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1	 �Pathophysiology

Acute respiratory distress syndrome (ARDS) is a 
critical noncardiogenic syndrome caused by het-
erogeneous pathologic factors, and is character-
ized by acute development of respiratory failure, 
bilateral diffuse lung infiltrations, and severe 
hypoxemia. The severity of ARDS is associated 
with poor prognosis and higher mortality. The 
first description of ARDS was published in 1967 
by Ashbaugh et  al. [1] where it was defined as 
acute lung injury developed after various traumas, 
drug ingestion, aspiration, bacterial or viral pneu-
monia, sepsis, etc. Thus, ARDS is a syndrome 
characterized by tachypnea, hypoxemia and loss 
of lung compliance and diffuse alveolar infiltra-
tions that does not respond to ordinary methods of 
respiratory therapy, closely resembling infantile 
respiratory distress syndrome [1]. The new ARDS 
definition, formulated in 2012 (the Berlin defini-
tion), divided ARDS into three categories using 
hypoxemia as one of main diagnostic parameters. 
According to the Berlin definition, hypoxemia is 
defined as decreased arterial blood oxygen ten-

sion (PaO2) to fraction of inspired oxygen (FiO2) 
ratio with 201–300 mm Hg for mild ARDS, 101–
200 mm Hg for moderate ARDS, and ≤100 mm 
Hg for severe ARDS [2]. Acute lung injury (ALI), 
which is similar to mild ARDS, has been excluded 
from the new definition. Under normal condi-
tions, the dynamic equilibrium between fluid for-
mation and clearance across lung epithelium is 
strictly regulated [3, 4] and the pulmonary edema 
associated with ARDS is the result of a loss of the 
barrier functions of the lung capillary endothe-
lium and alveolar epithelium resulting in vascular 
leakage and extravascular water accumulation in 
the lung. Thus, impaired alveolar liquid clearance 
is characteristic for the majority of patients with 
lung injury [5]. Similarly, injury to the lung endo-
thelium also leads to fluid hyperpermeability, 
increased production of pro-inflammatory factors 
and increased expression of the adhesion mole-
cules needed for leukocyte recruitment and neu-
trophil migration across the endothelium into the 
lung. These activated neutrophils induce tissue 
damage by secreting cytotoxic agents such as 
granular enzymes, pro-inflammatory cytokines, 
ROS, and bioactive lipids. The variety of patho-
logic stimuli leading to ARDS is indicative of the 
existence of numerous independent risk factors 
associated with the syndrome. These factors may 
have either a direct effect on ARDS severity or 
may potentiate complications by activating 
inflammatory processes or impairing lung 
function. However, sepsis is the main risk factor, 
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although not all severe sepsis patients suffer from 
ARDS. Although it should be noted that ARDS 
developed in sepsis patients is associated with 
fourfold higher risk of mortality (14 vs. 60%) [6]. 
Comparative analysis of clinical data shows a 
good correlation between the Berlin definition of 
ARDS severity and mortality rates (27%, 35%, 
and 45%, for mild, moderate, and severe ARDS, 
respectively), increased lung weight by CT scan, 
and duration of mechanical ventilation in survi-
vors (6, 12, and 19 days) [2]. Studies have also 
revealed a correlation between ARDS severity 
categories and the volume of extravascular liquid 
accumulated in the lungs (16.1, 17.2, and 19.1 ml/
kg) [7]. Early detection is the best way to attenu-
ate the development of ALI/ARDS. However, 
standard chest X-ray diagnostics may be insensi-
tive for the early phase of ARDS when pulmonary 
edema is hard to detect and other imaging systems 
such as lung ultrasound, CT scan, and positron 
emission tomography are being evaluated [8–12]. 
Other approaches are investigating the possibility 
of using biomarkers to identify early signs of 
ARDS.  Several diagnostic methods based on a 
clearance of isotope-labeled low-molecular 
weight compounds or pulmonary vessel leakage 
assessment [13], evaluation of the levels of VEGF, 
interleukin-2 (IL-2), interleukin-8 (IL-8), and 
other pro-inflammatory markers in BALF and 
plasma samples [14–16] have been proposed. 
Further, a thorough comparative study of bio-
markers of inflammation, fibroblast activation, 
proteolytic injury, lung endothelial and epithelial 
injury in severe sepsis patients with or without 
ARDS has identified at least five biomarkers char-
acteristic for ARDS that appear to be suitable for 
further diagnostics in plasma or bronchoalveolar 
lavage fluid (BALF) samples: surfactant protein-
D (SP-D), receptor for advanced glycation end-
products (RAGE), IL-8, club cell secretory 
protein (CC-16), and interleukin-6 (IL-6) [16]. 
Indeed, a critical care randomized trial demon-
strated that early alveolar damage can be identi-
fied by the presence of SP-D in blood. Significantly 
increased levels of SP-D is a strong independent 
predictor that the patient suffers from ARDS who 
will not recover [17]. Due to heterogeneity of 

ALI/ARDS etiology and complexity of the syn-
drome, there is no efficient therapy available. 
Mechanical lung ventilation as a supportive clini-
cal approach for oxygenation of healing lungs is a 
standard therapeutic method for ARDS patients. 
However, mechanical ventilation itself can lead to 
biotrauma increasing lung inflammation and 
worsening clinical condition due to ventilation-
induced lung injury (VILI) [18–20]. Recent stud-
ies have demonstrated that injured lungs can be 
optimally supported by low-tidal volume ventila-
tion and that this requires personalization of the 
settings [20–23]. Lung ventilation can also be 
supplemented by anti-inflammatory medicine. 
First applied for ARDS treatment by Ashbaugh 
and colleagues [1], corticosteroids are still con-
sidered valuable for the treatment [24], as a major 
anti-inflammatory agent.

Excessive ROS generated by the injured endo-
thelium/epithelium as well as recruited leukocytes 
plays a major role in ARDS progression and lung 
damage. Oxidative stress can be a cause of the 
endothelial and epithelial barrier dysfunctions 
resulting in massive neutrophil penetration across 
the barriers followed by secretion of cytotoxic 
agents (Fig. 1). ROS upregulate the expression of 
pro-inflammatory cytokines and adhesion mole-
cules amplifying the tissue damage and pulmo-
nary edema. Thus, a proper oxidant–antioxidant 
balance is critical for vasculature homeostasis. 
Therefore, the systems responsible for excessive 
ROS production can be therapeutic targets in 
ARDS treatment. The following sections summa-
rize our current knowledge regarding ROS genera-
tion and their effects on ARDS development and 
discuss possible approaches to prevent or mini-
mize ROS-induced pulmonary damage.

2	 �Biological Origins of ROS 
in Vasculature

2.1	 �Cellular Free Radicals

Free radical intermediates generated during the 
reduction–oxidation (redox) reaction involving 
the conversion of molecular O2 to water are called 
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ROS.  Molecular oxygen (O2) as such is a free 
radical having two unpaired electrons with the 
same spin quantum number or parallel spin. When 
O2 tries to oxidize a non-radical by accepting a 
pair of electrons with antiparallel spin, these elec-
trons do not match the spin number in O2. 
Therefore, the reaction of O2 with non-radicals is 
thermodynamically unfavorable. However, O2 can 
readily accept single electron transfers from other 
free radicals [25]. For example, during aerobic 
respiration, cytochrome oxidase of mitochondria 
catalyzes four such single electron transfers to 
molecular O2 from two reduced heme (Fe2+) and 
two copper (Cu+) ions coupled with proton trans-
location resulting into molecular water, energy, 
and oxidized cytochrome [26, 27]. The cyto-
chrome oxidase enzyme operates under severe 
constraints to prevent release of partially reduced, 
toxic, and high energy oxygen free radicals. Cells 
can efficiently reduce almost 95% of molecular 
oxygen that we consume to water by aerobic res-
piration. When a single electron is transferred to 
molecular O2, the resulting product is a superox-
ide (O2

•-) free radical. Another electron transfer to 
O2

•- results into peroxide (O2
2−) ion. This reaction 

may be spontaneous dismutation or catalyzed by 
superoxide dismutase (SOD) [28]. Hydrogen per-
oxide when completely reduced is converted to 
molecular water and O2. Partially reduced hydro-
gen peroxide in the presence of transition metals 
yield the most potent hydroxyl (OH.) free radical 
[29]. Together, these oxygen free radicals are 
called ROS. The other important free radical in 
the vasculature is nitric oxide (NO.). Under physi-
ological conditions, O2

•- reacts with NO. to form a 
highly oxidative, reactive nitrogen species (RNS), 
peroxynitrite (ONOO−). These oxidizing and 
nitrating free radicals can severely damage cellu-
lar macromolecules such as lipids, proteins and 
DNA even under normal physiological conditions 
[30]. Therefore, antioxidant mechanisms that 
neutralize the highly oxidative free radicals are 
critical for cell survival.

2.2	 �ROS in Vascular Tissue

The generation of ROS is an unavoidable conse-
quence of living in an oxygen rich environment 
and organisms have evolved with elaborate 

Fig. 1  Dysfunction of microvascular endothelium and 
alveolar epithelium in ARDS. Polymorphonuclear leuko-
cytes (PMNs) and macrophages infiltrate the inflamed 
region through the microvascular blood vessels releasing 
cytotoxic factors such as pro-inflammatory cytokines and 

ROS. Theese cytokines and ROS contribute to the endo-
thelial and epithelial dysfunction resulting in leakage of 
fluids from circulation into the interstitial space and alve-
oli. This results in pulmonary edema and impaired gas 
exchange. Sources of inflammation range from bacterial 
infections to mechanical ventilation
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Fig. 2  Sources of reactive oxygen species. Mitochondria, 
NADPH oxidase, xanthine oxidase, and eNOS are the major 
contributors of ROS in cells of vasculature during active 
metabolism. NADPH oxidase in phagocytic cells such as 
macrophages and neutrophils that are resident in blood ves-
sels contribute to a significant amount of superoxide (O2

·−). 
Endothelial NOS (eNOS) generates NO free radicals that 
interact with O2

·− to generate peroxynitrite. Peroxynitrite 
induces nitrasative stress on cells by nitrating proteins and 
altering signaling pathways. When eNOS is uncoupled, it can 
generate superoxide. Oxidative phosphorylations in mito-
chondria are a source of O2

·−. Especially complexes I, III, and 
IV generate O2

·− when there is a leak of electrons at subse-
quent transfer stages. O2

·− generated in mitochondria is often 
immediately dismutated to H2O2 by SOD which can cross 
mitochondrial membrane as well as cell membranes. Other 
lesser sources of ROS are cytochrome P450 enzymes which 

often generate O2
·− during detoxification of xenobiotics and 

they are predominantly expressed in hepatic tissue. ADP ade-
nosine diphosphate, ATP adenosine triphosphate, BH4 tetra-
hydrobiopterin, Ca-Calmodulin calcium and calmodulin, 
CoQ coenzyme Q, Cyt c cytochrome c, eNOS endothelial 
nitric oxide synthase, FADH2 flavin adenine dinucleotide, 
H2O2 hydrogen peroxide, IMM inner mitochondrial mem-
brane, IMS inter-mitochondrial membrane space, NADH nic-
otinamide adenine dinucleotide, NADPH nicotinamide 
adenine dinucleotide phosphate, NO nitric oxide, OMM outer 
mitochondrial membrane, Pi inorganic phosphate, O2

− super-
oxide free radical, ONOO− peroxynitrite free radical, SOD 
superoxide dismutase, complex I—NADH oxidoreductase 
(I), complex II—succinate dehydrogenase (II), complex III—
cytochrome c reductase (III), complex IV—cytochrome c 
oxidase (IV), complex V—ATP synthase (V), XH xenobiotic, 
XOH alcohol/aldehyde form of xenobiotic
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mechanisms to detoxify these ROS. As shown in 
Fig. 2 both enzymatic (NAPDH oxidase [NOX], 
xanthine oxidase, and uncoupled nitric oxide syth-
ase [NOS]) and nonenzymatic (mitochondrial) 
sources can be major ROS producers in endothe-
lium. The endothelium is more than just a single 
layer of cells lining the lumen of blood vessels. It 
is intimately involved in maintaining the homeo-
stasis of vascular tissue. ROS can influence many 
functions of the endothelium. The endothelium 
acts as a barrier to prevent leakage of the contents 
of circulation. It also generates NO which medi-
ates vasorelaxation. Endothelial cells are suscep-
tible to increased ROS generation under various 
pathological conditions. For example, ROS depen-
dent expression of adhesion molecules such as 
ICAM-1 and VCAM-1 by endothelial cells can 
recruit immune cells that themselves express 
enzymes that generate high levels of 
ROS.  Neutrophils and macrophages recruited to 
the site of inflammation generate free radicals that 
contribute to the pool of ROS causing oxidative 
stress (Figs. 1 and 2). It has been noted that neutro-
phils can kill endothelial cells by generating ROS 
[31]. In the lungs multiple cell types including, 
endothelial cells, neutrophils, eosinophils, alveo-
lar macrophages, and alveolar epithelial cells are 
major ROS generators. Fibroblasts, perivascular 
adipocytes and vascular smooth muscle cells are 
also significant sources of ROS in the vasculature. 
Within these cells, several enzymes are involved 
in generating ROS. These include NOX, uncou-
pled NOS, dysfunctional mitochondria, and xan-
thine oxidase. There is evidence that all these 
systems may be involved in the oxidative stress 
associated with ALI/ARDS and antioxidants have 
been shown to reduce the severity of ALI/ARDS 
in multiple mouse models including lipopolysac-
charide (LPS) [32–34], influenza A [35], hyper-
oxia [36], toxic gas [37], ischemia–reperfusion 
(I/R) [38], sepsis [39, 40], acid aspiration [41], 
burn and smoke inhalation [42] as well as high 
tidal mechanical ventilation [43–45]. Figure  2 
illustrates the biological origins of ROS in a cell. 
The following sections will deal with the major 
ROS generating systems in the pulmonary vascu-
lature and how they are involved in the pathogen-
esis of ARDS.

2.3	 �Xanthine Oxidase

Xanthine oxidoreductase (XOR) belongs to the 
molybdoenzyme family with two interconvert-
ible forms, O2 dependent type O xanthine oxidase 
(XO) and NAD-dependent type D xanthine dehy-
drogenase (XDH). It catalyzes the oxidation of 
hypoxanthine to xanthine and uric acid in purine 
metabolism [46, 47]. XOR is a homodimer, and 
each monomer consists of three domains each 
harboring cofactors molybdopterin (Mo–Co), 
two iron–sulfur centers [2Fe-2S], and flavin ade-
nine dinucleotide (FAD) arranged linearly in the 
order of their redox potentials [48]. In the process 
of purine metabolism, XO generates ROS, O2

·− 
and hydrogen peroxide. Early studies using iso-
lated rabbit lungs perfused with XO increased the 
permeability of pulmonary microvascular endo-
thelial cells implicating the role of XO in lung 
injury [49]. Reperfusion of rabbit lungs were 
with XO inhibitor allopurinol or superoxide scav-
enger, SOD decreased the lung injury [50]. In a 
VILI animal model, application of high tidal vol-
ume mechanical ventilation (HTMV) activated 
XOR and increased the pulmonary capillary per-
meability [51]. Treatment of endothelial cells 
directly with ROS or with XO decreases the tran-
sendothelial electrical resistance (TEER) and 
increases the permeability of macromolecules 
[52]. Oxidative stress is known to induce apopto-
sis of epithelial cells during VILI [53]. VILI also 
induces p38 MAPK mediated inflammatory lung 
injury [54] and activation of p38 increases XOR 
enzymatic activity. Pharmacological inhibition of 
p38-XOR attenuates VILI induced lung injury 
[55]. These studies indicate a significant role of 
XOR in ROS mediated lung injury.

2.4	 �Uncoupled Endothelial Nitric 
Oxide Synthase

Under normal physiological conditions, endo-
thelial nitric oxide synthase (eNOS) functions as 
a homodimer to produce the vasodilator signal-
ing molecule, NO. NO is a free radical capable 
of reacting with ROS to generate RNS [56]. 
eNOS requires molecular O2 and L-arginine as 
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substrates along with cofactors NADPH, 
6(R)-5,6,7,8-tetrahydrobiopterin (BH4), FAD, 
and FMN [57] to produce NO and L-citrulline as 
a by-products. To understand the role of eNOS in 
ROS generation, we need to first understand the 
structure and mechanism of action of eNOS. The 
C-terminus reductase domain of one monomer 
in the eNOS homodimer is linked to N-terminus 
oxidase domain of the other monomer. The 
homodimer is stabilized by a zinc thiolate cluster 
which include phylogenetically conserved cyste-
ine residues that bind zinc ion in a tetrahedral 
conformation [58]. The reductase domain binds 
to NADPH, FMN, and FAD cofactors, and oxy-
genase domain binds to cofactor BH4, and sub-
strates L-arginine and O2 [59]. The oxygenase 
domain also carries the prosthetic heme cofactor. 
Calcium–calmodulin binding sequence is 
located in the center between the reductase and 
oxygenase domains. Binding of calcium–
calmodulin aligns the two domains for an effi-
cient transfer of electrons from reductase domain 
to the heme on the oxidase domain, therefore 
making the eNOS homodimer catalytically 
active [60]. Two electrons donated by NADPH 
are transported through flavins, FAD and FMN 
and subsequently to the heme of the oxidase 
domain to activate O2. Reduced oxygen is incor-
porated into the guanidine group of L-arginine in 
two steps; step one includes hydroxylation of 
L-arginine to Nω-hydroxy-L-arginine intermedi-
ate and in the second step Nω-hydroxy-L-arginine 
oxidized to L-citrulline and NO [61]. Since NO 
generation is a tightly regulated process, patho-
physiological conditions causing deficiency of 
any of these cofactors can lead to generation of 
superoxide O2

•- which is called uncoupling. 
Under uncoupled conditions, eNOS can synthe-
size O2

•- at the heme although this requires bind-
ing of calcium–calmodulin. O2

•- generation by 
eNOS appears to be primarily dependent on the 
availability of BH4 rather than L-arginine [62]. It 
is thought that BH4 couples L-arginine oxidation 
to NADPH reduction by preventing the disasso-
ciation of the ferrous-dioxygen complex of heme 
[63], suggesting that BH4 can be used as pharma-
cological agent to treat vascular diseases. BH4 

has also been implicated in the maintenance of 
mitochondrial redox balance [64]. The mecha-
nism by which eNOS becomes uncoupled 
appears to be through increases in the endoge-
nous NOS uncoupler, asymmetric dimethylargi-
nine (ADMA) and the generation of peroxynitrite 
[65, 66]. Peroxynitrite can add a nitro group 
(-NO2) to one ortho carbon of tyrosine’s pheno-
lic ring to form 3-nitrotyrosine (3-NT), a process 
called protein nitration. Protein tyrosine nitra-
tion dramatically alters the pKa of the tyrosine 
hydroxyl group producing structural and func-
tion changes within affected proteins [67]. 
Peroxynitrite can also cause uncoupling of eNOS 
via the oxidation of zinc thiolate clusters and the 
formation of disulfide bonds between the mono-
mers [68]. The phosphorylation of eNOS at 
T495, mediated by protein kinase C (PKC), 
impairs NO production in the endothelial cells 
[69] and enhances eNOS uncoupling. pT495 
eNOS can be translocated to mitochondria [70, 
71] where it increases mitochondrial derived 
ROS. Proteomic studies have begun to identify 
nitrated proteins that may be important in ALI/
ARDS.  The proteins identified so far include 
sphingosine-1-phosphate lyase 1 (SIP lyase 1) 
[72], Rho-GTPase-activating protein 5 
(RHOGAP5) [72] and RhoA itself [73]. 
However, RhoA is the only nitrated protein vali-
dated being involved ALI/ARDS [72, 74]. 
Uncoupled eNOS has aslo been shown to be 
involved in the lung injury associated with G+ 
bacterial infections [70], smoke inhalation [75], 
and high tidal mechanical ventilation [76].

