Skip to main content

Long-Term Inhaled Antibiotic Treatment in Bronchiectasis

  • Chapter
  • First Online:
Bronchiectasis

Abstract

Microbial colonisation and infection are common in bronchiectasis and are associated with increased airway inflammation, increased mucus production, exacerbations and mortality. Chronic administration of inhaled antibiotics achieves high concentrations of drug within infected airways, while minimising systemic exposure and toxicity. Long-term inhaled antibiotic treatment is well established in the care of patients with cystic fibrosis, both as a strategy for eradication of newly acquired Pseudomonas aeruginosa infection and in patients chronically infected with Pseudomonas aeruginosa. Clinical trials conducted in patients with bronchiectasis show evidence of benefit for several inhaled formulations that include colistin, tobramycin, gentamicin and ciprofloxacin. Several issues are important in transitioning medicines evaluated within clinical trials into routine clinical practice and include the cost and availability of drug formulations and nebuliser systems, as well as ensuring adherence with complex treatment regimens. Future studies may provide additional evidence of benefit and finally result in licenced indications for inhaled antibiotics in people with bronchiectasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Cole PJ. Inflammation: a two-edged sword--the model of bronchiectasis. Eur J Respir Dis Suppl. 1986;147:6–15.

    CAS  PubMed  Google Scholar 

  2. Angrill J, Agusti C, De Celis R, et al. Bronchial inflammation and colonization in patients with clinically stable bronchiectasis. Am J Respir Crit Care Med. 2001;164:1628–32.

    Article  CAS  PubMed  Google Scholar 

  3. Hill AT, Campbell EJ, Hill SL, et al. Association between airway bacterial load and stable chronic bronchitis. Am J Med. 2000;109:288–95.

    Article  CAS  PubMed  Google Scholar 

  4. Chalmers JD, Smith MP, McHugh BJ, et al. Short- and long-term antibiotic treatment reduces airway and systemic inflammation in non-cystic fibrosis bronchiectasis. Am J Respir Crit Care Med. 2012;186:657–65.

    Article  CAS  PubMed  Google Scholar 

  5. King PT, Holdsworth SR, Freezer NJ, et al. Microbiologic follow-up study in adult bronchiectasis. Respir Med. 2007;101:1633–8.

    Article  PubMed  Google Scholar 

  6. Pasteur MC, Helliwell SM, Houghton SJ, et al. An investigation into causative factors in patients with bronchiectasis. Am J Respir Crit Care Med. 2000;162:1277–84.

    Article  CAS  PubMed  Google Scholar 

  7. Tunney MM, Einarsson GG, Wei L, et al. Lung microbiota and bacterial abundance in patients with bronchiectasis when clinically stable and during exacerbation. Am J Respir Crit Care Med. 2013;187:1118–26.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nicotra MB, Rivera M, Dale AM, et al. Clinical, pathophysiologic, and microbiologic characterization of bronchiectasis in an aging cohort. Chest. 1995;108:955–61.

    Article  CAS  PubMed  Google Scholar 

  9. Finklea JD, Khan G, Thomas S, et al. Predictors of mortality in hospitalized patients with acute exacerbation of bronchiectasis. Respir Med. 2010;104:816–21.

    Article  PubMed  Google Scholar 

  10. Chalmers JD, Goeminne P, Aliberti S, et al. The bronchiectasis severity index. An international derivation and validation study. Am J Respir Crit Care Med. 2014;189:576–85.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Davies G, Wells AU, Doffman S, et al. The effect of Pseudomonas aeruginosa on pulmonary function in patients with bronchiectasis. Eur Respir J. 2006;28:974–9.

    Article  CAS  PubMed  Google Scholar 

  12. Hurley MN, Cámara M, Smyth AR. Novel approaches to the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. Eur Respir J. 2012;40:1014–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martinez-Garcia MA, Soler-Cataluna JJ, Perpina-Tordera M, et al. Factors associated with lung function decline in adult patients with stable non-cystic fibrosis bronchiectasis. Chest. 2007;132:1565–72.

    Article  CAS  PubMed  Google Scholar 

  14. Martínez-García MA, De Gracia J, Relat MV, et al. Multidimensional approach to non-cystic fibrosis bronchiectasis: the FACED score. Eur Respir J. 2014;43:1357–67.

    Article  PubMed  Google Scholar 

  15. Rogers GB, Zain NM, Bruce KD, et al. A novel microbiota stratification system predicts future exacerbations in bronchiectasis. Ann Am Thorac Soc. 2014;11:496.

    Article  PubMed  Google Scholar 

  16. Taylor SL, Rogers GB, Chen ACH, et al. Matrix metalloproteinases vary with airway microbiota composition and lung function in non-cystic fibrosis bronchiectasis. Ann Am Thorac Soc. 2015;12:701–7.

