 1〉. For (a1, . . . , al) ∈ Rl and for
b ∈ R let � be the following product � : R×Rl → Rl such that b � (a1, . . . , al) =
(ba1, . . . , bal).

In this section we will consider ivOWFs f : Z
r � Rl → R such that for

b ∈ R and a ∈ Rl we have f(b � a) = bf(a). This type of one-way function is
often used in ideal-lattice constructions.

Lemma 5.1 ([BCK+14] Lemma3.2). Let d be a power of 2, let a, b ∈{±1, . . . ,±Xd−1
}
. Then 2(a − b)−1 mod Xd + 1 only has coefficients in

{−1, 0, 1}. In particular
∥∥2(a − b)−1

∥∥ ≤ √
d.

We now prove that the construction of Fig. 6 is an imperfect proof of knowl-
edge.

Theorem 5.2. Let f : Rl → R be an ivOWF, r = ld ≥ 128 be an integer, let
f ′ = 2f , let k be a statistical security parameter, H a collision resistant hash func-
tion, χ a distribution over

{
0,±1,±X, . . . ,±Xd−1

}
with Pr [χ = 0] = 1 − 1/α

and ∀c ∈ {±1, . . . ,±Xd−1
}
, Pr [χ = c] = 1/(2dα). Let T = 5αn, σ = 11β,

B = 2
√

rσ. The protocol PIProof given in Fig. 6 is an imperfect proof of knowl-
edge for inputs in RKSP(f, n, β), with soundness extractor in RKSP(f ′, n,

√
dB)

and imperfection k(1+1/ log α)
log α+log 2d + 1.

Proof. The proofs for the correctness and zero-knowledge of the protocol are
identical to the proofs in the previous section. On the other hand the soundness
proof is more involved.

Soundness: Let k′ = k(1+1/ log α)
log α+log 2d + 1, let P̂ be a deterministic prover that

makes an honest verifier accept with probability p > 2−k. We will construct an
extractor E that extracts n − k′ values x′

i, i ∈ I ⊂ [n] such that f(x′
i) = 2yi and

‖x′
i‖ ≤ √

dB. E will run in time poly(s, k) · 1/p1+2/ log α where s is the size of the
input to PIProof .
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Fig. 6. Our second construction: an imperfect proof of knowledge for f(xi) = 2yi with

imperfection k(1+1/ log α)
log α+log 2d

+ 1
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We first give a high level overview of the soundness proof. E starts by running
the extractor from Lemma 4.4 to obtain all but k/ log α+1 vectors gj as well as
all but k/ log α + 1 preimages xi. Next we would like to have E run P̂ until he
is successful twice and obtain two outputs:

– z1, . . . , zn such that f(zi) = c[Φ[i]] · yi + gΦ[i]

– z′
1, . . . , z

′
n such that f(z′

i) = c′[Φ′[i]] · yi + gΦ′[i]

Now if for a given i ∈ [n] we have both:

Φ[i] = Φ′[i] (2)

c[Φ[i]] �= c′[Φ[i]] (3)

Then E can extract (zi − z′
i) · 2 (c[Φ[i]] − c[Φ′[i]])−1 which is a preimage of 2yi.

We would thus like to show that there are at least n−k′ indices i ∈ [n] for which
both of these equations are true with non negligible probability. However proving
such a thing is difficult as the probabilities that (2) is true for each i ∈ [n] are
not independent. We instead show a somewhat stronger statement: we prove
that there exists a function g, going from the set of indices i for which xi was
not extracted to the set of indices j for which gj was not extracted, such that
if P̂ succeeds on a random challenge then with good probability Φ[i] = g(i) for
all indices i for which xi was not extracted. Intuitively we simply show that one
mapping Φ from the unextracted xi to the unextracted gj has to occur more often
than the others, which we call g. Since there are not too many such mappings
(less than 2k/ log α) we can restrict our extractor to only consider the outputs
of P̂ where he uses Φ = g. Now E can run P̂ until he outputs two valid proofs,
for which we are guaranteed that for all relevant i ∈ [n], Φ[i] = Φ′[i] = g(i). To
conclude we show that there exist at least n − k′ indices i for which the success
probability of P̂ is still high even when conditioned on c[Φ[i]] �= c′[Φ[i]]. Doing
so we obtain n − k′ indices i ∈ [n] for which both (2) and (3) are true, and E
can extract all but n − k′ preimages.

Formally: We first use the same extractor as in the proof of Lemma 4.4. Though
this scheme is different, the same extractor applies with the only difference being
that the equation verified by the extracted x′

i will be of the form f(x′
i) = bXayi

for some b ∈ {−1, 1} , a ∈ [d]. Which directly gives f(−bXd−ax′
i) = yi, since this

new pre-image has the same norm we can rename it and obtain the same result.
We thus obtain the following:

– h the hash sent by P̂ on his first flow.
– h1, . . . , hT such that H(h1, . . . , hT ) = h.
– A set A of at least T − k/ log α − 1 vectors g′

j such that H(f(g′
j)) = hj .

We define Ψ ⊂ [T ] to be the indices of the hj for which a preimage was not
extracted.

– A set S of at least n− k/ log α − 1 vectors x′
i such that f(x′

i) = yi. We define
Υ ⊂ [n] to be the indices of the yi for which a preimage was not extracted.

By construction of this extractor we have |Υ | ≤ |Ψ | ≤ k/ log α + 1.
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Observe that, on a successful run of P̂, the set Φ is a strictly increasing
mapping from [n] to [T ] (this is explicitly checked by the verifier). In the previous
protocol this was used to show zero-knowledge, as reusing randomness could leak
information, but this is now crucial for soundness. We also note that since Φ is
a function from [n] to [T ] we have either:

(A) Φ(Υ ) ⊂ Ψ
(B) Or ∃i ∈ Υ s.t. Φ[i] /∈ Ψ

If on a run P̂ is successful and (B) occurs then there exist i, j ∈ [n] × [T ] such
that H(f(zi) − c [j] yi) = hj and j = Φ[i] /∈ Ψ . As we have already extracted g′

j

with H(f(g′
j)) = hj = hj we obtain that x′

i = c [j]−1 (zi − g′
j) is a preimage of

yi. We can thus redefine the set Υ to be Υ := Υ\i. Suppose that on a successful
run of P̂, (B) occurs with probability greater than 1/2. The extractor can then
run P̂ O(2/p) times, successfully extract a new preimage of the yi and reduce
the size of Υ by 1. After repeating this procedure O(k) times we have either that
|Υ | < k′, in which case the extractor is done, or that (B) occurs with probability
strictly lower than 1/2 on a successful run. For the rest of the proof we assume
the latter. Since either (A) or (B) occurs on a successful run this implies that
(A) happens with probability strictly greater than 1/2.

On any run where (A) occurs, Φ induces a strictly increasing mapping from
Υ to Ψ , let G be the set of all such mappings, we have

|G| =
(|Ψ |

|Υ |
)

≤ 2|Ψ | ≤ 2k/ log α+1.

The extractor runs |G| parallel instances of P̂ denoted as P̂g, g ∈ G, and does
the following until |S| ≥ n − k′.

– Run instance P̂g with fresh randomness until it succeeds, (A) occurs and
Φ(Ψ) = g(Ψ). Denote the challenge used as c̃g and the output of the prover
as z̃g

i , i ∈ [n].
– Run |Υ | parallel instances of P̂g denoted as P̂g

i , i ∈ Υ , do the following:
• For each P̂g

i sample a random challenge cg
i ← χT subject to cg

i [i] �= c̃g [i]
and run P̂g

i on challenge cg
i .

• For each instance P̂g
i that does not abort. If (A) occurs and Φ(Ψ) = g(Ψ),

then the vector zi output by the prover verifies:

H(f(zi) − cg
i [g(i)] yi) = hi.

From the previous step we had z̃g
i such that

H(f(z̃g
i ) − c̃g [g(i)] yi) = hi.

The extractor sets

x′
i = (zg

i − z̃g
i ) · 2 (cg

i [g(i)] − c̃g [g(i)])−1

Note that f(x′
i) = 2yi and by Lemma 5.1 ‖x′

i‖ ≤ √
dB.
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We now prove that this extractor terminates in expected time poly(s,k)
p1+2/ log α . Since

|G| ≤ 2/p1/ log α it is sufficient to show that there exists g in G such that P̂g runs
in time poly(s, k) ·1/p1+1/ log α. On any run where (A) occurs, Φ(Υ ) is a function
in G, this implies that

Pr
[
P̂ succeeds ∧ (A)

]
=

∑
g∈G

Pr
[
P̂ succeeds ∧ (A) ∧ Φ(Υ ) = g

]

and thus

∃γ ∈ G s.t. Pr
[
P̂ succeeds ∧ (A) ∧ Φ(Υ ) = γ

]
≥

Pr
[
P̂ succeeds ∧ (A)

]

|G|

≥ p1+1/ log α

2

We will use the shorthand P̂ ∧ γ for the event P̂ succeeds ∧ (A) ∧ Φ(Υ ) = γ. Let
pi be the probability that P̂γ

i succeeds, i.e.

pi = Pr
[ P̂ ∧ γ c [γ(i)] �= c̃γ [γ(i)]

]
,

we say that pi is bad if pi <
Pr[P̂∧γ]

k′ and good otherwise. If there are less than
k′ bad pi then the extractor terminates in expected time

poly(s, k) · |G|
Pr

[
P̂ ∧ γ

] = poly(s, k) · 2k(1+2/ log α)

(c.f. the proof of Lemma 4.4). Assume that there are k′ bad pi which, for sim-
plicity, are p1, . . . , pk′ . Then the event P̂ ∧ γ can be conditioned on the value of
c[γ(1)] as

Pr
[
P̂ ∧ γ

]
= Pr

[ P̂ ∧ γ c [γ(1)] �= c̃γ [γ(1)]
] · Pr [c [γ(1)] �= c̃γ [γ(1)]]

+ Pr
[ P̂ ∧ γ c [γ(1)] = c̃γ [γ(1)]

] · Pr [c [γ(1)] = c̃γ [γ(1)]]

=
2dα − 1

2dα
p1 +

1
2dα

Pr
[ P̂ ∧ γ c [γ(1)] = c̃γ [γ(1)]

]

Conditioning on c [γ(2)] , . . . , c [γ(k′)] we have

Pr
[
P̂ ∧ γ

]
≤ 2dα − 1

2dα
(p1 + . . . + pk′)

+
1

(2dα)k′ Pr
[ P̂ ∧ γ c [γ(1)] = c̃γ [γ(1)] , . . . , c [γ(k′)] = c̃γ [γ(k′)]

]

<
2dα − 1

2dα
Pr

[
P̂ ∧ γ

]
+

1
(2dα)k′

≤ 1
(2dα)k′−1

< 2−k(1+1/ log α)−1
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which contradicts the fact that Pr
[
P̂ ∧ γ

]
≥ p1+1/ log α

2 .
From this we conclude that there are less than k′ bad pi, and thus that the

extractor has extracted a set S of n − k′ vectors x′
i such that ‖x′

i‖ ≤ √
dB and

f(x′
i) = 2yi in time poly(s, k) · 2k(1+2/ log α). ��

6 Proof Size

In this section we will go more in-depth in the trade-offs offered by the schemes
described in Sects. 4 and 5. We first give the expected value as well as an upper
bound on the size of the prefix S of the set O as the second flow of the prover
will consist in sending |S| seeds (and |C| hashes).