2.5	 �Mitochondrial Respiratory 
Chain

Mitochondria are the respiratory centers of the cell 
where ATP is produced by reducing O2 to water. A 
series of single electron transfers are performed 
across four electron transport complexes (ETC) 
[77]. The four ETC are arranged in the order of 
increasing redox potential, between -32 V (NADH 
of complex I) and +39 V (cytochrome a3 of com-
plex IV). Complex I (NADH dehydrogenase), 
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complex III (cytochrome c reductase), and 
complex IV (cytochrome c oxidase) pump protons 
H+ into the mitochondrial intermembrane space 
which contribute to the mitochondrial membrane 
potential that will ultimately drive the ATP syn-
thase motor to generate high energy ATP from 
ADP and inorganic phosphate. The transfer of 
electrons across these electron transport carriers is 
usually highly efficient. However, there is 1–2% 
leak of electrons that react with O2 to generate O2

•-. 
Complex I and III are the major contributors of 
O2

•- in mitochondrion [78]. Electrons donated by 
NADH to complex I are transported through flavin 
complex, series of Fe–S clusters to ubiquinone 
Q. Superoxide can be generated at each of these 
electron transport steps by complex I [79–81]. 
Furthermore, any blockade in the electron trans-
port downstream of complex I can result in signifi-
cant generation of O2

•- by complex I. The presence 
of a higher NADH/NAD+ ratio can drive more O2

•- 
generation into the mitochondrial matrix by com-
plex I [81]. Complex I is major source of O2

•- in 
skeletal and neural cells whereas complex III is the 
major source of O2

•- in endothelial cells. Therefore, 
cell type as well as the metabolic state of the cell 
determines the source of O2

•- in mitochondria. 
Complex II (succinate dehydrogenase) is not a sig-
nificant source of O2

·− in mitochondria. Complex 
III on the other hand generates O2

·− during the Q 
cycle which involves transfer of electrons from 
complex I and II to ubiquinone resulting in reduc-
tion of ubiquinone to ubiquinol [82, 83] resulting 
in the release of O2

•- to both sides of the inner mito-
chondrial membrane [84]. Oxidation of ubiquinol 
involves donation of two electrons to cytochrome 
c as single electron transfers through reiske iron–
sulfur protein and cytochrome c1, resulting in 
unstable intermediate ubisemiquinone. 
Ubisemiquinone radical donates the single elec-
tron to O2 to generate O2

·− [85]. O2
·− generated by 

mitochondria is converted to H2O2 by manganese 
SOD (MnSOD) that can cross the mitochondrial 
membrane into cytoplasmic compartment. O2

•- 
and H2O2 form the pool of mitochondrial ROS 
(mtROS). Genetic mutations in nuclear and mito-
chondrial genes encoding the proteins of mito-
chondrial respiratory complexes can lead 
dysfunction of specific electron transport com-

plexes. Defects in complexes I and III can lead to 
significant increase in mtROS and subsequent 
pathological conditions [86]. Increase in mtROS 
can alter the signaling of redox sensitive transcrip-
tion factors such as HIF-1α which can further alter 
the metabolic state of the cell [87]. Other impor-
tant aspects of mtROS is regulation of inflamma-
some [88], activation of caspases [89] and 
regulation cell death by apoptosis [90]. Therefore, 
ROS generated by mitochondria have very broad 
implications on cellular homeostasis. Excessive 
demand for ATP or damage to any of the ETC 
components can result in increased ROS leakage 
by complexes I, III and IV and consume the anti-
oxidant defenses. This can lead to rupture and 
release of mitochondrial components including 
mitochondrial DNA (mtDNA) [91]. Release of 
mtDNA can induce an inflammatory response [92] 
through activation of TLR9/NLRP3 inflamma-
some [93]. Excessive ROS can activate pro-apop-
totic Bcl-2 family proteins by increasing 
mitochondrial permeability to drive the MMP, 
release cytochrome c, mtDNA [94], and pro-apop-
totic caspase-3 and -9. This leads to the activation 
of intrinsic or mitochondrial driven cell death by 
apoptosis [95]. Mitophagy removes excessive 
ROS generating mitochondria to avoid cell death 
by self-destructive inflammatory response [96]. 
This is evident by the activation of NLRP3 inflam-
masome when mitophagy is inhibited [97]. Under 
normal breathing, lung epithelial cells are adapted 
to cyclic stretch. However, under mechanical ven-
tilated conditions, increased levels of mitochon-
drial ROS can be generated by epithelial cells 
when subjected to cyclic stretch as a result of 
direct distention of mitochondria. This ROS pro-
duction is dependent upon the time and magnitude 
of stretch [98]. Excessive ROS generation can lead 
to loss of mitochondrial function and apoptosis of 
lung epithelial cells [99]. Viral infections can also 
alter the mitochondrial dynamics leading to exces-
sive mtROS generation, mitochondrial biogenesis, 
and altered mitochondrial β-oxidation [100, 101]. 
Given the central role of mitochondria in cell 
physiology, antioxidants to combat the deleterious 
ROS generated by the mitochondrion could be a 
potential target for developing therapeutic strate-
gies for ALI/ARDS.
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2.6	 �Cytochrome P450

Cytochrome P450 (CYP) belongs to the family of 
membrane bound heme-thiolate enzymes 
involved in oxidative metabolism of a variety of 
hydrophobic endogenous macromolecules and 
exogenous compounds such drugs, carcinogens, 
and xenobiotics by monooxygenation reaction 
[102]. Most CYP enzymes are predominantly 
expressed in the liver. Some isoforms of CYP 
such as 2B, 2C8, 2C9, 2C10, 2J2 are expressed in 
endothelium and vascular smooth muscle cells 
where they play important roles in arachidonic 
acid metabolism and in the maintenance of vas-
cular homeostasis and tone. CYP at resting state 
have a hexa-coordinated low spin heme (LS) 
having water molecule weakly bound as the sixth 
axial ligand. The water molecule is then dis-
placed by the substrate resulting in a penta-
coordinated high spin (HS) heme. This LS to HS 
transition of heme increases its redox potential. 
HS ferric heme is reduced to ferrous heme by 
accepting electrons donated by a redox partner; 
in this case, NADPH-dependent cytochrome 
P450 reductase, a diflavoprotein that contains 
FAD and FMN.  Oxygen binds to ferrous heme 
followed by a series of oxyferrous intermediates 
leading to activation of O2. Second electron 
transfer from redox partner to oxyferrous inter-
mediate results in a series of intermediates lead-
ing to heterolytic cleavage of O–O bond and 
generation of highly reactive oxyferryl interme-
diate which is responsible for monooxygenation 
of substrates [103]. As an unwanted consequence, 
activated oxygen at the heme of CYP can lead to 
generation of ROS, leading to uncoupling of 
CYP. Indeed, the ROS generated from CYP2C in 
coronary artery endothelial cells has been shown 
to impair NO mediated vasorelaxation [104]. 
Also, the activation of endothelial CYP by hemo-
dynamic stimulus such as cyclic stretch also 
leads to increased production of O2

·− [105], sug-
gesting that CYP activation could be and impor-
tant factor in the oxidative stress associated 
HTMV.  The increased ROS production in lung 
epithelial cells exposed to sulfur mustard [106] 
or environmental pollutants has also been shown 
to be dependent on increased CYP1A1 enzyme 

activity [107]. Other CYPs have also been impli-
cated in the oxidative lung injury associated with 
hyperoxia (CYP1A1 and CYP1A2) [108, 109] 
and alcohol abuse (CYP2E1) [110]. Therefore, 
CYP enzymes likely also contribute to the pool 
of ROS that can mediate lung injury.

2.7	 �NADPH Oxidase (NOX)

An increase in leukocyte respiration was observed 
when these cells exposed to bacteria as early as 
1933 by Baldridge and Gerard. During this respi-
ratory burst, the leukocytes generate ROS, super-
oxide, hydrogen peroxide and hydroxyl free 
radicals to kill the phagocytosed pathogens [111, 
112]. NOX is the enzyme that catalyzes reduction 
of oxygen to generate superoxide using NADPH 
[113]. Therefore, NADPH oxidase is often 
referred as the “professional ROS producer.” The 
phagocytic NOX (NOX2) is a multicomponent 
enzyme with two membrane bound subunits 
(gp91PHOX, p22PHOX) and three cytosolic subunits 
(p67PHOX, p47PHOX, and p40PHOX). In addition to 
these subunits, small GTPase Rac1 or Rac2 may 
be associated with NAPDH oxidase [114]. 
Membrane bound subunits gp91PHOX, p22PHOX 
form heterodimeric flavoprotein called cyto-
chrome b558. When the cytosolic components 
migrate to the membrane, the NOX complex can 
now accept electrons to transfer to O2 and gener-
ate O2

·− [115]. Initially NOX was thought to be 
expressed only in phagocytic immune cells 
(hence the name PHOX), but later other homo-
logues of NOX were discovered in non-phago-
cytic cells types and were designated as NOX 
family of NADPH oxidases [116]. Seven differ-
ent NOX isoforms have been identified: NOX1, 
NOX2, NOX3, NOX4, NOX5, Duox1, and 
Duox2. Only NOX1, NOX2 and NOX4 are 
expressed in vasculature and are all implicated 
with ROS mediated vascular diseases [117]. 
When exposed to TNFα, human aorta smooth 
muscle cells rapidly induced ROS generation 
which mediated by NF-κB induced upregulation 
of NOX1 and NOX4 [118]. Aldosterone induced 
expression of NOX1 and superoxide generation 
which was mediated through PKC delta in 
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vascular smooth muscle cells [119]. When rat 
vascular smooth muscle cells are exposed to cig-
arette smoke extract, NOX1 derived superoxide 
causes cellular toxicity [120]. Neutrophils, the 
majority of circulating white blood cells play an 
important role host defense mechanism against 
invading pathogen and NOX2 is responsible for 
the respiratory burst and superoxide generation. 
Chronic granulomatous is a disease caused by 
genetic mutations in NOX2 subunits, especially 
in gp91PHOX and observed predominantly in males 
because of the presence of gene on the X chro-
mosome [121]. Phagocytic cells with defective 
gp91PHOX are unable to produce superoxide and 
patients are susceptible to severe infections 
[122]. On the other hand, increased expression of 
p22PHOX by activation of p38-Erk1/2-MAPKinase 
pathway resulted in ROS mediated endothelial 
dysfunction in type 2 diabetes mice [123]. NOX2 
and NOX4 are also known to mediate ROS 
dependent proliferative response in microvascu-
lar endothelial cells [124]. Rac1 pharmacological 
inhibition improved function of endothelial cells 
obtained from vein grafts of patients who under-
went bypass surgery due to severe vascular dis-
ease. Rac1 inhibition not only reduced NOX 
dependent ROS but also increased eNOS func-
tion by suppressing ROCK1 which is a negative 
regulator of eNOS [125]. NOX4 is a constitutive 
producer of ROS at basal levels unlike NOX1 
and NOX2 which are signal activated. However, 
NOX4 increases ROS generation on demand 
when cells are exposed to inflammatory stimulus. 
TGFβ induced expression of NOX4  in vascular 
smooth muscle cells along with inflammatory 
phenotype commonly seen in atherosclerosis and 
aging [126]. NOX4 is mainly involved in mainte-
nance of basal ROS mediated signaling of vascu-
lature. NOX4 knockout mice developed cardiac 
dilation, contractile dysfunction and cardiac fail-
ure due to chronic overload suggesting the impor-
tance of NOX4 mediated ROS signaling in 
cardiac function [127]. Together, NOX isoforms 
contribute widely being beneficial in innate 
immunity and basal ROS mediated signaling and 
deleterious in the development several vascular 
pathological conditions.

Analysis of lung sections and BALF from 
patients with ARDS show massive accumulation 
of PMNs especially neutrophils [128]. These 
cells produce very high levels of ROS that exac-
erbates the inflammatory responses in lungs. 
ROS generated by LPS exposure has been shown 
to be NOX1 dependent in macrophages [129] 
and NOX2 dependent in the LPS-challenged 
lung [130]. LPS activation of TLR4 receptor 
induced NOX mediated ROS production which 
subsequently lead to activation of pro-inflamma-
tory NF-κB [131] and TNFα signaling [132, 
133]. ROS generated by NADPH oxidase of 
PMNs during hemorrhagic shock which is a 
known cause of ARDS, activates NOX of endo-
thelial cells through HMGB1, TLR4, and Rac1 
signaling pathway [134]. A significant decrease 
in hyperoxia mediated ROS production was 
observed in lung epithelial and capillary endothe-
lial cells of NOX1 knockout mice compared to 
wild type mice, thereby preserving the alveolo-
capillary barrier [135]. Epithelial cells under 
cyclic stretch produce ROS and it is NOX depen-
dent [98]. Knockout of NOX1 prevented lung 
injury in mice exposed to hyperoxia [136]. 
Inhibition of NOX4 highly expressed in epithe-
lial cells and fibroblasts can prevent epithelial 
cell death and prevent ROS mediated epithelial 
cell deatch, inflammation and lung fibrosis [137]. 
In a gastric acid aspiration mice model, it was 
shown that NOX was able to limit lung injury by 
Nrf2 mediated decrease of PMN airway accumu-
lation [138]. NADPH oxidase can also limit lung 
injury by activation of redox sensitive anti-
inflammatory transcription factor NRF2 [139]. 
Largely described, above studies significantly 
implicate the role of NOX in ARDS/
ALI. Therefore, inhibitors of NOX may utility in 
the treatment of ARDS.

3	 �Cellular Defenses 
Against Oxidative Stress

Since oxidants have the capacity to react in an 
indiscriminate manner leading to damage of 
almost any cellular component, an extensive 
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range of antioxidant defenses have evolved to 
protect the cell from the oxidant-induced dam-
age. As shown in Fig. 3, there are several enzyme 
systems that catalyze reactions to neutralize free 
radicals and ROS. These form the body’s endog-
enous defense mechanisms to help protect against 
oxidant induced cell damage. The main cellular 
antioxidant enzymes and their involvement in 
protection against ARDS will be discussed 
below.

3.1	 �Superoxide Dismutase

The enzyme superoxide dismutase catalyzes 
the dismutation of superoxide to hydrogen per-
oxide (H2O2) [140]. The H2O2 must then be 

removed by catalase or glutathione peroxidase. 
There are three forms of superoxide dismutase 
in mammalian tissues, each with a specific sub-
cellular location and different tissue distribu-
tion. Copper zinc superoxide dismutase 
(CuZnSOD) is found in the cytoplasm and 
organelles of virtually all mammalian cells. It 
has two protein subunits, each containing a cat-
alytically active copper and zinc atom. 
Manganese superoxide dismutase (MnSOD) is 
found in the mitochondria of almost all cells. It 
consists of four protein subunits, each contain-
ing a single manganese atom. The amino acid 
sequence of MnSOD is entirely dissimilar to 
that of CuZnSOD and it is not inhibited by cya-
nide, allowing MnSOD activity to be distin-
guished from that of CuZnSOD in mixtures of 

Fig. 3.  The antioxidant system in cells. Enzymatic and 
nonenzymatic antioxidants catalyze reactions to neutralize 
free radicals by donating electrons. Enzymatic antioxidants 
catalyze reactions to neutralize specific free radicals such 
that superoxide dismutase (SOD) dismutates superoxide to 
hydrogen peroxide (H2O2), and catalase and glutathione 
peroxidase (GPx) convert hydrogen peroxide to water. GPx 

also converts lipid hyroperoxides (LOOH) to lipid alcohols 
or aldehydes (LOH). Glutathione reductase replenishes 
reduced glutathione (GSH) pools from oxidized glutathi-
one (GSSG) using NADPH as reducing equivalents. 
Nonenzymatic antioxidants such as vitamins, flavonoids 
and glutathione can also reduce free radicals by donating 
electrons
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the two enzymes. Extracellular superoxide dis-
mutase (EC-SOD) is a secretory copper con-
taining SOD distinct from the 
CuZnSOD.  EC-SOD is synthesized by only a 
few cell types, including fibroblasts and endo-
thelial cells. A number of studies have shown 
that exogenously administered antioxidant 
enzymes, particularly when encapsulated in 
lipid vesicles (liposomes) or conjugated to 
polyethylene glycol to prolong biological half-
life and aid delivery to cells, can protect against 
oxidant damage and mitigate the severity of 
acute pulmonary injury. A synthetic 
Mn-containing superoxide dismutase mimetic 
(SODm), M40403, inhibits endotoxin-induced 
production of TNF-α and IL-6 in alveolar mac-
rophages [141]. MnTMPYP, a superoxide dis-
mutase mimetic, restored the inflammatory 
responses to LPS challenge including reduced 
lung myeloperoxidase activity and vascular 
permeability in mice [142]. In addition to 
SODs, several other antioxidant agents have 
been studied in therapeutic applications for 
lung injury. This includes EUK-8, a synthetic 
low molecular weight compound with powerful 
SOD, catalase, and oxyradical scavenging 
properties. Treatment with EUK-8 ameliorated 
pulmonary dysfunction in a porcine model of 
LPS-induced adult respiratory distress syn-
drome [143]. EUK-8 significantly attenuated 
many of the features of LPS-induced acute lung 
injury such as arterial hypoxemia, pulmonary 
hypertension, decreased dynamic pulmonary 
compliance and pulmonary edema. The authors 
concluded that EUK-8 prevents many of the 
manifestations of LPS-induced adult respira-
tory distress syndrome by detoxifying reactive 
oxygen metabolites without affecting the 
release of other important proinflammatory 
mediators. In another study, endothelium tar-
geted EUK-134 accumulated in lungs after 
intravascular injection, providing >60% protec-
tion against pulmonary edema in endotoxin-
challenged mice [34]. The superoxide scavenger 
Manganese (III) tetrakis (4-benzoic acid)por-
phyrin (MnTBAP) played a protective role in 
alleviating acute inflammatory response and 
lung injury [144].

3.2	 �Catalase

Catalase was the first antioxidant enzyme to be 
characterized; it catalyzes the two-stage conver-
sion of H2O2 to water and oxygen. Catalase con-
sists of four protein subunits, each containing a 
heme group and a molecule of NADPH [145]. 
The rate constant for the reactions described 
above is extremely high, implying that it is virtu-
ally impossible to saturate the enzyme in  vivo. 
Catalase is largely located within cells in peroxi-
somes, which also contain most of the enzymes 
capable of generating H2O2. It has been shown 
that in sheep pretreatment of intraperitoneal 
injections of catalase attenuated changes in pul-
monary arterial pressure, lung lymph flow, and 
arterial leukocyte counts and oxygen tension 
after endotoxin infusions [146]. Another study 
showed that catalase prevents increased lung vas-
cular permeability during air emboli in unanes-
thetized sheep [147]. In a study targeting catalase 
to the pulmonary endothelium showed alleviated 
oxidative stress and reduced acute lung trans-
plantation injury [148]. These studies indicate 
that H2O2 plays a role in the pathogenesis of the 
acute lung injury and catalase is an important 
player in development of ALI/ARDS.

3.3	 �Glutathione and Related 
Enzymes

Reduced glutathione (GSH) is a major source of 
thiol groups in the cell [149]. GSH can function 
directly as an antioxidant, scavenging a variety of 
radical species, as well as participating in the 
reactions of glutathione peroxidase. Glutathione 
peroxidases (GPx) catalyze the oxidation of glu-
tathione at the expense of a hydroperoxide, which 
might be hydrogen peroxide or another species 
such as a lipid hydroperoxide (LOOH) [150]. 
Other peroxides, including LOOH, also act as 
substrates for these enzymes, which might there-
fore play a role in repairing damage resulting 
from lipid peroxidation. GPx require selenium at 
the active site. Their predominant subcellular dis-
tribution is in the cytosol and mitochondria, sug-
gesting that GPx is the main scavenger of H2O2 in 
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subcellular compartments. The activity of the 
enzyme is dependent on the constant availability 
of GSH. The ratio of reduced to oxidized gluta-
thione (GSSG) is usually kept very high as a 
result of the activity of the enzyme glutathione 
reductase [151]. The NADPH required by this 
enzyme to replenish the supply of GSH is pro-
vided by the pentose phosphate pathway. 
Glutathione reductase is a flavine nucleotide 
dependent enzyme and has a similar tissue distri-
bution to GPx. GSH supplementation has been 
shown to attenuate lipopolysaccharide (LPS)-
induced mitochondrial dysfunction in a mouse 
model of acute lung injury [32]. Selenium, a GPx 
cofactor, activates GPx in  vivo and attenuates 
lipid peroxidation and lung injury early after 
paraquat intoxication in rats, but did not affect 
the survival [152]. Ebselen, an organoselenium 
compound, mimics GPx activity and showed 
protective action in animal model of pleurisy 
[153]. BXT-51072 and BXT-51077, selenium-
containing GPx mimics, prevented TNF- and 
neutrophil-induced endothelial alterations 
through the downregulation of endothelial proin-
flammatory responses [154].

3.4	 �Nonenzymatic Antioxidants

Whenever a free radical interacts with another 
molecule, secondary radicals may be generated 
that will further react with the available targets to 
produce yet more radical species. The classic 
example of such a chain reaction is lipid peroxi-
dation, and the reaction will continue to propa-
gate until two radicals combine to form a stable 
product or the radicals are neutralized by an anti-
oxidant. Antioxidants are molecules that can 
receive an electron from a radical or donate an 
electron to a radical with the formation of stable 
by-products. The most important lipid phase 
antioxidant is probably vitamin E (tocopherol). It 
quickly reacts with a peroxyl radical to form a 
relatively stable tocopheroxyl radical, with the 
excess charge associated with the extra electron 
being dispersed across the chromanol ring. The 
dietary supplement γ-tocopherol (γT), a natural 
form of vitamin E, inhibited LPS-induced 

increase in BAL fluid total cells, neutrophils, pro-
tein, and secreted mucins, along with tissue neu-
trophil influx [155]. Pretreatment with vitamin E 
has also been shown to ameliorate acute lung 
injury induced by burn and smoke inhalation in 
sheep [156]. The carotenoids are a group of lipid-
soluble antioxidants based around an isoprenoid 
carbon skeleton. The most important of these is 
beta-carotene, although at least 20 others may be 
present in membranes and lipoproteins. They are 
particularly efficient scavengers of singlet oxy-
gen, but also trap peroxyl radicals at low oxygen 
pressure with an efficiency at least as great as that 
of alpha-tocopherol. The other important role of 
certain carotenoids is as precursors of an antioxi-
dant, vitamin A. Flavonoids are a large group of 
polyphenolic antioxidants found in many fruits, 
vegetables and beverages such as tea and wine. 
Over 4000 flavonoids have been identified and 
they are divided into several groups according to 
their chemical structure, including flavonols 
(quercetin and kaempherol), flavanols (the cate-
chins), flavones (apigenin), and isoflavones 
(genistein). There is evidence that augmenting 
the intake of flavonoids might improve biochemi-
cal indices of oxidative damage and epidemio-
logical studies suggest an inverse relation 
between flavonoid intake and incidence of 
chronic diseases [157]. Many flavonoids such as 
epigallocatechin-3-gallate, xanthohumol, casti-
cin, astilbin, naringenin, apigenin, and baicalin 
have been shown to protect against ALI [158–
164]. Resveratrol, a polyphenolic compound, 
reduced acute lung injury which was accompa-
nied by activation of Sirtuin1 (Sirt1) and down-
regulation of NF-κB [165, 166]. α-Lipoic acid 
(ALA), a cofactor, is essential for energy produc-
tion and the regulation of carbohydrate and pro-
tein metabolism. ALA is synthesized in  vivo, 
however, when ALA is supplemented in the diet, 
it is readily absorbed and acts as a redox modula-
tor and antioxidant [167]. ALA reduces oxidative 
stress and prevents against oleic acid-induced 
ALI [168]. ALA protects against LPS induced 
acute lung injury (ALI) through activation of 
heme oxygenase 1 (HO-1) and suppression of 
NF-κB-mediated inflammatory responses [169]. 
Qualitatively the most important aqueous phase 
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antioxidant is vitamin C (ascorbate). Ascorbate 
has been shown to scavenge superoxide, H2O2, 
hydroxyl radical, hypochlorous acid, aqueous 
peroxyl radicals and singlet oxygen. Ascorbate 
undergoes a two electron reduction, initially to 
the semidehydroascorbyl radical and subse-
quently to dehydroascorbate during its antioxi-
dant action. Ascorbic acid administered 
intraperitoneally following lipopolysaccharide 
infusion attenuated proinflammatory and proco-
agulant states that induce lung vascular injury in 
mice model of sepsis [170]. Ascorbic acid (AA) 
also prevented the toxic effects of zinc oxide 
nanoparticles (ZnO NPs) inhalation induced 
acute pulmonary dysfunction including oxidative 
stress, inflammation, and injury [171].

4	 �ROS Damaging Effects 
on the Endothelial Barrier

The pulmonary endothelium, as a semipermeable 
interface, coordinates the influx and efflux of flu-
ids, solutes, macromolecules and cells from the 
blood vessel lumen, over the interstitium to the 
alveolar lumen [172]. Consisting of a thin mono-
layer of endothelial cells which are connected by 
a vast amount of junctional proteins, the endothe-
lium forms a tight barrier and lines the entire cir-
culatory system. The pulmonary blood vessel 
system by itself disposed about a blood surface of 
130 m2. Moreover, by an alveolar-capillary bar-
rier thickness of only slightly more than 0.5 μm, 
the capillary network forms a dense meshwork 
close to the alveolar lumen that guarantees an 
efficient gas exchange [173, 174]. For the 
exchange of substrates between the blood and 
alveolar lumen two pathways controlling endo-
thelial barrier have been identified: The transcel-
lular pathway that transports substrates through 
the body of the cells and the paracellular pathway 
that transfers material through the intercellular 
spaces between the cells.

Under normal physiological conditions, fluids 
and solutes with a molecular radius under 3 nm, 
utilize the paracellular system to enter the endo-
thelial barrier by a hydrostatic pressure gradient 
between the intra- and perivascular space. Within 

the transcellular pathway, aquaporins are the 
main agents for the transmission of fluids. 
Macromolecules having molecular radius over 
3 nm are actively transcellular transported over 
caveolae-mediated vesicular carriers [175, 176]. 
This system ensures that only a highly restricted 
volume of plasma protein and blood cells can 
enter into the pulmonary interstitium and thereby 
avoid alveolar flooding [177]. However, in patho-
logical conditions such as ALI and ARDS, lung 
endothelial cells are activated or even damaged, 
which leads to a phenotypic shift with massive 
functional impairments of the vascular endothe-
lium. Increased vascular permeability combined 
by an enhanced expression of adhesion molecules 
creates an excellent environment for trafficking 
of inflammatory cells and chemotactic substances 
through the blood barrier [178]. The following 
section describes the importance and role of ROS 
as key signaling molecules in the progression of 
ALI and ARDS by elevated vascular permeabil-
ity and PMN migration.

4.1	 �Increased Vascular 
Permeability Triggered 
by ROS

To facilitate structure maintenance by adhesion 
and transmission of mutual information, endo-
thelial cells continuously interact with the extra-
cellular matrix, the basement membrane, and 
other surrounding cells via specialized protein 
complexes. The vascular endothelium does not 
have a rigid and inflexible architecture. Rather it 
possesses a dynamic structure defined by 
moment-to-moment changes in the cytoskeleton, 
cell–cell, cell–basal membrane, and cell–extra-
cellular matrix interactions, by which the 
transcellular and paracellular transport of fluids 
and substrates between blood and alveolar lumen 
is ensured [175] (Fig. 4).

The transcellular transport mechanism is 
mediated by water channels and vesicle-
dependent uptakes of substrates via endocytosis 
at the apical endothelial, transport across the inte-
rior cell body via transcytosis, and substrate 
release via exocytosis at the basolateral mem-
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brane. Hereby, the endocytosis and exocytosis is 
carried out with individual vesicles shuttles, or 
interconnected vesiculo-vacuolar organelles 
(VVOs) that form channel-like structures [179, 
180]. Both, caveolae-mediated vesicle transport 
options, open up the possibility to transit substan-
tial fluid and substrate volumes of around 
15–20% of the total cell volume within a very 
short time [181, 182]. During situations of high 
ROS levels such as ALI and ARDS, there are 
changes in the caveolae-based transport. It has 
been shown that the primary structural protein 
caveolin-1 required for caveolae formation is 
affected in a different manner by various 
ROS. While O2- and H2O2 downregulate caveo-
lin-1 expression, OH. increases it [183]. 
Moreover, several studies have been demon-
strated that the combination of different ROS 

generated by increased endogenous ROS produc-
tion correlates with increased cellular transcyto-
sis. Therefore, Angiotensin-II mediated ROS 
enhancement increases transcellular permeabil-
ity. The dithiothreitol (DTT)-mediated attenua-
tion of ROS levels leads to a decrease in 
transcytosis [184]. LPS caused expression of 
ROS through multiple mechanisms [74, 185, 
186], induces mRNA and protein expression and 
thereby increase the vascular transcellular per-
meability [187, 188]. Increased caveolin-1 phos-
phorylation after LPS treatment has also been 
associated with increased transcellular permea-
bility [188, 189]. Lungs from caveolin-1−/− mice 
showed a remarkable attenuation of transcellular 
permeability after LPS treatment [190]. Even 
thrombin stimulates the transport of fluorescently 
labeled albumin transcytosis across a confluent 

Fig. 4.  Comparison of the transcellular and paracellular 
transport in physiological and pathological conditions. The 
transport of fluids, solutes, and macromolecules occur over 
transcellular and paracellular pathways. Under physiologi-
cal conditions both transcellular and the paracellular trans-
port are highly restricted, whereas under pathological 
conditions increased vascular permeability can be 
observed. ROS have several distinct impacts on the endo-
thelial barrier. Initially, within the transcellular pathway 
caveolin-1 is affected by ROS leading to increased vascu-
lar permeability. ROS mainly influence the paracellular 
pathway through decreased expression and oligomeriza-
tion of the junctional proteins as well as increases in the 
phosphorylation of junctional proteins on both serine and 
tyrosine residues. Both ROCE and SOCE are affected by 

ROS leading to increased endothelial Ca2+ influx. This 
increases calcium/calmodulin-dependent phosphorylation 
of myosin light chains leading to myosin contraction. Both 
ROCE and also SOCE are affected by ROS. AJs adherens 
junctions, cADPR cyclic adenosine triphosphate ribose, 
DAG diacylglycerol, ER endoplasmatic reticulum, GPCR 
G protein coupled receptor, IP3 inositol triphosphate, JAMs 
junctional adhesion molecules, MLC myosin light chain, 
MLCK myosin light chain kinase, MLCP myosin light 
chain phosphatase, PLC phospholipase C, PKC protein 
kinase C, ROCE receptor-operated calcium entry, ROS 
reactive oxygen species, SOCE store-operated calcium 
entry, TJ tight junctions, TRPC/M transient receptor poten-
tial canonical/melastatin, VOOs vesiculo-vacuolar organ-
elles, ZO zonula occludens
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human lung microvascular endothelial cells 
(HLMVECs) monolayer via enhanced caveolin-1 
de novo synthesis [191]. However, caveolin-1 
mediated increase of vascular permeability based 
on increase ROS production is a highly concen-
tration- and time-dependent process [187, 188, 
192].

Even through enhanced ROS levels affect the 
transcellular pathway, under pathophysiological 
conditions the paracellular transport mechanism 
is responsible for the predominant amount of 
blood fluid and proteins passage across the 
microvascular endothelium. In general, to seal 
endothelial cells to a tight monolayer together, 
two different types of intercellular junctions have 
been characterized as cell-cell adhesive barrier 
structures: adherens junctions (AJs) and tight 
junctions (TJs) [175]. Endothelial AJs are mainly 
composed of two different kinds of transmem-
brane proteins of the cadherin family, the vascu-
lar endothelial cadherin (VE-cadherin) and the 
neuronal cadherin (N-cadherin). The intercellular 
protein domains of the transmembrane proteins 
are connected to the cytoskeleton by α-, β-, γ-, 
and p120 catenins [193, 194]. The extracellular 
protein domains of the transmembrane proteins 
are attached to other extracellular protein 
domains of adjacent endothelial cells by Ca2+-
dependent homotypic interactions. The binding 
of Ca2+ to the negative charged amino acid resi-
dues localized on the extracellular cadherin 
domain causes a change in the protein conforma-
tion, which ensures the formation of a tight endo-
thelial monolayer [195]. The structure of 
endothelial TJs is similar to AJs. However, com-
pared to AJs, TJs consist of transmembrane pro-
teins such as claudins, occludins, and junctional 
adhesion molecules (JAMs) [175], [196–198]. 
Claudins and occludins possess four transmem-
brane domains and two extracellular loops. The 
intercellular domains of the tight junctions are 
connected to the cytoskeleton by cytoplasmic 
adaptor proteins such as zonula occludens (ZO)1, 
-2 and -3, AF6, or cingullin combined with 
downstream situated α-catenins. As in AJs, the 
extracellular loop domains of occludin and clau-
dins form homotypic bindings to extracellular 
domains of adjacent endothelial cells. JAMs 

belong to the immunoglobin (Ig) superfamily of 
proteins. Compared to claudins and occludins, 
JAMs are composed of only single-pass trans-
membrane proteins. Currently, three different 
isoforms of JAMs are known, JAM-A, JAM-B, 
and JAM-C. The expression pattern of the JAMs 
varies significantly in different kinds of tissue. 
JAM-A and JAM-C are predominantly expressed 
in endothelial cells [199]. The main differences 
of AJs and TJs exist in pore size or rather poten-
tial passing molecule size and appearance. TJs 
only represent 20% of all existing endothelial 
junctions and possess a mean pore size of approx-
imately 1 nm. AJs are the most ubiquitous endo-
thelial junctions and have a mean pore size of 
about 3 nm [175].

In the last decade, an increasing amount of 
studies described that an enhanced ROS produc-
tion plays a critical role in initiating the junc-
tional disassembly within ALI and ARDS 
development [200, 201]. The damage of AJs is 
mediated by a phosphorylation of serine and 
tyrosine residues localized in VE-cadherin, β-, 
and p120-catenin. Only VE-cadherin has five 
tyrosine residues (Y645, Y658, Y685, Y731, and 
Y733) and one serine residue (S665) that all can 
be phosphorylated [202–204]. Vascular endothe-
lial growth factor (VEGF) treatment demon-
strated an increase in vascular permeability in 
both, arteriolar, venular and capillary vessels 
[205]. Moreover, the treatment of HLMVECs 
with VEGF leads to an enhanced vascular perme-
ability by VE-cadherin and β-catenin tyrosine 
phosphorylation. Using N-acetylcysteine as free 
radical scavenger identified increased ROS pro-
duction as an essential factor of vascular barrier 
impairment [206]. Increased endothelial junc-
tional disassembly by enhanced tyrosine phos-
phorylation of VE-cadherin and the associated 
proteins β-catenin, γ-catenin, and p120-catenin 
was also measured after the treatment with 
thrombin [207]. LPS-induced ROS production 
enhances endothelial barrier dysfunction via ele-
vated protein tyrosine phosphatase oxidation and 
an associated decrease in their activity [208]. 
LPS can then promote the internalization of 
VE-cadherin from the plasma membrane to intra-
cellular compartments [209]. An increase in TJs 
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disassembly due to enhanced ROS production 
has also been demonstrated in several studies. 
Oxidative stress decreases the expression of TJs 
significantly [210–213]. In addition to this, oxi-
dative stress reduces the oligomerization of 
remaining TJs, which leads to an increased vas-
cular permeabilization [214]. One indicator for 
oxidative stress is the ratio of GSH to GSSG. The 
oligomerization of occludin itself is regulated by 
this ratio. Under physiological conditions, GSH 
is about 30 to 100-fold higher compared to GSSG 
and similar amounts of occludin monomers and 
oligomers can be detected [215, 216]. During 
pathological conditions caused by oxidative 
stress a dramatically shift to higher GSSG levels 
and reduced occludin oligomer values occurs 
[210, 217]. TJs can also undergo serine and tyro-
sine residue phosphorylation leading to barrier 
dysfunction [218].

Thus, enhanced ROS production leads to 
increased vascular permeability by reinforced 
junctional protein disassembly. In addition to 
this, the stimulation of endothelial cells induces 
actin cytoskeleton shortening. By the motion of 
myosin along the actin filaments, pronounced 
thicker actin cytoskeleton with a huge amount of 
contractile actin bundles, called the stress fibers, 
are developed. Thus, an increasing number of 
inter-endothelial gaps are formed and expanded, 
leading to the pathologically altered vascular per-
meability [172, 219]. The dynamic interaction 
between AJs or TJs and the actin cytoskeleton is 
disrupted by myosin light chain (MLC) phos-
phorylation with accompanying cytoskeleton 
endothelial cell contraction [220]. The MLC 
kinase (MLCK) phosphorylates MLC in a Ca2+/
calmodulin mediated reaction. Small Rho-
GTPases such as Rho, Rac, and Cdc42 are key 
regulators of the actin cytoskeleton by activation 
of MLCK and other cytoskeletal-remodeling 
agents [221]. While RhoA mainly regulates stress 
fiber formation [222], Rac and Cdc42 promote 
the formation of lamellipodia and filopodia [223, 
224]. Together with the Rho kinase (ROCK), 
small Rho-GTPases can reinforce the effect of 
MLC by inhibiting of the MLC phosphatase 
(MLCP) [225]. Rho-GTPase activity is inhibited 
by guanine nucleotide exchange factors (GEFs), 

which replace guanine triphosphate (GTP) with 
guanine diphosphate (GDP). Through the 
exchange of GDP for GTP, GTPase-activating 
proteins (GAPs) induce activation [226]. The 
deletion or inhibition of MLCK210, the endothe-
lial cell-specific MLCK isoform, protects mice 
from experimental pulmonary edema, inflamma-
tion, and death [227]. However, a basal level of 
MLCK is essential due to physiological vascular 
permeability. A pathological increase of MLCK 
leads to an abnormal enhancement of vascular 
permeability followed by blood barrier disrup-
tion. Based on enhanced ROS production, vari-
ous inflammatory agents such as LPS [228], 
thrombin [229, 230], or VEGF [231] have been 
shown to enhance Ca2+ influx in the endothelium 
in two distinct pathways: store-operated calcium 
entry (SOCE) and receptor-operated calcium 
entry (ROCE). The initial increase via SOCE is 
due to a Ca2+ release from stores within the endo-
plasmatic reticulum (ER) by an inositol triphos-
phate (IP3)-dependent reaction [232]. At the 
activated G protein coupled receptors (GPCR) 
bound phospholipase C (PLC) cleaves 
phosphatidylinositol-4,5-bisphosphate (PIP2) 
into IP3 and diacylglycerol (DAG). IP3 binds to 
an IP3 receptor on the ER, which releases Ca2+ 
from the ER in the cytosol. DAG, in turn, con-
nects SOCE to ROCE. Within this second mech-
anism, DAG activates transient receptor potential 
canonical/melastatin channels (TRPC/TRPM), 
whereby Ca2+ enters into the endothelium and 
activates calmodulin. Finally, calmodulin trig-
gers the RhoA-dependent myosin contraction via 
MLC phosphorylation [233]. Furthermore, PKC 
localized on TRPC/TRPM is activated by phos-
phorylation and promotes SOCE [234]. Increased 
cyclic adenosine triphosphate ribose (cADPR) 
expression caused by enhanced ROS production 
contributes to ROCE via the activation of TRPC/
TRPM [235, 236]. The actin cytoskeleton is not 
the only cellular structure that contributes to vas-
cular permeability. Microtubules, the filamentous 
biopolymers formed by the polymerization of α, 
β-tubulin dimers, also modulate vascular perme-
ability [237–239]. The ROS-dependent disas-
sembly of the microtubule network after LPS 
treatment has also been reported. The stabilization 
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of microtubules with epothilone B or the inhibi-
tion of the guanine nucleotide exchange factor 
(GEF)-H1 suppressed LPS-induced barrier dis-
ruptive effects in vitro and significantly improve 
vascular permeability in vivo [240]. Inhibition of 
microtubule destabilization with taxol leads to 
barrier improvement during LPS treatment 
in  vivo [241]. Microtubule dynamics also 
depends on ROS levels, as enhanced dynamics 
are observed in a ROS-free environment, whereas 
increased dynamic instability occurs in the pres-
ence of ROS [242].

Thus, the overall consensus in the field is that 
ROS can reduce the tightness of the endothelial 
barrier by causing the disruption of endothelial 
cell junctions in combination with enhanced 
cytoskeleton contraction and microtubule 
destabilization.

4.2	 �Transendothelial Leukocyte 
Migration Affected 
by Increased ROS Formations

Endothelial cell adhesion followed by transendo-
thelial migration of inflammatory cells play an 
important role in the pathology of ALI and 
ARDS.  Mainly occurring in postcapillary 
venules, the process is mediated by six sequential 
steps: (1) tethering and rolling, (2) activation, (3) 
adhesion, (4) crawling, (5) transendothelial 
migration, and finally (6) diapedesis (Fig. 5). The 
migration of inflammatory cells across the endo-
thelium happens through paracellular or more 
rarely through transcellular transport [243, 244] 
and is mediated by adhesive interactions between 
cell adhesion molecules (CAMs) expressed in 
both activated endothelial cells and migrating 
PMNs. Selectins, integrin, and members of the 
immunoglobulin (Ig) superfamily are the three 
families of adhesion molecules that are crucial 
for PMNs transmigration.

Selectins, responsible for the initial tethering 
and rolling of PMNs on endothelial cells, are 
membrane glycoproteins which are classified in 
three different subtypes: P-selectins, L-selectins 
and E-selectins. P-selectins, also known as gran-
ule membrane proteins-140, are expressed in 

platelets or endothelial cells and stored in Weibel-
Palade bodies, and can be rapidly recruited to the 
cell surface during inflammation. L-selectins 
formed in activated PMNs, contribute to PMN 
rolling and are quickly shed from the cell surface, 
via a protease-dependent mechanism, upon acti-
vation. E-selectins are not expressed under base-
line conditions. Only cytokine stimulation leads 
to increased expression of E-selectins in endothe-
lial cells [245–248]. Integrins, are heterodimeric 
transmembrane receptors consisting of two non-
covalently linked transmembrane glycoproteins, 
one α and one β subunit at a time. Within the 
mammalian genome, 18 α subunit and 8 β sub-
unit genes have been identified that can assemble 
into 24 different integrin combinations character-
ized by distinct binding properties and tissue dis-
tributions [249, 250]. The most common integrins 
in PMNs are β2-integrins. Integrins are activated 
by binding of endothelial secreted chemokines 
like CXCL1 and CXCL8 to PMNs existing che-
mokine receptors CXCR1 and CXCR2. As a 
result, integrins change their conformation from 
bent low-affinity to fully extended high-affinity 
state, bind to an Ig superfamily member and 
arrest the PMNs on the endothelial cell surface 
[251, 252]. Compared to the adhesion by selec-
tins to integrins, the integrins-mediated adhesion 
is a strong and solid binding to the vascular endo-
thelium and represents an essential factor for 
PMNs transendothelial migration [253]. All Ig 
superfamily members like intercellular cell adhe-
sion ICAM-1 and -2, vascular cell adhesion mol-
ecule 1 (VCAM-1), JAMs (JAM-A, -B, and -C), 
platelet endothelial cell adhesion molecule 1 
(PECAM-1 or CD31), CD99 antigen-like 2 
(CD99L2), and endothelial cell-selective adhe-
sion molecule (ESAM) possess a structural Ig 
domain and are expressed in endothelial cells, 
platelets, and PMNs [254–256].

In the last decade, mounting evidence has sup-
ported the idea that extravasation of PMNs in 
response to inflammatory stimuli is regulated by 
increased oxidative stress. Initially, increased 
ROS levels produced in the injured tissue can 
function as chemoattractant for immune cells 
[248, 257, 258]. Moreover, ROS transmit signals 
from activated cell surface receptors and act 
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intrinsically within migrating cells and the sur-
rounding tissue to promote migration. Thereby, 
increased ROS production can regulate the 
expression of endothelial CAMs by a direct 
transcription-independent activation or by a 
transcription-dependent mechanism via redox-
sensitive transcription factors like nuclear 
factor-κB (NF-κB) and activator protein-1 (AP-1) 
[259]. For instance, the exposure of endothelial 
cells to inflammatory stimuli like H2O2 [260], 
LPS or cytokines [254, 261] leads to a reinforced 
PMNs migration by increased endothelial CAMs 
expression. After 1  h treatment with H2O2 or 
t-butylhydroperoxide, in HUVECs there is an 
increase in transcription-independent surface 
expression of P-selectin followed by PMNs adhe-

sion. Prior treatment of the cells with anti-P-selec-
tin antibody or an antioxidant decreases the PMNs 
adhesion significantly [262]. Moreover, the expo-
sure of human umbilical vein endothelial cells 
(HUVECs) to 60  min anoxia followed by 10  h 
reoxygenation causes a biphasic early transcrip-
tion-independent and late transcription-dependent 
neutrophil adhesion response correlated to endo-
thelial ROS production [263]. In contrast to the 
ROS-mediated expression of P-selectin, the 
expression of ICAM-1, VCAM-1, and E-selectin 
is only regulated on transcriptional level [264]. 
NF-κB as one of the transcription factors is 
involved in the expression of many inflammatory 
and immune response CAMs like E-selectin [265, 
266], ICAM-1 [266], and VCAM-1 [267]. The 

Fig. 5.  ROS-mediated endothelial polymorphonuclear 
leukocyte migration. Over both transcellular and paracel-
lular pathways, polymorphonuclear leukocytes (PMNs) 
pass through the endothelium to migrate from the blood 
lumen into the alveolar lumen. In both pathways selectin, 
integrins, and immunoglobulins (Ig) help facilitate this cel-
lular migration. The transcellular migration of PMNs 
through the cell body is a rare event. More commonly para-
cellular migration occurs. This requires a number of migra-
tion steps: (1) tethering and rolling; (2) activation; (3) 
adhesion; (4) crawling; (5) transendothelial migration, and 
(6) diapedesis. Within each migration steps, varying cell 
adhesion molecules (CAMs) are needed. Selectins modu-
late the initially tethering and rolling of PMNs on the inner 
surface of the blood vessel, whereby PMNs start to slow 

down. Based on the rolling, endothelial cells are activated 
to release chemokines (CXCL1 or CXCL8) that transmit 
and bind to chemokine receptors (CXCLR1 and CXCLR8) 
localized on the surface of the PMNs. This causes PMN 
localized integrins to change from a low-affinity state (inac-
tive bent conformation) to a high-affinity state (active fully 
extended conformation) forming a firm adhesion to CAMs 
of the Ig superfamily. The ultimate entry of the PMNs into 
the blood barrier occurs over these established CAMs for-
mations. Increased ROS leads to enhanced invasion of 
immune cells into the injured tissue. ROS also regulate the 
expression CAMs both directly and through transcription 
factors (NF-κB, AP-1) that exert major influences on PMN 
migration. NF-κB nuclear factor-kappa-B, PMNs polymor-
phonuclear leukocytes, ROS reactive oxygen species
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binding of inducible redox sensitive transcription 
factors in the promoter regions of the CAMs leads 
to their increased expression and activation [268, 
269]. H2O2 increases the ICAM-1 expression 
while the pretreatment with an antioxidant or the 
application of an ICAM-1 antibody abolished the 
H2O2-induced PMNs adhesion [260]. VCAM-1 
expression can also be induced by NOX associ-
ated ROS generation that promotes lymphocyte 
migration across the endothelial cell layer. The 
inhibition of NOX with diphenyleneiodonium or 
apocynin blocked the migration [270]. Rats 
exposed to hypoxia have increased ROS produc-
tion and enhanced NF-κB and CAMs expression 
and the transvascular leakage is abrogated by 
nifedipine treatment due to reductions in oxida-
tive stress and NF-κB [271].

5	 �Potential Therapies

5.1	 �N-Acetylcysteine (NAC)

NAC is a precursor for GSH, an antioxidant pres-
ent in high levels in the normal lung. Lavage 
from patients with ALI/ARDS is deficient in 
GSH, and GSH levels are also below average in 
some pulmonary fibrotic disorders. Increased 
intracellular levels of GSH reduce production of 
pro-inflammatory cytokines like TNFα and IL-1. 
In addition to promoting GSH production, NAC 
also has direct antioxidant properties because of 
its thiol group, and it can scavenge reactive oxi-
dants including hydrogen peroxide, superoxide 
anion, and hypochlorus acid. Animal studies 
indicate that NAC has significant protective 
effects against acute pulmonary injury from 
hyperoxia, endotoxin, or GSH synthesis inhibi-
tion [272–274]. The antioxidant effects of liposo-
mally entrapped NAC is more effective as 
evaluated in rodents challenged with LPS [273]. 
In one study the benefits of NAC treatment in the 
management of ARDS were assessed by measur-
ing patient’s intracellular glutathione and plasma 
antioxidant biomarkers and outcome [275]. 
Treatment by NAC apart from increasing intra-
cellular glutathione also increased extracellular 
total antioxidant power, total thiol status, and the 

outcome of the patients. The authors suggested 
that patients with ARDS could potentially benefit 
from NAC supplementation. In a randomized, 
double-blind, placebo-controlled, prospective 
clinical trial the levels of glutathione and cyste-
ine in patients with ARDS were determined and 
the effect of NAC treatment examined [276]. The 
study concluded that repletion of glutathione 
may safely be accomplished with NAC in patients 
with ALI/ARDS which may shorten the duration 
of lung injury. It has also been shown that NAC 
protects against H9N2 virus-induced acute lung 
injury [277]. Repetitive post-treatment of NAC 
in LPS-exposed attenuates the extent of ALI 
through the inhibition of NF-κB activation [278]. 
NAC also improves respiratory function, but not 
survival, in adults with ALI/ARDS.  A double-
blind, placebo-controlled study in 48 patients at 
five centers found that treatment with NAC 
increased cardiac index and decreased the num-
ber of days of ALI without improving mortality 
[276]. No adverse side effects have been reported 
from the use of NAC in patients with ALI/
ARDS. Given the potential benefits of NAC sup-
plementation studies are needed to investigate 
the utility of NAC in combination therapies for 
ALI/ARDS.

5.2	 �Vasodilator Gases

NO is an important endogenous gaseous mediator 
in several physiological processes in vivo. One of 
its most important action is potent vasodilation, 
which results from decreased calcium in vascular 
smooth muscle cell cytoplasm following an 
NO-dependent increase in cyclic-GMP [279]. 
Inhaled NO affects gas exchange by increasing 
blood flow in ventilated areas. Administration of 
NO by inhalation has been shown to acutely 
improve hypoxemia associated with pulmonary 
hypertension in humans and animals [280–282]. 
Inhaled NO results in a transient improvement in 
oxygenation without any effect on mortality in 
both adults and children with ARDS [283]. 
Hydrogen sulfide (H2S), another signaling gas, is 
produced by the catalytic conversion of L-cysteine 
by two enzymes: CBS (cystathionine β-synthase) 
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and CSE (cystathionine γ-lyase). H2S reduces 
inflammation and protects tissues from injury 
especially in the gastrointestinal tract [284, 285]. 
Hydrogen sulfide pretreatment aslo exerts protec-
tive effects on both hyperoxia and LPS induced 
ALI [286, 287]. Recent findings suggest that car-
bon monoxide (CO) can also act as an endoge-
nous defensive gaseous molecule to reduce 
inflammation and organ injury [288–290]. The 
endogenous production of CO occurs through the 
activity of bot the constitutive heme oxygenase 2 
(HO-2) and inducible heme oxygenase 1 (HO-1). 
The therapeutic potential of CO has been shown 
in models of acid-induced lung injury, HTMV, 
endotoxin challenge, and cecal ligation and punc-
ture induced-sepsis [291]. The efficacy of NO, 
H2S, and CO in humans with ALI/ARDS remains 
unclear and awaits further controlled clinical 
studies.

5.3	 �NADPH Oxidase (NOX) 
Inhibitors

NOX is the primary generator of O2
-. and is 

responsible for the initiation of the ROS genera-
tion cascade. NOX is a unique target and inhibit-
ing NOX would reduce O2

-. production which 
would result in less available O2

-. for the genera-
tion of H2O2 and ONOO-., subsequently reducing 
OH generation and increasing NO bioavailability 
as a result. NOX is an important contributor of 
oxidant production and is an upstream actor in 
oxidative stress-induced acute lung injury involv-
ing JNK and ERK pathways [135, 292]. There 
are several NOX inhibitors currently being stud-
ied, however the most common is apocynin, 
which is a NOX inhibitor that preferentially 
blocks NOX-2 at low doses. Apocynin acts by 
preventing the assembly of the NOX enzyme 
subunits. The administration of apocynin, a NOX 
inhibitor, reduces lipid peroxidation, suppresses 
the NF-κB pathway, attenuates lung injury, and 
improves survival in rat hemorrhagic shock and 
LPS models [293, 294]. Similarly, the inhibition 
of NOX-2 activity ameliorates influenza A virus-
induced lung inflammation, indicating that phar-
macologically targeting NOX-2 may have 

therapeutic potential in ALI [295]. The NOX 
inhibitor diphenyleneiodonium chloride, attenu-
ates oleic acid-induced lung injury [296].

5.4	 �Nuclear Factor Erythroid 
2-Related Factor 2 (Nrf2) 
Activators

Nrf2 presents a potential target for reducing oxi-
dative stress in ALI/ARDS. Nrf2 is found in the 
cytoplasm of many mammalian cells and is 
responsible for the regulation of various anti-
oxidants and cytoprotective genes, acting as a 
“master switch” for these genes. In response to 
oxidative stress, Nrf2 translocates to the nucleus 
and binds to the antioxidant response element 
(ARE) of target genes, along with other binding 
factors and cofactors, resulting in the induction 
of stress response genes. Nrf-2 activators such 
as andrographolide sulfonate [297, 298] and 
CDDO-Me [299, 300] have been shown to 
attenuate acute lung in lung in animal models of 
ALI.

5.5	 �Activated Protein C

Protein C is a vitamin K-dependent plasma pro-
tein zymogen. Activated protein C (APC) inac-
tivates factors (F) Va and VIIIa and 
downregulates thrombin generation. The cyto-
protective effects of APC involve gene expres-
sion profile alterations, anti-inflammatory and 
anti-apoptotic activity, and endothelial barrier 
stabilization [301]. However, its utility in ALI/
ARDS is still controversial. The infusion of 
recombinant human activated protein C (rh-
APC) in patients with ARDS showed attenua-
tion of pulmonary coagulopathy and injury 
without any side effects [302]. However, in 
another randomized, saline-controlled, single-
blinded clinical trial with rh-APC did not find 
any improvement in increased alveolocapillary 
permeability or the clinical course of ARDS 
patients [303]. Thus, further studies are required 
to confirm the role of rh-APC as therapeutic 
candidate for ALI/ARDS.
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6	 �Conclusion

Studies over the last decade have clearly demon-
strated that ROS can increase the permeability of 
the pulmonary endothelial bed and that this oxi-
dative stress plays a major role in the pathogene-
sis of ALI and ARDS. The source of the ROS is 
complex and a number of pathways are involved. 
However, it is hoped that tackling the overpro-
duction of ROS, and the decreased defense 
capacity, during ALI/ARDS may open up a new 
field of therapeutic approaches for a disease that 
has not seen significant advances, despite 
50 years of investigations.
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