    Article  PubMed  Google Scholar 

  17. Smith MP, Hill AT. Evaluating success of therapy for bronchiectasis: what end points to use? Clin Chest Med. 2012;33:329–49.

    Article  PubMed  Google Scholar 

  18. Welsh EJ, Evans DJ, Fowler SJ, Spencer S. Interventions for bronchiectasis: an overview of Cochrane systematic reviews. Cochrane Database Syst Rev. 2015;7:CD010337.

    Google Scholar 

  19. Panidis D, Markantonis SL, Boutzouka E, et al. Penetration of gentamicin into the alveolar lining fluid of critically ill patients with ventilator-associated pneumonia. Chest. 2005;128:545–52.

    Article  CAS  PubMed  Google Scholar 

  20. Mazzei T, Novelli A, De Lalla F, et al. Tissue penetration and pulmonary disposition of tobramycin. J Chemother. 1995;7:363–70. https://doi.org/10.1179/joc.1995.7.4.363.

    Article  CAS  PubMed  Google Scholar 

  21. Geller DE. Aerosol antibiotics in cystic fibrosis. Respir Care. 2009;54:658–70.

    Article  PubMed  Google Scholar 

  22. Mendelman PM, Smith AL, Levy J, et al. Aminoglycoside penetration, inactivation, and efficacy in cystic fibrosis sputum. Am Rev Respir Dis. 1985;132:761–5.

    CAS  PubMed  Google Scholar 

  23. Konstan MW, Geller DE, Minić P, et al. Tobramycin inhalation powder for P. aeruginosa infection in cystic fibrosis: the EVOLVE trial. Pediatr Pulmonol. 2011;46:230–8.

    Article  PubMed  Google Scholar 

  24. Geller DE, Pitlick WH, Nardella PA, et al. Pharmacokinetics and bioavailability of aerosolized tobramycin in cystic fibrosis. Chest. 2002;122:219–26.

    Article  CAS  PubMed  Google Scholar 

  25. Laube BL, Janssens HM, De Jongh FHC, et al. What the pulmonary specialist should know about the new inhalation therapies. Eur Respir J. 2011;37:1308–31.

    Article  CAS  PubMed  Google Scholar 

  26. Heyder J. Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc Am Thorac Soc. 2004;1:315–20.

    Article  CAS  PubMed  Google Scholar 

  27. Ramphal R, Lhermitte M, Filliat M, Roussel P. The binding of anti-pseudomonal antibiotics to macromolecules from cystic fibrosis sputum. J Antimicrob Chemother. 1988;22:483–90.

    Article  CAS  PubMed  Google Scholar 

  28. Gappa M, Steinkamp G, Tummler B, von der Hardt H. Long-term tobramycin aerosol therapy of chronic Pseudomonas aeruginosa infection in patients with cystic fibrosis. Scand J Gastroenterol Suppl. 1988;143:74–6.

    Article  CAS  PubMed  Google Scholar 

  29. MacLusky IB, Gold R, Corey M, Levison H. Long-term effects of inhaled tobramycin in patients with cystic fibrosis colonized with Pseudomonas aeruginosa. Pediatr Pulmonol. 1989;7:42–8.

    Article  CAS  PubMed  Google Scholar 

  30. Nikolaizik WH, Trociewicz K, Ratjen F. Bronchial reactions to the inhalation of high-dose tobramycin in cystic fibrosis. Eur Respir J. 2002;20:122–6.

    Article  CAS  PubMed  Google Scholar 

  31. Ramsey BW, Pepe MS, Quan JM, et al. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. Cystic fibrosis inhaled tobramycin study group. N Engl J Med. 1999;340:23–30.

    Article  CAS  PubMed  Google Scholar 

  32. Cohen-Cymberknoh M, Shoseyov D, Kerem E. Standards of care for patients with cystic fibrosis. Cyst Fibros. 2014;64:246.

    CAS  Google Scholar 

  33. Smyth AR, Bell SC, Bojcin S, et al. European cystic fibrosis society standards of care: best practice guidelines. J Cyst Fibros. 2014;13:S23–42.

    Article  PubMed  Google Scholar 

  34. Ratjen F, Munck A, Kho P, Angyalosi G. Treatment of early Pseudomonas aeruginosa infection in patients with cystic fibrosis: the ELITE trial. Thorax. 2010;65:286–91.

    Article  PubMed  Google Scholar 

  35. Treggiari MM, Retsch-Bogart G, Mayer-Hamblett N, et al. Comparative efficacy and safety of 4 randomized regimens to treat early Pseudomonas aeruginosa infection in children with cystic fibrosis. Arch Pediatr Adolesc Med. 2011;165:847–56.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tiddens HA, De Boeck K, Clancy JP, et al. Open label study of inhaled aztreonam for Pseudomonas eradication in children with cystic fibrosis: the ALPINE study. J Cyst Fibros. 2015;14:111–9.

    Article  CAS  PubMed  Google Scholar 

  37. Assael BM, Pressler T, Bilton D, et al. Inhaled aztreonam lysine vs. inhaled tobramycin in cystic fibrosis: a comparative efficacy trial. J Cyst Fibros. 2013;12:130–40.

    Article  CAS  PubMed  Google Scholar 

  38. Konstan MW, Flume PA, Kappler M, et al. Safety, efficacy and convenience of tobramycin inhalation powder in cystic fibrosis patients: the EAGER trial. J Cyst Fibros. 2011;10:54–61.

    Article  CAS  PubMed  Google Scholar 

  39. Pesaturo KA, Horton ER, Belliveau P. Inhaled aztreonam lysine for cystic fibrosis pulmonary disease-related outcomes. Ann Pharmacother. 2012;46:1076–85.

    Article  PubMed  Google Scholar 

  40. Ramsey BW, Dorkin HL, Eisenberg JD, et al. Efficacy of aerosolized tobramycin in patients with cystic fibrosis. N Engl J Med. 1993;328:1740–6.

    Article  CAS  PubMed  Google Scholar 

  41. Wainwright CE, Quittner AL, Geller DE, et al. Aztreonam for inhalation solution (AZLI) in patients with cystic fibrosis, mild lung impairment, and P. aeruginosa. J Cyst Fibros. 2011;10:234–42.

    Article  CAS  PubMed  Google Scholar 

  42. Smith AL, Fiel SB, Mayer-Hamblett N, et al. Susceptibility testing of Pseudomonas aeruginosa isolates and clinical response to parenteral antibiotic administration: lack of association in cystic fibrosis. Chest. 2003;123:1495–502.

    Article  CAS  PubMed  Google Scholar 

  43. Barker AF, Couch L, Fiel SB, et al. Tobramycin solution for inhalation reduces sputum Pseudomonas aeruginosa density in bronchiectasis. Am J Respir Crit Care Med. 2000;162:481–5.

    Article  CAS  PubMed  Google Scholar 

  44. Drobnic ME, Sune P, Montoro JB, et al. Inhaled tobramycin in non-cystic fibrosis patients with bronchiectasis and chronic bronchial infection with Pseudomonas aeruginosa. Ann Pharmacother. 2005;39:39–44.

    Article  CAS  PubMed  Google Scholar 

  45. Orriols R, Roig J, Ferrer J, et al. Inhaled antibiotic therapy in non-cystic fibrosis patients with bronchiectasis and chronic bronchial infection by Pseudomonas aeruginosa. Respir Med. 1999;93:476–80.

    Article  CAS  PubMed  Google Scholar 

  46. Scheinberg P, Shore E. A pilot study of the safety and efficacy of tobramycin solution for inhalation in patients with severe bronchiectasis. Chest. 2005;127:1420–6.

    CAS  PubMed  Google Scholar 

  47. Hill SL, Morrison HM, Burnett D, Stockley RA. Short term response of patients with bronchiectasis to treatment with amoxycillin given in standard or high doses orally or by inhalation. Thorax. 1986;41:559–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stockley R, Hill S, Burnett D. Nebulized amoxicillin in chronic purulent bronchiectasis. Clin Ther. 1985;7:593–9.

    CAS  PubMed  Google Scholar 

  49. Hill SL, Burnett D, Hewetson KASR. The response of patients with purulent bronchiectasis to antibiotics for four months. QJM. 1988;66:163–73.

    CAS  PubMed  Google Scholar 

  50. Bilton D, Henig N, Morrissey B, Gotfried M. Addition of inhaled tobramycin to ciprofloxacin for acute exacerbations of Pseudomonas aeruginosa infection in adult bronchiectasis. Chest. 2006;130:1503–10.

    Article  PubMed  Google Scholar 

  51. Lin HC, Cheng HF, Wang CH, et al. Inhaled gentamicin reduces airway neutrophil activity and mucus secretion in bronchiectasis. Am J Respir Crit Care Med. 1997;155:2024–9.

    Article  CAS  PubMed  Google Scholar 

  52. Murray MP, Govan JRW, Doherty CJ, et al. A randomized controlled trial of nebulized gentamicin in non-cystic fibrosis bronchiectasis. Am J Respir Crit Care Med. 2011;183:491–9.

    Article  CAS  PubMed  Google Scholar 

  53. Dhar R, Anwar GA, Bourke SC, et al. Efficacy of nebulised colomycin in patients with non-cystic fibrosis bronchiectasis colonised with Pseudomonas aeruginosa. Thorax. 2010;65:553.