Lemma 6.1. Let T = 2t, let c ← χT ∈ CT (the set C from which the values
of c are taken does not matter, all that matters is the probability with which 0
is sampled) with χ such that Pr [χ = 0] = 1 − 1/α, let O = {j ∈ [T ] , c [j] = 0},
and let S(c) = prefix(O) be as defined in Sect. 4. Then:

– With overwhelming probability we can bound the size of S(c) by

|S(c)| ≤
⌊

1.4T

α
log

α

1.4

⌋

Proof. Consider the binary tree Γ which leaves are numbered according to [T ],
we will say that a leaf j ∈ [T ] is selected if c [j] = 0. First observe that we can
split Γ into two trees ΓL and ΓR of size T/2, ΓL being the binary tree associated
to the first T/2 values cL of c and ΓR the tree associated to the last T/2 vales
cR of c. The prefix S(c) of Γ will be the union of the prefixes S(cL) and S(cR),
except if all the leaves of Γ are selected, in which case its prefix will be its root.
i.e. ∀c �= (0, . . . , 0), S = S(cL)∪S(cR), which implies |S(c)| = |S(cL)|+ |S(cR)|.

We first use the Chernoff bound to obtain a lower bound on the size of O.
Let C = [T ] \O, we have:

Pr [|C| > 1.4T/α] ≤ e− T
15α = e− n

3

since for all practical parameters we will have n ≥ 250, we can assume that
|C| ≤ 1.4T/α. We consider the worst case for the size of S for a given |C| = a,
i.e. we define

W (T, a) = max
#0(c)=T−a

(|S(c)|) .

We will prove that ∀a ∈ [T ] ,W (T, a) ≤ a log (T/a). Remark that for all T ,
W (T, 0) = 1. Since for all c ∈ CT we have

|S(c)| ≤ |S(cL)| + |S(cR)| ,

we get
W (T, a) ≤ max

b
(W (T/2, b) + W (T/2, a − b))
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where max(0, a − T/2) ≤ b ≤ min(a, T/2). We prove that

∀a ∈ [T ] ,W (T, a) ≤ a log (T/a)

by induction over T = 2t:

– For T = 1, W (1, 1) = 1
– For 2T : Assume that for all 1 ≤ b ≤ T , W (T, b) ≤ b log (T/b) (and W (T, 0) =

1). Fix a ∈ [2T ]. Let f(b) = W (T, b) + W (T, a − b), then

W (2T, a) ≤ max
b

(f(b))

for max(0, a − T/2) ≤ b ≤ min(a, T/2).
• For b = a or b = 0,

f(b) = W (T, a) + W (T, 0) ≤ a log(T/a) + 1 ≤ a log(2T/a)

• For b �= a and b �= 0,

f(b) ≤ a log(T/a) + (a − b) log(T/(a − b)).

Simple analysis shows that this function reaches its maximum for b = a/2,
and thus f(b) ≤ a log(2T/a)

We conclude by using the fact that W (T, a) is an integer. Finally, with high
probability

|S(c)| ≤ W (T, 1.4T/α) ≤
⌊

1.4T

α
log

α

1.4

⌋

��
We will show that the size of the protocol given in Fig. 4 can be made nearly inde-
pendent of the parameter α by cleverly encoding each flow. We will consider the
four flows of the protocol each on its own (though it is clear that the proof really
is a three-move protocol since the last two flows can be sent simultaneously).

First Flow: The prover sends h ∈ {0, 1}256 to the verifier, this is clearly inde-
pendent of α.

Flow size = 256 bits

Second Flow: The verifier sends c ∈ {0, 1}T to the prover, this takes 5αn bits
since T = 5αn. However the verifier can compute the sets O and C = [T ] \O
before sending c (rather than doing it afterwards) and equivalently send the set
C. We have |C| ≤ 7n and since the indices of C are in [T ] they can be encoded in
log(5αn) bits. The second flow only depends on α logarithmically.

Flow size ≤ 7n log(5αn) bits

Third Flow: The prover sends (sj)j∈S and (hj)j∈C to the verifier. From
Lemma 6.1 we have that |S| ≤ 7n log(α/1.4) and similarly |C| ≤ 7n, since the
seeds and hash all are in {0, 1}256 this flow depends logarithmically on α.

Flow size ≤ 7n log
(

2α

1.4

)
· 256 bits
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Fourth Flow (i.e. second part of the Third Flow): The prover sends Φ
and (zi)i∈[n] to the verifier. Since Φ ∈ [T ]n sending it naively would require
n log(5αn) bits, however all the elements of Φ correspond to non-zero indices of
c, i.e. they are in C. Φ can thus be encoded using n log(|C|) ≤ n log(7n) bits.
The coefficients of the zi come form Dσ by a tail cutting argument they can be
represented in log(11σ) = log(112β) bits each and there are nr of them. The
fourth flow is independent of α.

Flow size ≤ n log(7n) + nr log(112β) bits

The proof in Fig. 6 only differs in size from this proof on the second flow, where
the challenge c is in

{
0,±1,±X, . . . ,±Xd−1

}T . But similarly to the encoding
we use for the first protocol, the verifier can simply send the set C as well as a
vector of dimension |C| containing the challenges in

{±1,±X, . . . ,±Xd−1
}
. The

size of the second flow now becomes 7n log(5αn) + 7n log(2d). The total size of
the proof is finally upper bounded by:

256 + n

(
7 log(5αn) + 1792 log

(
2α

1.4

)
+ log(7n) + 7 log(2d) + r log(112β)

)
bits

where the boxed term only exists in the protocol from Fig. 6. Note that this
size only has a very slight dependence on α. In fact the largest summand will
be the one corresponding to the zi up to α ∼ 230, for which the computation
requirements of the proof will already be the bottleneck. The complete proof
consists in two iterations of the imperfect proof, one with parameter β and the
second with parameter τ(k)β, the size of the complete proof is thus:

512 + n

(
14 log(5αn) + 3584 log

(
2α

1.4

)

+ 2 log(7n) + 14 log(2d) + r log(τ(k)114β2)
)

bits

And if we consider the average case rather than the worst case we can assume
that |S| ≤ 5n log α and |C| = 5n. Which gives the expected proof size:

512 + n

(
10 log(5αn) + 2560 log (2α)

+ 2 log(5n) + 10 log(2d) + r log(τ(k)114β2)
)

bits

We compare in Table 2 our scheme with the one of [CDXY17] for the (Ring)-
LWE one-way function with dimension d = 1024 (so r = 2048), and binary
secrets (so β =

√
r). For a fair comparison we consider the protocol of [CDXY17]

in the euclidean norm and with our improvements (only one hash in the first
flow and seeds instead of gj in the third flow). The communication cost per
secret and the slack are rather similar in all three protocols. The main difference
being that our protocols allows for amortization over very few secrets but at
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Table 2. Comparison between [CDXY17] and our protocols for the R-LWE ivOWF
with binary secrets. Masking parameters are revealed with probability 1−1/α, k is the
security parameter, τ(k) the imperfection of the protocol, and n the number of secrets.
The communication is per secret and the run-time is in number of evaluations of the
ivOWF per secret per player.

[CDXY17] Protocol I Protocol II

α 2 16 64 256 2 16 64 256

k 128 128 128 128 128 128 128 128

τ(k) 129 33 23 17 23 12 10 9

n 69169 4489 2209 1369 2209 841 529 361

T 6.9 · 106 3.6 · 105 7.1 · 105 1.8 · 106 2.2 · 104 6.7 · 104 1.7 · 105 4.6 · 105
Slack 2.6 · 105 6.7 · 104 4.7 · 104 3.7 · 104 1.5 · 106 9.2 · 105 7.2 · 105 6.1 · 105
Proof size 8.8 kB 9.2 kB 9.7 kB 10.3 kB 8.2 kB 8.9 kB 9.5 kB 10.1 kB

Run-time 16 128 512 2048 16 128 512 2048

a larger computation cost. In Fig. 1 we plot the number n of secrets we can
amortize over as a function of log α. It is apparent that increasing log α past
a certain threshold yields very little advantage while drastically increasing the
computation cost (which grows linearly in α). It is also clear that our second
protocol gives better amortization than the first one, though this only proves
the knowledge of short pre-images of 2y.
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