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Early Warning Techniques for Local Climate 
Resilience: Smallholder Rice in Lao PDR

Drew Behnke, Sam Heft-Neal, and David Roland-Holst

Abstract  As part of the Regional Rice Initiative Pilot Project, UNFAO has com-
mitted resources to support policy dialog and decision capacity related to climate 
change adaptation and mitigation in agriculture, with particular attention to food 
security and the rice sector in Asia and the Pacific. This initiative includes sponsor-
ship of research to deliver information and knowledge products for policy makers to 
better manage climate risks to the rice sector and identify adaptation needs for the 
rice sector in Lao PDR. In the following pages, we report on progress of one com-
ponent of this activity, econometric estimation of long term impacts that climate 
change can be expected to have on rice yields. The work reported here is prelimi-
nary and should not in its current form be used as a basis for policy.

1  �Introduction

The report presents a new approach to estimating how climate conditions affect rice 
production in Lao PDR and modeling the associated potential future impacts of 
climate change in the rice sector. To conduct our analysis, we use advanced econo-
metric models to estimate the historical relationship between observed rice yields 
and weather inputs. We then downscale projections from leading climate models to 
evaluate potential future climate conditions in Lao PDR and implement the econo-
metric models to estimate rice yields under these climate scenarios.

The organization of this report is as follows. First, we provide background and 
review weather and rice production conditions in Lao PDR as well as summarize the 
role of weather inputs in rice yields. In addition to average weather conditions, 

Originally published by UNFAO as RR Nr. 10-13-1; November 2013

D. Behnke (*) 
Department of Economics, University of California Santa Barbara, Santa Barbara, CA, USA
e-mail: dbehnke@umail.ucsb.edu 

S. Heft-Neal • D. Roland-Holst 
Department of Agricultural and Resource Economics, University of California Berkeley,  
207 Giannini Hall, Berkeley, CA 94720-3310, USA
e-mail: drwh@berkeley.edu

mailto:dbehnke@umail.ucsb.edu
mailto:drwh@berkeley.edu


106

special attention is devoted to extreme events such as floods and droughts that can 
play disruptive roles in rice production. Next we review methodologies used in the 
literature and discuss the statistical approach employed here in order to estimate the 
relationship between weather and observed rice yields. Again, we include both aver-
age weather and measures of natural disasters in our analysis. Finally, we provide 
an overview of climate models and apply climate projections to our statistical mod-
els of rice yields in order to evaluate potential impacts of climate change on rice 
yields in Lao PDR.

2  �Background

The following section provides an overview of rice growing conditions in Lao 
PDR. Weather inputs, the occurrence of extreme events, and rice production sys-
tems are all discussed in order to provide context for the subsequent analysis.

2.1  �Overview of Climate Conditions

Total rainfall during the rice-growing season in Lao PDR ranges from about 100–
170  cm. However, year-to-year rainfall is highly variable. Moreover, even years 
with identical levels of total rainfall can have very different growing conditions 
depending on the pattern of rainfall arrival. Monthly rainfall generally rises each 
month from the beginning of the growing season until it peaks in August and then 
decreases thereafter as illustrated in Fig. 1 (both panels).

There is also significant variation in growing season temperatures across Lao 
PDR. Figure 1 shows the geographical distribution of growing season conditions 
across space and time. Average minimum (nighttime) temperatures during the grow-
ing season range from approximately 20–24 °C, while average maximum (daytime) 
temperatures range from 28–32 °C. It should be noted however, that these averages 
mask much of the underlying variability in temperature. For example, average tem-
perature varies across the growing season, where the beginning of the season is typi-
cally several degrees hotter than the end of the growing season. Moreover, daily 
maximum temperatures can exceed 40 °C. Extreme heat, particularly if sustained 
over several days, puts additional stress on rice growth and may cause large dam-
ages (Wassmann et al. 2009b).

2.2  �Extreme Events

While average climate conditions play an important role in average rice yields, 
extreme events can cause large impacts that may not be captured by seasonal aver-
ages. For example, a year with early season drought and late season floods may 
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record normal growing season rainfall totals while resulting in significant crop dam-
age. Furthermore, rather than contributing to lower annual yields, extreme events 
may cause the rice planted area to be damaged, resulting in significant loss of the 
planted crop, which can be devastating to farmer livelihoods. In order to address this 
important facet of the climate-rice production relationship, we incorporate effects of 
both average climate and extreme extreme weather events on rice yields.

The majority of rice production in Lao PDR is rain-fed and consequently 
droughts pose a serious threat. In addition to water shortage, flooding is also a com-
mon danger to Lao and other Southeast Asian rice production. In fact, regular 

Fig. 1  Decadal changes in seasonal weather conditions (two panels)
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seasonal flooding from the Mekong River is often a greater threat to the central 
region rice production than water shortages (Schiller et al. 2001).

The toll from extreme flooding and droughts can be significant. Figure 2 displays 
the estimated number of people affected by major floods and droughts in Lao PDR 
as recorded in the international natural disaster database EMDAT.1 This database 
provides statistics for the number of people affected by particular large-scale 
extreme weather events. It should be noted that smaller regional scale events are not 
recorded in the database and thus not included in the figure. It should also be noted 
that many of the people affected by these disasters may not be farmers. That being 
said, farmers are particularly vulnerable to droughts and floods because their liveli-
hoods can be negatively affected. Nonetheless, the EMDAT database provides 
insight into the potential magnitude of these effects. According to the database, 
there have been six floods in the last 20 years that affected at least 300,000 people 
in Lao PDR. Major droughts, although less common than floods, can also exact 
large damages. In fact, the biggest event in the database is a late 1980s drought that 
affected more than 700,000 people in Lao PDR.

To address the shortcomings of the EMDAT data we consider the direct impact 
of flooding and droughts on rice yields in subsequent sections. The data that we use 
in our analysis, which comes from the Department of Agriculture and is described 
further in Section 4, is more precise and includes annual damaged rice area for each 
district that resulted from drought, floods, or pests (Fig. 3).

1 Available online at www.emdat.be.

Fig. 2  Population affected by major flood or drought events in Lao PDR. Blue represents floods 
and red represents droughts. Note that regional floods and droughts are not included in the figure. 
Consequently, the figure represents only the largest scale events that have been recorded in this 
international database of natural disasters
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2.3  �Rice Production

As a culturally significant, staple food crop, rice has an important role in the econ-
omy of Lao PDR. Because of this, the rice production sector has been the focus of 
various political policies in order to increase production and maintain food security. 
As a result, Lao PDR has undergone significant transitions in the sector over the past 
several decades, moving from a net rice importer in the 1970s and 1980s, to a stable 
and increasing surplus over the last decade.

The introduction of improved seed varieties in the 1970s as well as loosening of 
price controls in the early 1980s led to some production increases, but the majority 
of growth occurred in the 1990s. Over the last 20 years, rice production has more 
than doubled to reach nearly 3.5 million tones of paddy in 2012 (DOA 2012). This 
represents an average of 5.1% annual growth, which is one of the highest in the 

Fig. 3  Average rice yields. Maps show average rice yields by rice production system. Data cover 
the period 2006–2012
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region over this time period. This high growth can be attributed both to the yield 
improvements (from new, improved seed varieties and increased use of fertilizer) as 
well as land expansion. Growth from land expansion over the previous two decades 
can be explained by the steady increase in lowland, rain fed production systems as 
well as a rapid increase in dry season irrigated production. Concurrently, the lower 
yield, upland rice production system saw total area steadily fall. Regionally, much 
of this growth was concentrated in the central plain provinces of Savannakhet, 
Khammuane, Vientiane, and the Vientiane Municipality as well as the southern 
province of Saravan. In total, these five provinces comprised 70% of the total 
increase in rice production between 1995 and 2010 (MAF 2012).

2.3.1  �Production Systems

Rice production systems can be categorized into one of five different categories: 
lowland wet-season, lowland irrigated dry-season, upland permanent, upland rotary, 
and upland shifting.

Lowland Wet-Season  Lowland wet-season is responsible for the majority of pro-
duction, representing 79% of the total yield in 2012. This production system is most 
common in the central and southern regions of the country with 83% of total yields 
coming from these areas (DOA 2012). Lowland wet-season production has rela-
tively high yields compared to other production systems with an average of 3.91 
tons per ha in 2012. Given the comparatively high yields, and ubiquity of produc-
tion along the populated Mekong River Valley, lowland wet-season will remain the 
most important ecosystem for rice cultivation in the foreseeable future.

That being said, lowland wet-season production faces a variety of production 
constraints. First and foremost, is the constraint from climatic variability, as the 
production system is reliant on weather inputs for the production process. Rainfall 
is identified as a particular concern among farmers, as the rainfall pattern can vary 
from year-to-year, resulting in large fluctuations in production. Furthermore, the 
permeable nature of the sandy soils that prevail in much of the Mekong River Valley 
means drought is common occurrence. Temperature is of course an issue as well, as 
extreme temperature events are known to be harmful to rice production and the 
random nature of such events means farmers and unable to anticipate temperature 
shocks (Schiller et al. 2001).

Related to climatic variability, is the problem of insect pests that are rated by 
farmers as being among the top three production constraints. The relationship 
between pests, climatic variability, and production is not clearly understood, 
although it is understood that pests are believed to significantly impact yields and 
climate plausibly affects the prevalence of pests (Schiller et al. 2001).

Irrigated Dry-Season  Dry-season production occurs under irrigated conditions 
only. During the 1990s, the irrigated dry-season production system saw a rapid 
increase in production as part of the official national policy to support the continued 
development of small-scale irrigation schemes. The expansion of the irrigated sys-
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tem was promoted in order to increase national rice production, while at the same 
time reducing the year-to-year variability associated with wet-season production. 
Over the 2011–2012 dry-season growing season planted area totaled 108,000 ha 
representing approximately 11% of the national crop. Although this is a large 
increase from the 13,000  ha planted in 1992–1993, it represents only a modest 
increase from the 87,000 ha planted in 1998–1999. Furthermore, there is a large 
disparity from the MAF’s projected goal of 180,000 ha of production by 2005 (DOA 
2012; Schiller et al. 2001).

Due to the intensive nature of irrigated production, the majority of production is 
concentrated in a few provinces that can support this system. The central region is 
home to nearly 68% of the total irrigated dry-season planted area, with production 
being highly concentrated in the Vientiane Capital and Savannakhet (19% and 29% 
of total area planted respectively). Yields are the highest in this production system 
with 4.72 tons per ha on average over the 2011–2012 season (DOA 2012). This is 
unsurprising as the adoption of improved rice production technology is highest in 
the irrigated areas both as a combination of better extension services and higher 
farm incomes.

In regards to production constraints, temperature likely plays a larger role for the 
irrigated production system, as dry-season temperatures are initially cool before 
dramatically increasing toward the end of the season. Especially of concern are low 
temperatures in the north where temperatures can fall below 5 °C. In southern and 
central Lao PDR, the high temperatures during March and April that can coincide 
with flowering and grain filling are of primary concern (Schiller et al. 2001).

Upland  Upland rice cultivation in Lao PDR is split between three production cat-
egories; permanent, rotary, and shifting. Estimates vary about the size of these sys-
tems, as they are predominantly located in the remote, mountainous northern and 
eastern regions of the country. Furthermore, due to remote nature of these systems 
accurate yield measurements are next to impossible. Often upland rice plots are not 
clearly marked and typically grow in combination with forest trees and other crops. 
Furthermore, much of the production is in remote areas with limited to no road 
access and inadequate resources and staff to accurately record yields.

That being said, some estimates for upland production do exist. In the early 
1990s it was estimated that 2.1 million ha (or 8.8% of the national territory) was 
being used for slash-and-burn cultivation (Schiller et  al. 2001). By 2000, it was 
estimated that about one third of the population still relied on shifting cultivation 
systems, covering about 13% of the of the total land area of the country (ADB 
2006). In regards to rice production only, official data reports there was 119,000 ha 
of upland rice planted in 2012 representing approximately 12% of the total planted 
area of rice. Of this, approximately 47% was classified as a permanent upland sys-
tem (DOA 2012). Furthermore, the DOA reports data on two types of slash-and-
burn systems referring to them as either “rotary” or “shifting,” but has no explicit 
information on the differences between these systems.

Much like other production systems, there is a strong regional trend in the upland 
production system. The northern provinces accounted for over 73% of the total area 
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planted, with Luangprabang responsible for 18% of the total area alone. Yields are 
low in the upland system and relatively much lower than the other production types 
with an average yield of 1.8 ton per ha (DOA 2012).

In regards to production constraints, the upland production system has both simi-
lar and unique limitations to production. Climatic variability is again a major con-
cern, as farmers must rely on the weather for inputs into production. However, biotic 
constraints are a much larger concern for the upland system than others. Weeds and 
rodents were highlighted as the two largest limitations to production for upland 
farmers (Schiller et al. 2001). Additionally land pressure and pressure for the gov-
ernment have limited production. Traditionally, farmers would clear the forest with 
fire and after growing rice for a year or two, land would be left to fallow for 10–20 
years before returning. However, increased population pressure and land-use restric-
tions have led to a reduction in fallow periods to as short as 3 years (ADB 2006). 
Without the necessary time for the land to restore fertility, production is adversely 
impacted and furthermore such a system is unsustainable ecologically.

2.3.2  �Irrigation

As previously discussed, irrigation in Lao PDR increased dramatically during the 
mid-1990s and early-2000s under the government’s official policy to expand cover-
age. During this time, large investments were made to install high-capacity pumps 
along the Mekong River and its tributaries to expand small-scale irrigation opportu-
nities for smallholders. As a result of the government’s expansion efforts, irrigated 
area increased from about 12,000  ha in 1990 to 87,000  in 1999, representing a 
seven-fold increase (Pandey 2001). Growth was even more rapid in the early 2000s, 
eventually reaching peak coverage of over 500,000  ha in 2006 before declining 
slightly to the current 400,000 ha of coverage in 2012 (DOA 2012).

2.4  �The Physiological Relationship Between Rice and Weather 
Inputs

2.4.1  �The Role of Water

Rice production, more than most crops, is highly dependent on water availability, 
both in terms of quantity and timing of application. At some points during the grow-
ing season rainfall is highly beneficial, while at other times during the season it can 
be harmful. Too much or too little rainfall at any stage of rice growth can cause 
partial or total crop failure (Belder et al. 2004). Excessive water can lead to partial 
submergence of the rice plant, which reduces yields. In one experiment, Yoshida 
(1981) reports that 50% of plant submergence during any of the growth phases led 
to a 30–50% reduction in yields. However, while excessive water damages rice 
crops, drought is widely recognized as the primary constraint for rain-fed rice 

D. Behnke et al.



113

production (Bouman et al. 2005, 2007). Insufficient water causes plant mortality 
and a wide range of stresses that can lead to spikelet sterility, incomplete grain fill-
ing, stunting (Yoshida 1981), delayed heading (Homma et  al. 2004), and other 
adverse yield effects.

Prior to planting, water is also important for rice production as an input to field 
preparation. In rain-fed production systems, insufficient early rainfall can force 
farmers to delay planting. Although data in Lao PDR are not available, Sawano 
et al. (2008) studied the relationship between rainfall and planting dates in rain-fed 
areas of northeast Thailand, an area that is geographically similar to the central 
plains of Lao PDR.  The authors concluded that, depending on field-level water 
availability from rainfall, planting dates were locally distributed over an approxi-
mately two-month period, while local harvesting took place around the same time 
everywhere. The implication is obvious – delayed planting from insufficient early 
season water resources can significantly shorten the growing season and thus reduce 
output. It remains unclear why farmers who delayed planting did not delay harvest. 
While the authors did not offer any conclusive answers for this question, they sug-
gested that farmers may not want to delay harvesting in order to prevent interference 
with subsequent growing seasons, marketing considerations, and other farm and 
nonfarm activities.

2.4.2  �The Role of Temperature

Sunlight is another essential input into rice production – rice plants require solar 
radiation for photosynthesis and heat to promote tissue growth. There are a number 
of ways to measure energy requirements, the simplest being average temperature. 
Other related measures include other temperature boundaries (e.g., daily min T, 
daily max T), agronomic measures such as Growing Degree Days (GDD), and radi-
ation measures.

Generally, extreme highs and lows are of concern to crop growth. However, at 
the range of temperatures experienced by rice growers in Lao PDR, extreme lows 
are unlikely to harm rice growth, but extreme highs are a greater threat.2 Extreme 
high temperatures hurt plant growth because it causes heat stress, which delays the 
growth process (Yoshida 1981; Wassmann et al. 2009b). Furthermore, researchers 
have highlighted the difference between extreme high nighttime (minimum) tem-
peratures and extreme high daytime (maximum) temperatures. The respiration pro-
cess appears to make rice plants particularly sensitive to nighttime temperature (Yin 
et al. 1996). Several studies have highlighted nighttime temperatures as a driving 
factor of rice growth, where elevated minimum nighttime temperatures greatly 
reduce rice yields (Yin et al. 1996; Peng et al. 2004; Welch et al. 2010). Using a 
laboratory experiment to artificially manipulate temperatures, Yin et al. (1996) dem-
onstrate that a one-degree increase in nighttime temperature has a large negative 

2 Both daytime (daily maximum) and night-time (daily minimum) extreme highs are potentially 
harmful to rice yields.
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effect on rice yields whereas a one-degree increase in daytime temperature has a 
slightly positive effect. In fact, across most observed ranges of maximum tempera-
tures, higher daytime temperatures have generally been found to positively affect 
rice growth (Peng et al. 2004; Welch et al. 2010), however, as temperatures continue 
to rise, they eventually become harmful. The threshold where maximum daytime 
temperatures become detrimental to rice growth depends largely on genotype and 
local growing conditions (including e.g., soils and water availability). For example, 
depending on genotype and field conditions, Wassmann et al. (2009a) estimated an 
average cutoff for maximum temperature of 31 °C, beyond which “growth and pro-
ductivity (yield) rapidly decrease”. However, these estimates come from experi-
mental rather than field results, which may not be representative of adaptive, 
farmer-managed fields where some precautions may be taken when temperatures 
become potentially harmful. Consequently, if we believe that farmers can effec-
tively ameliorate the effects of extreme temperature through management practices, 
or through use of local varieties selected for heat resistance qualities, then we might 
expect observed field data to exhibit higher thresholds.

3  �Analysis I: Estimating the Relationship Between Rice 
and Climate Change

This section constitutes the first part of our analysis, where we estimate the relation-
ship between observed historical rice yields and weather conditions in Lao PDR. The 
following section will use the observed relationship to project yields under potential 
future climate scenarios. In this we first describe the data and methods used, then 
describe our primary results. Full model results are presented in tables in the 
appendix.

3.1  �Methods

Climate change is a long run phenomenon and it is difficult to distinguish historical 
climate change from short to medium run weather cycles. In order to estimate 
potential climate change impacts on agriculture, researchers often estimate the 
short-term relationship between weather inputs and yields and then apply this rela-
tionship over the range of future conditions predicted by climate models. While this 
approach is imperfect3, it allows us to provide an approximate estimate of future 
climate impacts.

In general, two approaches have been taken to characterize the relationship 
between weather inputs and rice yields. First, in agronomic studies, usually involv-

3 One needs to be particularly careful about extrapolating current relationships to future unexperi-
enced ranges of climate conditions.
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ing laboratory or experimental fields, rice plants are placed under different types of 
environmental stresses and physiological responses are measured (e.g., Borrell et al. 
1997; Homma et al. 2004; Yin et al. 1996). An extension of this approach is to use 
field data to calibrate crop models that simulate the physiological growth process. 
Perturbing the inputs in these models can in turn generate predictions of crop growth 
under potential future climate conditions.

The second approach, which we take here, applies statistical models using plau-
sibly random variations in weather to estimate the effects of weather conditions on 
observed rice yields. We exploit the presumably random year-to-year variation in 
temperature and precipitation to estimate whether rice yields are higher or lower in 
years that are warmer and wetter. With the relationship firmly established, we then 
use climate projections to model how climate change will affect yields.

In a controlled lab experiment, scientists repeatedly carry out procedures that are 
identical except for one factor of interest, which is manually manipulated in order 
to measure the causal impact of said factor on the outcome. As with many social 
science settings, this type of experiment is not possible for the Lao PDR rice sector. 
Thus we rely on existing data to demonstrate the impact of historical weather real-
izations on yields and model the impacts of climate change once this relationship 
has been established. It should be noted that overall yields have increased over the 
study period due in large part to technological advances. Consequently, our esti-
mates represent losses with respect to the counterfactual scenario of no climate 
change. Losses due to climate change do not imply that the yield trends are down-
ward sloping, only that yields have been, and will continue to be, lower in the face 
of climate change than they would be otherwise. This distinction does not change 
the fact that climate change has potential to have strongly negative impacts on the 
rice sector in Lao PDR.

Typically, statistical studies use average growing season (or sub-season) condi-
tions, to represent the weather inputs in the production function. The simplest 
approach estimates yields (calculated as log(yield)) as a function of mean tempera-
ture, mean precipitation, and their squares. However, several studies have 
emphasized the differential effects of minimum and maximum temperature (Yin 
et al. 1996; Peng et al. 2004; Welch et al. 2010), the importance of including radia-
tion (Sheehy et al. 2006; Welch et al. 2010), and the differential effects across phases 
of the growing season (Welch et  al. 2010). In addition, there has been extensive 
research on water requirements for rice production in irrigated (Bouman et al. 2005, 
2007) or rain-fed settings (Xu and Mackill 1996; Sharma et al. 1994; Wade et al. 
1999).

Our goal is to provide a localized analysis for Lao PDR. In order to do so, we 
seek to incorporate the main methods and findings from these disparate sources into 
statistical models that estimate the impact of climate on rice types grown particu-
larly in Lao PDR. This analysis, in turn, will be used to inform policy prescriptions 
and identify the production systems and rice growing areas that are most vulnerable 
to adverse changes in growing conditions.

Early Warning Techniques for Local Climate Resilience: Smallholder Rice in Lao PDR



116

3.1.1  �Average Weather Models

We begin with an approach of estimating the effects of climate on rice yields using 
a panel regression with a single growing season metric for each weather covariate 
(average min T, max T, and precipitation across the growing season). Using average 
seasonal conditions, we estimate a linear model for each rice production system. 
These are later used to predict yields under various climate scenarios.

Here, we present a variation of the panel fixed effects (FE) model. This model is 
an accepted and commonly applied model in the literature (see e.g. Lobell and 
Burke 2010). Panel data contains repeated observations of the same units over time. 
In this case we repeatedly observe district rice outcomes. Panel data allows the use 
of fixed effects, which control for a variety of observations that are unobserved. By 
conditioning on fixed effects, county specific deviations in weather from the county 
averages are used to identify the effect of weather on yields. Specifically we chose 
to control for district and year fixed effects. District fixed effects control for any 
unobservable characteristic that varies across district but is constant over time. This 
accounts for important differences across districts such as soil conditions or areas 
with a higher prevalence of intensive production systems. Year fixed effects control 
for any unobservable characteristic that varies across years but is constant across all 
districts. This includes national time trends such as improved technology (irriga-
tion, fertilizer use, or the introduction of improved seed varieties for example).

Within this framework there are a number of choices/assumptions to be made. In 
each case, there is a tradeoff between controlling for unobserved factors and observ-
ing enough variation in the data to be able to make econometric estimations. In 
reality, we know that there are many factors that affect crop yields, including soil 
quality, technology, agrochemicals, endogenous behavior, etc. Here, we are only 
considering the impact of weather, while the other factors are unobserved by us. 
Thus we are trying to estimate the disaggregated yield impact of weather holding 
constant other explanatory variables. If district-level time-series data were available 
on other factors such as agricultural investment, fertilizer use, or pesticides, then we 
could include these explanatory variables in our model. However, to our knowledge 
these data do not exist at the required resolution. Fortunately, the fixed effects model 
attempts to control for these unobserved factors, so that we can still produce unbi-
ased estimates of climate effects. In other words, we can control for a variety of 
unobserved characteristics but cannot estimate them in our model. We are not 
attempting to explain every factor that affects yields, but merely to identify the 
effect of temperature and rainfall. Given our interest is ultimately how yields will 
change in the face of new climate conditions this does not affect our analysis.

The following reduced form model is our primary empirical specification. In our 
ideal specification we would have a vector of controls for the other factors that 
affect yields that we have previously discussed. This would include characteristics 
such as fertilizer use, pesticide use, soil quality, etc. However, data of this quality 
does not exist in Lao PDR, which is why we rely on fixed effects.
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Equation 1: Panel Model of Average Weather Effects

	
log Y MinT MaxT Pd t dt dt dtdt( ) = + + + + +γ θ β β β ε1 2 3 	 (1)

Ydt is yield for district d in year t. The model includes district fixed effects γd and 
year fixed effects θt. β1–3 represent the coefficients on our weather variables

One of the fundamental assumptions we have to make is that individual specific 
time series variation is a valid source of variation for identifying causal effects. In 
other words, our model assumes that, for each district, weather variation from year-
to-year is random. It is obviously not true that weather is random over space (i.e., 
we expect that some parts of the country to get more rain than other parts every 
year) but we argue that it is reasonable to assume that deviations from local averages 
in one year are unrelated to deviations from local averages in the next year.

The modeling approach in equation 1 makes the strong assumption that the effect 
of weather on yields is the same over different ranges. For example, the linear model 
assumes an increase in maximum temperature from 29 to 30 has the same effect as 
an increase from 33 to 34. This is a very strong assumption and other researchers 
(Schlenker and Roberts 2009) have found a nonlinear relationship between tem-
perature and yields. Therefore, to add robustness to our analysis we also consider a 
non-linear model as seen in equation 2. This model adds square terms for the cli-
mate variables used in equation 1, which allows us to consider if there is a threshold 
at which the relationship between weather and yields changes. Ideally, we would 
like to estimate a piece-wise linear model that estimates different slopes over differ-
ent ranges of covariates. However, given our limited number of observations, a 
piece-wise model is not advised as it will increase the number of covariates and 
reduce the necessary power for statistical inference.

Equation 2: Panel Model of Average Weather Effects

log Y MinT MinT MaxT MaxT Pd t dt dt dt dtdt( ) = + + + + + + +γ θ β β β β β ε1 2
2

3 4
2

5 ddt 	(2)

Ydt is yield for district d in year t. The model includes district fixed effects γd and 
year fixed effects θt. β1–5 represent the coefficients on our weather variables

3.1.2  �Modeling Extreme Events

In addition to modeling the effects of average weather conditions on average rice 
yields, we can model the effects of drought and floods on rice losses with the same 
methodology. In equation 2, Ldt represents rice losses4 and Drdt measures drought 
severity in district d and year t. Since our yield measures are annual, drought and 

4 Planted area that could not be harvested.
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flood measures need to be aggregated annually. We will experiment with different 
aggregation methods.

Equation 3: Panel Model of Extreme Event Effects

	
log L Drdt d dt dt dt( ) = + + + +γ θ β β εt 1 2X 	

(3)

Ypt is yield for district d in year t. The model includes province fixed effects γd and 
year fixed effects θt. β1 represents the coefficients on our drought measure. Xdt are 
other controls.

3.2  �Data

3.2.1  �Rice Yields

Our rice yield data for Lao PDR come from the “Crop Statistics Year Book” pub-
lished by the Department of Agriculture (DOA) within the Ministry of Agriculture 
and Forestry (MAF). These reports contain a wide variety of detailed crop produc-
tion data at the district level and have been published annually since 2005. 
Unfortunately, rice production data before 2005 in Lao PDR is limited to province 
level aggregates that are of little use to our analysis, and district level rice produc-
tion data is only available from 2005 through 2011. Although our panel is limited, it 
represents the most accurate and detailed rice production data in existence for this 
country. Rice production data is split between the five distinct production systems 
used in Lao PDR and these contain a variety of important statistics useful to our 
analysis. The variables in the data include planted area, harvested area, yield, and 
damaged area by source (drought, flood, etc).

3.2.2  �Weather Conditions

It is inherently difficult to measure weather over space. Weather is observed at indi-
vidual weather stations, and ideally want to have weather stations collecting data 
every few meters in order to capture variation in conditions over space. Of course, 
managing so many weather stations is impractical, and instead observed values are 
interpolated over locations in between weather stations. There are many different 
forms of weather data sets that have carried out this interpolation over different 
spatial and temporal resolutions. Each data set has its own advantages and draw-
backs. Here we carry out our analysis with two separate weather data sets, known 
by the acronyms CRU and APHRODITE, described below. CRU data provide more 
weather variables (i.e., MIN, MAX) but at a lower temporal and spatial resolution. 
By including two completely different weather data sets we decrease the likelihood 
that our results will rely on the peculiarities of a particular data set.
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The first weather data come from the Climatic Research Unit (CRU) at the 
University of East Anglia. The research group produces several global data products 
that include monthly average minimum (nighttime) temperature, maximum (day-
time) temperature, mean temperature, and monthly total rainfall. We utilize the 
high-resolution gridded data sets5 that have a resolution of 0.5 × 0.5 degrees glob-
ally. This translates to approximately 55 × 55 km at the equator. Each Lao PDR 
district is overlapped on the grid and area weighted averages are calculated in order 
to estimate monthly weather conditions for each district over the sample period.

The second data set, APHRODITE6, is described by Yatagai et  al. (2012). 
Researchers in Japan utilized a high density cluster of proprietary station data in 
order to create a high-resolution data set that includes daily average temperature and 
daily rainfall at a resolution of 0.05 × 0.05 degrees (~5 × 5 km). Although daily 
temperatures are useful, this data set does not contain minimum and maximum tem-
perature information, and covers only Asia.

3.2.3  �Extreme Events

Droughts

Although difficult to measure from seasonal rainfall and temperature data, research-
ers have begun to use remote sensing data from satellites to estimate drought sever-
ity. In the present analysis, we utilize a new measure developed by Mu et al. (2013) 
called the Drought Severity Index (DSI). Mu and colleagues produce global DSI 
measures from satellite data covering the globe averaged over eight day periods 
from 2000 through 2011 at a resolution of 0.05 × 0.05 degrees (~5.5 × 5.5 km). In 
theory, DSI values range from negative infinity to positive infinity, however, in prac-
tice most values are clustered around zero. Negative DSI values signify drier-than-
normal conditions while positive values signify wetter than normal conditions. A 
zero value for DSI implies normal conditions. While it is an imperfect measure, DSI 
allows us to estimate district level drought severity across the rice-growing season 
and therefore estimate the effects of droughts on rice losses. Moreover, the drought 
patterns suggested by the DSI appear to be consistent with precipitation patterns 
observed in other data sets.

Floods

Like droughts, measuring flood extent is a practical difficulty that we address by 
using remotely sensed satellite data processed to estimate standing water extent. As 
far as the authors know, there are no available global remotely sensed flood mea-
sures. Consequently, as a second best option, we utilize DSI as a flood measure 

5 http://www.cru.uea.ac.uk/data.
6 http://www.chikyu.ac.jp/precip/products/index.html.

Early Warning Techniques for Local Climate Resilience: Smallholder Rice in Lao PDR

http://www.cru.uea.ac.uk/data
http://www.chikyu.ac.jp/precip/products/index.html


120

where large positive values for DSI imply flooding. The developers of DSI note that 
flood measurement is a potential extension of DSI, but also caution that DSI has not 
been fully evaluated as a flood measure. Consequently, we proceed with caution 
using the best available flood measures to estimate the impact of flooding on rice 
production.

3.2.4  �Data Limitations

There are significant constraints on data availability (and, inevitably, quality) for 
Lao PDR. First and foremost, detailed rice production statistics have only begun to 
be collected in recent years. Therefore, although we have a more than 40-year panel 
for weather, our analysis is limited given extreme constraints on availability of rice 
production statistics. For example, the small number of observations makes it dif-
ficult for us to detect non-linearities in the weather-rice relationship. That being 
said, the DOA has done an excellent job of identifying the data shortcomings, and 
there appears to be a serious effort underway to improve data availability across the 
country. Therefore, we believe that despite having a limited panel, this represents 
the single best quality data currently available.

We have also been unable to locate other data that would have improved our 
analysis. We hoped, for example, to obtain rice crop calendar information on the 
length of growing period for each district in the country, but no data like this cur-
rently exists. The closest data of use came from the National Agricultural and 
Forestry Research Institute (NAFRI), which had crop calendar information for just 
a single province, based on their own recent field study. Although this is of value, 
we do not incorporate into this analysis as we model yields for the entire country, 
which has diverse geographical regions and growing climates. Another potential 
area of further exploration we hoped to explore was the affect of changes on rice 
yields on different socio-economic variables. In order to examine this however, we 
would need access to the Lao Expenditure and Consumption Survey (LECS), which 
has been conducted every five years since 1997/98.

Given the serious data concerns over the quality of upland rice production data 
we chose to omit upland production from our analysis. Data collection in Lao PDR 
suffer from imperfect systems and data collection is often a highly political issue. 
Reliable data on yields at the district level require a dedicated support staff and 
systems in place to ensure accurate reporting. Furthermore, upland production faces 
a variety of constraints that severely limit the accuracy of data collection. Considering 
these issues, we instead focus our analysis on lowland systems where data quality is 
believed to be much higher.
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3.3  �Results

Consistent with previous statistical studies (e.g., Peng et  al. 2004; Welch et  al. 
2010), the preliminary results of our linear fixed-effects regression model of aver-
age weather (equation 1) suggest that elevated minimum nighttime temperatures7 
are highly damaging to rice yields as seen in Table 1. With regards to different pro-
duction systems we find these trends are largely similar, although varying in their 
severity and significance. For lowland rain-fed production we find that that a 
1-degree rise in the nighttime temperature reduces rice yields by 4.6% holding all 
else constant. Although this result is not statistically significant at conventional lev-
els it is consistent with results from previous studies that suggest an increase in 
average nighttime temperature leads to reduction in yields. Given the limited amount 
of data and associated low statistical power, non-significant effects are unsurprising. 
Looking at daytime temperatures, we find that a 1-degree rise in temperature 
increase yields by 11.8% holding all else constant, and these effects are significant 
at the 10% level. Based on this evidence, this might suggest that increasing tempera-
tures could have an overall positive impact on rice yields for the most important and 
common rice production system in the country. Furthermore, we find statistically 
significant evidence that increases in precipitation increase yields, although the 
effect is very small. We show that increasing precipitation by 1 cm over the growing 
season increases yields by approximately 0.1% holding all else constant.

We find that changes in temperature appear to have no effect on yields for irri-
gated dry season production. This might be suggestive of the fact that irrigated 

7 For the purpose of this study, minimum nighttime temperature is defined as the lowest tempera-
ture recorded by weather stations at night. Some stations record several observations per night 
while other stations record a single nighttime observation.

Table 1  Impact of weather 
on log rice yields, district 
level, 2006–2011

(1) (2)
Dry 
season Wet season

Min temperature 0.045 −0.046
(0.028) (0.038)

Max 
temperature

−0.013 0.118*

(0.053) (0.066)
Precipitation −0.001** 0.001***

(0.000) (0.000)
Mean log-yield 1.530 1.277
No obs 578 683
R2 0.691 0.732

Standard errors in parentheses
Significance levels indicated by *0.1, **0.01, 
***0.05
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production systems are typically market oriented, intensive systems, and thus farm-
ers are better able to withstand extreme temperature events. However, we find there 
is a small effect that increased precipitation decreases yields in the dry season.

In regards to the non-linear approach modeled in eq. 2, we find some evidence 
that there is a non-linear relationship between temperature and yields as seen in 
Table 2. For lowland rain-fed production, we find that elevated nighttime tempera-
tures improve yields up to approximately 21 °C, after which increased nighttime 
temperatures reduce yields. Given that the average minimum temperature across our 
sample is greater than 21 °C, we see the large negative effect in Table 1. For daytime 
temperatures we find weak evidence of the opposite effect. The results in Table 2 
suggest that elevated daytime temperatures decrease yields until approximately 
24.5 °C, after which they have a positive effect. Once again, average daytime tem-
peratures are above 24.5 °C, which adds robustness to the effect we find in Table 1.

3.3.1  �Evaluating the Model

While the results are broadly consistent with previous studies (i.e., negative coeffi-
cients on minimum temperature, positive coefficients on maximum temperature), 
limited data sources mean that our analysis may lack sufficient power to precisely 
identify these effects. Consequently, many of the coefficients are not statistically 
significant. The R2 and adjusted R2 are generally similar to studies carried out in 
other settings, if not slightly lower here.

As a robustness check, we also estimated Equation 1 for provincial level rice 
yields from 1990 through 2008 as seen in Table 4. These data represent all rice types 
across all growing seasons and comes from the IRRI World Rice Statistics database. 

Table 2  Non-linear impact 
of weather on log rice yields, 
district level, 2006–2011

(1) (2)
Dry 
season Wet season

Min temperature −0.099 1.007*

(0.481) (0.427)
Min temperature square 0.003 −0.024*

(0.010) (0.010)
Max temperature 0.249 −0.490

(0.692) (0.358)
Max temperature 
square

−0.004 0.010**

(0.011) (0.005)
Precipitation −0.000*** 0.000*

(0.000) (0.000)
Mean log-yield 1.530 1.277
No obs 578 683
R2 0.691 0.739

Significance levels indicated by *0.05, **0.1, ***0.01
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The results are displayed in the appendix. With the IRRI provincial data, all coeffi-
cients are found to be statistically significant and the R2 values are significantly 
higher. This exercise suggests that a longer time series may provide more power to 
estimate these relationships relative to a larger cross-section.

Table 3  Rice area, production, and yield (2012)

Region/province Area (% of total) Production (% of total) Yield

A. Northern 21.55 18.91 3.26
 � Phongsaly 1.98 1.50 2.81
 � Luangnamtha 1.78 1.78 3.7
 � Oudomxay 2.62 2.21 3.13
 � Bokeo 2.76 2.70 3.63
 � Luangprabang 3.91 2.63 2.51
 � Huaphanh 3.21 2.83 3.28
 � Xayabury 5.28 5.27 3.7
B. Central 52.63 54.18 3.85
 � Vientiane Municipality 8.14 9.82 4.49
 � Xiengkhouang 3.16 3.04 3.58
 � Vientiane 7.10 7.76 4.12
 � Borikhamxay 4.69 4.60 3.79
 � Khammuane 7.61 7.30 3.56
 � Savannakhet 21.92 21.66 3.67
 � Xaysomboun 25.82 26.92 3.91
C. Southern 9.32 8.74 3.51
 � Saravan 1.18 1.09 3.43
 � Sekong 12.74 15.07 4.45
 � Chmpasack 2.58 2.02 2.91
 � Attapeu 21.55 18.91 3.26

Source: DOA 2012

Table 4  Impact of weather 
on log rice yields, province 
level, 1990–2008

(1)

Min temperature −0.074*
(0.032)

Max temperature 0.052**
(0.025)

Precipitation 0.000**

(0.000)
Mean log-yield 7.89
No obs 337
R2 0.854
Adjusted R2 0.836

Significance levels indicated 
by *0.01, **0.05, ***0.1
Standard errors in parentheses

Early Warning Techniques for Local Climate Resilience: Smallholder Rice in Lao PDR



124

4  �Analysis II: Projecting Future Rice Production 
Under Climate Change

4.1  �Climate Projections

The Intergovernmental Panel on Climate Change (IPCC 2007a) predicts that 
Southeast Asia will experience warmer temperatures, increased frequency of heavy 
precipitation, increased droughts, and lower annual levels of rainfall in the next 
century. Changes in the climate are most likely to affect Lao rice yields through 
harmful extreme temperatures, reduction in water availability from lower levels of 
rainfall, and a reduced growth period attributed to higher temperatures and radiation 
levels. Rice in Lao PDR is presently grown at the upper end of the optimal tempera-
ture range for rice production. This suggests that Lao rice production is likely to be 
harmed if future temperatures rise as expected (Wassmann et al. 2009b).

On a global scale, researchers estimate that minimum temperatures have risen 
faster than maximum temperatures over the last century. Easterling et al. (1997) dis-
sects the trend of increasing diurnal temperatures and attributes it to increased CO2 
concentration in the atmosphere. However, in our data set we observe maximum 
temperatures rising faster than minimum temperatures in the last 30 years. For more 
detailed predictions of future conditions we turn to the Global Climate Models 
(GCM) published by the IPCC.

Overview of Global Climate Models (GCMs)  GCM8 are mathematical models 
used to simulate the dynamics of the climate system including the interactions of 
atmosphere, oceans, land surface, and ice. They take into account the physical com-
ponents of weather systems and use these relationships to model future climate 
conditions. While there are high levels of uncertainty involved in GCMs, these mod-
els can help provide insights into future climate scenarios.

The IPCC serves as a central organization for research groups around the world 
to submit their models. Each research group must choose an approach to modeling 
physical climate interactions, spatial and time resolutions, and future economic con-
ditions, among other things. Variation in model choice can result in a wide variety 
of predictions. Fortunately, the IPCC has attempted to standardize economic/emis-
sions scenarios in order to increase comparability across models. However, while 
these scenarios limit the choices that modelers are faced with, there are still many 
assumptions to be made about how to model future climate. Differences in these 
choices result in a still wide variation in predictions across models, even within 
economic scenarios.

In order to improve comparison across GCMs from different research groups 
across the world, the IPCC publishes baseline greenhouse gas emissions scenarios, 
the most recent of which is called the Special Report on Emissions Scenarios (SRES), 
for all groups to utilize. Here we use three of the baseline scenarios established in the 
IPCC Fourth Assessment Report (AR4), published in 2007 (IPCC 2007b).

8 Also referred to as Global Circulation Models with the same acronym.
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The B1 scenario depicts increased emphasis on global solutions to economic, 
social, and environmental stability, but without additional climate initiatives. It 
assumes rapid global economic growth, but with changes toward a service and 
information economy with a population rising to 9 billion in 2050 and then declin-
ing thereafter. Clean and resource efficient technologies are introduced limiting 
future emissions. This scenario estimates an increase in global mean temperatures 
of 1.1–2.9 °C by 2100.

The A1B scenario also assumes global economic growth and a more homogenous 
future world but with less global emphasis on the information and service economy. 
Instead, it assumes a continuation of current economic activities, but with more effi-
cient technologies and a balanced emphasis on all energy sources. It assumes similar 
population increase to 2050, followed by a decline in global birth rates. This sce-
nario predicts, on average, a 2–6 °C warming of global temperatures by 2100.

The A2 scenario depicts a more heterogeneous world with uneven global eco-
nomic develop and an emphasis on self-reliance and preservation of local identities. 
Fertility patterns across regions converge slowly, resulting in a continuous increase 
in global population. Economic development is regionally fragmented and there is 
less global cooperation. This scenario predicts a global increase in temperature of 
2–5.4 °C by 2100.

4.1.1  �Selecting GCM Models

It is unclear whether any one model is more ‘valid’ than others (Burke et al. 2015). 
However, some argue that models have different strengths and weaknesses and 
should thus be carefully selected for specific applications (e.g. Knutti et al. 2010). 
While many studies choose one (or a few) models, and make predictions based on 
those scenarios, it is unclear how one would select the ‘best’ model. To add to these 
difficulties, different models offer widely different future predictions of climate con-
ditions. Consequently, predicted future yields will depend highly on which GCM is 
utilized to forecast future climate conditions. For the time being, we follow the rec-
ommendations made by Burke et al. (2015) and include as many models as possible 
with equal weights on the outcome predicted by each model. Our reasoning is that 
policy recommendations should be informed on the range of possibilities. However, 
by using many models the range of predicted outcomes can vary widely. Nonetheless, 
we argue that the alternative of counting on the predictions of one model underrep-
resents the uncertainty involved in predicting effects of future climate change, and 
that it would be unwise to make policy recommendations based on a single model. 
Instead, we incorporate predictions from the 14 models that offer predictions for our 
variables of interest (min temperature, max temperature, precipitation) under three 
economic scenarios (A1B, A2, B1). In total, we therefore have 42 future climate 
scenarios, one for each model-scenario pair, each of which can be evaluated for a 
range of time frames. Finally, we can calculate the yield outcomes under each of 
these scenarios and the median outcomes for each economic scenario represent our 
estimates for future yields assuming low, medium, or high emissions in the future.
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4.1.2  �Downscaling Methods

For each model-scenario combination we first calculate the model estimated 
monthly average weather conditions (min/mean/max temperature and precipitation) 
over the previous decade (2000–2010) for each district. We do this by matching 
each district to the four closest GCM grid cells and then weighting each GCM cell 
by the inverse distance of the center of the GCM cell to the center of the district 
where weights are forced to sum to 1. This provides us with a historical standard by 
which to measure future projections. Next, future period monthly averages are cal-
culated for each decade up to 2050. Future average monthly conditions are then 
related back to the GCM estimated historical conditions for the 2000–2010 period 
to provide predicted climate change. Temperature changes are calculated as an 
absolute degree change in monthly averages while precipitation change is calcu-
lated as percentage change in average millimeters of rainfall per month.

Once we have estimated future changes in absolute (temperature), or percentage 
absolute (precipitation) terms, we add the predicted changes to the estimated his-
torical data for each district, with changes separated by month. Once we have cal-
culated historical conditions under climate change, we use our model to predict 
yields under the climate change weather conditions.

This process is repeated for all 42 model-scenario combinations (14 models, 3 
scenarios) and the median outcomes are reported as the predicted yield changes 
under climate change for each decade. Although computationally tedious, incorpo-
rating 14 models provides a more representative range of possible future climate 
conditions, and of the high levels of uncertainty associated with predicting future 
climate. This issue is discussed in detail below.

4.1.3  �Climate Projections for Lao PDR

Time-series of the climate projections for Lao PDR are displayed in Fig. 4. On aver-
age, growing season temperatures are predicted to increase approximately 1 °C by 
2050 while growing season rainfall is expected to slightly decrease. However, some 
GCMs predict an increase in growing season rainfall over this period.

4.2  �Yield Projections

4.2.1  �Methods

In order to evaluate potential climate risk to rice production, we use our rice models 
to predict yields under future climate scenarios. Due to the resolution of our data, 
we are able to predict yields at the district level. We estimate future yields by using 
our estimated statistical model to predict yields at the values of weather variables 
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predicted by the climate model. In order to remain consistent, we use the same 
approach to estimate yields over the study period (i.e., the 2000s) and then calculate 
yield changes relative to this baseline.

Quantifying Uncertainty with Yield Projections  There are two primary types of 
uncertainty associated with making yield-climate projections. First, there is uncer-
tainty associated with our statistical models. Our models are linear approximations 
of the yield-weather relationship and thus are best suited to predict how yields 
respond to perturbations in weather variables only over the observed range of condi-
tions. Fortunately, this type of uncertainty is quantifiable through standard errors 
and other measures such as Root Mean Squared-Error calculated by using our 
model to predict observed yields. The second type of uncertainty arises from unpre-
dictability of future climate conditions. GCMs attempt to predict future conditions, 
however, the uncertainty associated with these predictions far exceeds the statistical 
uncertainties discussed above. In fact, simulations have shown that uncertainty aris-
ing from climate projections outweighs statistical uncertainty by several orders of 
magnitude (Burke et al. 2015). Quantifying model uncertainty is less straightfor-
ward. Here we follow the approach suggested in Burke et al. (2015) and use varia-
tion across yield projections utilizing different climate models to provide a measure 
of climate uncertainty.

4.2.2  �Results

Figure 9 (see Appendix) displays the preliminary median yield projection across 
climate models using the statistical model described in equation 1 discussed above. 
Figure  9, panel 2 shows the time series of the yield changes. Yield changes are 

Fig. 4  Forecast climate conditions across 14 GCMs. Average growing season climate conditions 
forecast up to 2055. The black line represents the median value across 14 GCMs. The blue lines 
represent the minimum and maximum values across GCMs
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measured relative to a baseline scenario where yields continue on their historical 
upward trends but where climate conditions continue to vary around their historical 
averages. The climate scenarios assume the same current yield trends but with 
changes in climate predicted by GCMs. Because maximum temperature is found to 
be strongly positively related to higher yields, future yields are predicted to be 
higher, on average, under climate change. This is likely a result of insufficient 
observations needed to estimate the historical relationship accurately. Here we find 
the benefits from rising maximum temperatures outweigh the negatives from rising 
minimum temperature. In other cases we have found the opposite to be true (Fig. 5).

5  �Summary and Outlook

Given the extremely limited nature of data in Lao PDR we are hesitant to offer any 
precise policy recommendations. Our results come from a 6-year panel, which can-
not be considered an entirely accurate representation of the historical relationship 
between climatic variables and yields. This is echoed in our results as we find only 
three significant effects across all specifications. Moreover, it should also be noted 
that our results rely on historical data and thus model accuracy is tied to (unobserv-
able) data quality.

In regards to wet season production, we find that a 1-degree increase in daytime 
temperatures holding all else equal causes an 11.8% increase in yield. This would 
suggest that higher daytime temperatures as a result of climate change would in fact 
be beneficial for rice production in Lao PDR. Furthermore, given that Lao PDR has 
achieved self-sufficiency in rice production in recent years it appears that the impact 

Fig. 5  Time series of forecasted yield impacts (lowland wet rice). Blue lines represent minimum 
and maximum predicted yields across 14 climate models. Black line represents the median pre-
dicted yield change across models. Baseline scenario is that yield trends continue on their current 
path but temperatures and rainfall patterns continue to follow historical averages

D. Behnke et al.



129

of climate change on food security does not appear to be a major concern. Although 
the country appears to have met self-sufficiency at the national level, it is certainly 
clear that not all households are able to meet rice consumption requirements. 
According to some estimates, about 30% of the population has insufficient food for 
more than 6 months of the year. However, much of this deficiency is in the northern 
and eastern mountainous areas, while the Mekong River valley is an area of surplus 
(ADB 2006). Thus, based on our projections, yields in the Mekong River valley will 
increase as a result of climate change surpluses will be further extended. In regards 
to policy, marketing of the surplus will be the key policy challenge. According to the 
LECS only 8% of all rice produced is sold, and thus extending both domestic and 
international trade should be made a priority.

Of more concern are the individuals located in the mountainous regions of the 
country that rely on upland production systems. Our results suggest there is a high 
level of uncertainty between temperature and yields. For example, we find that an 
increase of 1 degree in average daytime temperature causes a 38% increase in 
yields, while an increase of 1 degree in average nighttime temperature causes a 30% 
reduction in yields. These large shocks can be incredibly damaging as individuals 
engaged in this production system are the most likely to be unable to reach self-
sufficiency. Therefore, it appears that one clear policy option would be strategies to 
reduce variability. Crop diversification is one potential option, although our analysis 
does not consider other crops so we cannot comment wither there is less variability. 
Insurance mechanisms that protect against shocks are likely the best option. 
However, extending any type of insurance to individuals in such remote locations 
will likely be of extreme difficulty.

We also want to add the caveat that data from upland production systems are 
likely the most inaccurate. Due to the extremely remote nature of these systems the 
validity of the data should certainly be taken with a grain of salt. Furthermore, we 
would like to highlight the limited sample size and subsequent limited power of our 
results for the upland systems. Thus we offer these recommendations with 
reservations.

6  �Conclusions and Extensions

This report adds support to the growing literature estimating the impacts of weather 
and climate change on rice production. We focus our analysis in Lao PDR, a country 
whose economy relies on the production of rice, but has had received little analysis 
on how climate change will impact the sector. This represents a crucial gap in the 
literature, as rice is instrumental to the Lao economy and will undoubtedly face 
challenges from climate change.

We use advanced econometric models to first estimate the historical relationship 
between observed rice yields and climatic variables. With this relationship estab-
lished, we then downscale projections from the leading climate models to forecast 
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the impact on rice yields under these climate scenarios. Our results are consistent 
with previous work in the region, as we find weak evidence that elevated minimum 
nighttime temperatures are highly damaging to rice yields. Conversely, we find sup-
port that elevated maximum daytime temperatures increase yields. Overall the size 
of the impact and statistical significance is larger for increased maximum tempera-
tures, suggesting that elevated temperatures might have a net positive impact on rice 
yields in Lao PDR. Turning next to forecasting, our projections confirm this intu-
ition, as future yields are predicted to be higher, on average, under climate change.

We offer some major caveats to these findings. First, our results are not signifi-
cant at traditional levels although this not surprising given our limited panel. Our 
results come from a 6-year panel, which cannot be considered an entirely accurate 
representation of the historical relationship between climatic variables and yields. 
Second, there are major data quality issues surrounding rice yields. Although data 
quality is improving rapidly in Lao PRD, high-resolution rice yield data is only 
recently available, and is of unknown quality. Given our results rely on this histori-
cal data, our model accuracy is tied to the quality of the data. That being said, our 
results are in line with previous work in the region and serve as a useful preliminary 
first step to modeling how climate change will impact rice yields in Lao PDR. Over 
time as data quality improves, these results can be easily replicated to strengthen the 
analysis.

Disclaimer and Contacts  Regional Rice Initiative Research Reports have not been subject to 
independent peer review and constitute views of the authors only. For comments and/or additional 
information, please contact:
Sam Heft-Neal and David Roland-Holst

Department of Agricultural and Resource Economics
207 Giannini Hall
University of California Berkeley
CA 94720 - 3310 USA
E-mail: dwrh@berkeley.edu

Drew Behnke
Department of Economics
University of California Santa Barbara
CA, USA

�Appendix – Rice Yield Regression Model Results  
(Figs. 6, 7, 8, and 9)
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Fig. 6  Largest rice area losses 2006–2012 by cause. Maps show the maximum wet-season low-
land rice area lost from flood or drought in any year over the study period 2006–2012. The figure 
illustrates that over the seven-year study period a majority of districts experienced some losses 
from floods or droughts. Flood losses were more common and tended be to more severe with some 
districts reporting 100% losses in bad a flood year

Fig. 7  Most extreme growing-season weather conditions 2006–2012. Maps show the most 
extreme dry and wet conditions experienced during the rice-growing season over the study period. 
Categories correspond to the qualitative categories described in Mu et al.
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Fig. 8  Average Drought Severity Index (DSI) for rainy season 2004. Average area-weighted DSI 
values for Lao PDR districts. Blue represents greater than normal and red represents less than 
normal water levels. This figure is meant to provide an illustration of the data source described in 
Mu et al. (2013). Data are averaged over rainy season in 2004. Note that the DSI map is roughly 
an inverse of the precipitation map in Fig. 1

D. Behnke et al.
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Fig. 9  Preliminary projected yield changes 2015–2035
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