    Article  CAS  PubMed  Google Scholar 

  54. Steinfort DP, Steinfort C. Effect of long-term nebulized colistin on lung function and quality of life in patients with chronic bronchial sepsis. Intern Med J. 2007;37:495–8.

    Article  CAS  PubMed  Google Scholar 

  55. Haworth CS, Foweraker JE, Wilkinson P, et al. Inhaled colistin in patients with bronchiectasis and chronic Pseudomonas aeruginosa infection. Am J Respir Crit Care Med. 2014;189:975–82.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Barker AF, O’Donnell AE, Flume P, et al. Aztreonam for inhalation solution in patients with non-cystic fibrosis bronchiectasis (AIR-BX1 and AIR-BX2): two randomised double-blind, placebo-controlled phase 3 trials. Lancet Respir Med. 2014;2:738–49.

    Article  CAS  PubMed  Google Scholar 

  57. Serisier DJ, Bilton D, De Soyza A, et al. Inhaled, dual release liposomal ciprofloxacin in non-cystic fibrosis bronchiectasis (ORBIT-2): a randomised, double-blind, placebo-controlled trial. Thorax. 2013;68:812–7.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wilson R, Welte T, Polverino E, et al. Ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis: a phase II randomised study. Eur Respir J. 2013;41:1107–15.

    Article  CAS  PubMed  Google Scholar 

  59. Yang JW, Fan LC, Lu HW, et al. Efficacy and safety of long-term inhaled antibiotic for patients with noncystic fibrosis bronchiectasis: a meta-analysis. Clin Respir J. 2015;10:731.

    Article  PubMed  Google Scholar 

  60. Evans SA, Turner SM, Bosch BJ, et al. Lung function in bronchiectasis: the influence of Pseudomonas aeruginosa. Eur Respir J. 1996;9:1601–4.

    Article  CAS  PubMed  Google Scholar 

  61. Wilson CB, Jones PW, O’Leary CJ, et al. Effect of sputum bacteriology on the quality of life of patients with bronchiectasis. Eur Respir J. 1997;10:1754–60.

    Article  CAS  PubMed  Google Scholar 

  62. Miszkiel KA, Wells AU, Rubens MB, et al. Effects of airway infection by Pseudomonas aeruginosa: a computed tomographic study. Thorax. 1997;52:260–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ho P. The effect of Pseudomonas aeruginosa infection on clinical parameters in steady-state bronchiectasis. Chest J. 1998;114:1594.

    Article  CAS  Google Scholar 

  64. Loebinger MR, Bilton D, Wilson R. Upper airway 2: bronchiectasis, cystic fibrosis and sinusitis. Thorax. 2009;64:1096–101.

    Article  CAS  PubMed  Google Scholar 

  65. Roberts HJ, Hubbard R. Trends in bronchiectasis mortality in England and Wales. Respir Med. 2010;104:981–5.

    Article  PubMed  Google Scholar 

  66. Pasteur MC, Bilton D, Hill AT, Group BTSB non-CG. British Thoracic Society guideline for non-CF bronchiectasis. Thorax. 2010;65(Suppl 1):i1–58.

    Article  PubMed  Google Scholar 

  67. Wong C, Jayaram L, Karalus N, et al. Azithromycin for prevention of exacerbations in non-cystic fibrosis bronchiectasis (EMBRACE): a randomised, double-blind, placebo-controlled trial. Lancet. 2012;380:660–7.

    Article  CAS  PubMed  Google Scholar 

  68. Serisier DJ, Martin ML, McGuckin MA, et al. Effect of long-term, low-dose erythromycin on pulmonary exacerbations among patients with non-cystic fibrosis bronchiectasis: the BLESS randomized controlled trial. JAMA. 2013;309:1260–7.

    Article  CAS  PubMed  Google Scholar 

  69. Nadig TR, Flume PA. Aerosolized antibiotics for patients with bronchiectasis. Am J Respir Crit Care Med. 2016;193:808–10.

    Article  CAS  PubMed  Google Scholar 

  70. Altenburg J, de Graaff CS, Stienstra Y, et al. Effect of azithromycin maintenance treatment on infectious exacerbations among patients with non-cystic fibrosis bronchiectasis: the BAT randomized controlled trial. JAMA. 2013;309:1251–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Shteinberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Shteinberg, M., Johnson, C., Haworth, C. (2018). Long-Term Inhaled Antibiotic Treatment in Bronchiectasis. In: Chalmers, J., Polverino, E., Aliberti, S. (eds) Bronchiectasis. Springer, Cham. https://doi.org/10.1007/978-3-319-61452-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61452-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61451-9

  • Online ISBN: 978-3-319-61452-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics