Skip to main content

FloBaRoID — A Software Package for the Identification of Robot Dynamics Parameters

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2017)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 49))

Included in the following conference series:

Abstract

This paper presents the open software package FloBaRoID (FLOating BAse RObot dynamical IDentification), which aims to provide a package implementing all necessary methods to identify robot dynamics parameters starting from a kinematic model. The package features data acquisition and preprocessing, extraction of identifiable base dynamics parameters, and finding physically consistent dynamics parameters for stable control and simulation. The paper details each of these steps and exemplifies the software usage with experimental results for the 7-DOF robot Kuka LWR 4+.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Source and Documentation is available at https://github.com/kjyv/flobaroid.

  2. 2.

    https://github.com/CentroEPiaggio/kuka-lwr/.

  3. 3.

    https://github.com/corlab/cogimon-gazebo-models.

References

  1. Wu J, Wang J, You Z (2010) An overview of dynamic parameter identification of robots. Robot Comput Integr Manufact 26(5):414–419

    Article  Google Scholar 

  2. Atkeson CG, An CH, Hollerbach JM (1986) Estimation of inertial parameters of manipulator loads and links. Int J Robot Res 5(3):101–119

    Article  Google Scholar 

  3. Tsagarakis NG, Caldwell DG, Bicchi A, Negrello F, Garabini M, Choi W, Baccelliere L, Loc V, Noorden J, Catalano M et al. (2016) Walkman: a high performance humanoid platform for realistic environments. J Field Robot (JFR)

    Google Scholar 

  4. Sousa CD, Cortesão R (2014) Physical feasibility of robot base inertial parameter identification: a linear matrix inequality approach. Int J Robot Res 33(6):931–944

    Article  Google Scholar 

  5. Nori F, Traversaro S, Eljaik J, Romano F, Del Prete A, Pucci D (2015) iCub whole-body control through force regulation on rigid non-coplanar contacts. Front Robot AI 2:6

    Article  Google Scholar 

  6. Dupont P (1990) Friction modeling in dynamic robot simulation. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp 1370–1376

    Google Scholar 

  7. Swevers J, Ganseman C, Bilgin Tükel D, De Schutter J, Van Brüssel H (1997) Optimal robot excitation and identification. IEEE Trans Robot Autom 13(5):730–740

    Article  Google Scholar 

  8. Bonnet V, Fraisse P, Crosnier A, Gautier M, González A, Venture G (2016) Optimal exciting dance for identifying inertial parameters of an anthropomorphic structure. IEEE Trans Robot 32(4):823–836

    Article  Google Scholar 

  9. Del Prete A, Mansard N, Ramos OE, Stasse O, Nori F (2015) Implementing torque control with high-ratio gear boxes and without joint-torque sensors. Int J Humanoid Robot 13(1):1–29 (Submitted to)

    Google Scholar 

  10. Mayeda H, Yoshida K, Osuka K (1990) Base parameters of manipulator dynamic models. IEEE Trans Robot Autom 6(3):312–321

    Article  Google Scholar 

  11. Zak G, Benhabib B, Fenton RG, Saban I (1994) Application of the weighted least squares parameter estimation method to the robot calibration. J Mech Des 116(3):890–893 (1990)

    Article  Google Scholar 

  12. Gaz C, Luca AD (2016) Extracting feasible robot parameters from dynamic coefficients using nonlinear optimization methods. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp 2075–2081

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Bethge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Bethge, S., Malzahn, J., Tsagarakis, N., Caldwell, D. (2018). FloBaRoID — A Software Package for the Identification of Robot Dynamics Parameters. In: Ferraresi, C., Quaglia, G. (eds) Advances in Service and Industrial Robotics. RAAD 2017. Mechanisms and Machine Science, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-61276-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61276-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61275-1

  • Online ISBN: 978-3-319-61276-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics