Skip to main content

Internet of Things Based Wireless Body Area Network in Healthcare

  • Chapter
  • First Online:
Book cover Internet of Things and Big Data Analytics Toward Next-Generation Intelligence

Part of the book series: Studies in Big Data ((SBD,volume 30))

Abstract

Internet of things (IoT) based wireless body area network in healthcare moved out from traditional ways including visiting hospitals and consistent supervision. IoT allow some facilities including sensing, processing and communicating with physical and biomedical parameters. It connects the doctors, patients and nurses through smart devices and each entity can roam without any restrictions. Now research is going on to transform the healthcare industry by lowering the costs and increasing the efficiency for better patient care. With powerful algorithms and intelligent systems, it will be available to obtain an unprecedented real-time level, life-critical data that is captured and is analyzed to drive people in advance research, management and critical care. This chapter included in brief overview related to the IoT functionality and its association with the sensing and wireless techniques to implement the required healthcare applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhayani, M., Patel, M., & Bhatt, C. (2015). Internet of things (IoT): In a way of smart world. In Proceedings of the International Congress on Information and Communication Technology, ICICT (Vol. 1, pp. 343–350).

    Google Scholar 

  2. Bhatt, C., & Shah, T. (2014). The internet of things: Technologies, communications and computing. CSI Communications.

    Google Scholar 

  3. Fernandez, F., & Pallis, G. C. (2014). Opportunities and challenges of the Internet of Things for healthcare systems engineering perspective. In EAI 4th International Conference on Wireless Mobile Communication and Healthcare (Mobihealth), Athens, November 3–5.

    Google Scholar 

  4. http://www.cio.com/article/2981481/healthcare/how-the-internet-of-things-is-changing-healthcare-and-transportation.html

  5. Amendment of the Commission’s Rules to Provide Spectrum for the Operation of Medical Body Area Networks, ET Docket No. 89–59, First Report and Order and Further Notice of Proposed Rulemaking, 27 FCC Rcd 6422, 6423, para. 2 (2012).

    Google Scholar 

  6. Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., & Leung, V. C. M. (2011). Body area networks: A survey. Mobile Networks and Applications, 16, 171–193.

    Article  Google Scholar 

  7. Safeer, K. P., Gupta, P., Shakunthala, D. T., Sundersheshu, B. S., & Padaki, V. C. (2008). Wireless sensor network for wearable physiological monitoring. Journal of Networks, 3(5), 21–29.

    Google Scholar 

  8. Pentland, A. (2004). Healthwear: Medical technology becomes wearable. Computer, 37(5), 42–49.

    Article  Google Scholar 

  9. Curtis, D., Shih, E., Waterman, J., Guttag, J., Bailey, J. et al. (2008). Physiological signal monitoring in the waiting areas of an emergency room. In Proceedings of Body Nets 2008. Tempe, Arizona.

    Google Scholar 

  10. Shnayder, V., Chen, B., Lorincz, K., Fulford-Jones, T. R. F., & Welsh, M. (2005). Sensor networks for medical care. Harvard University Technical Report TR-08-05.

    Google Scholar 

  11. Farella, E., Pieracci, A., Benini, L., Rocchi, L., & Acquaviva, A. (2008). Interfacing human and computer with wireless body area sensor networks: The WiMoCA solution. Multimedia Tools and Applications, 38(3), 337–363.

    Article  Google Scholar 

  12. Gao, T., Massey, T., Selavo, L., Crawford, D., Chen, B., Lorincz, K., et al. (2007). The advanced health and disaster aid network: A light-weight wireless medical system for triage. IEEE Transactions on Biomedical Circuits and Systems, 1(3), 203–216.

    Article  Google Scholar 

  13. Jiang, S., Cao, Y., Lyengar, S., Kuryloski, P., Jafari, R., Xue, Y., et al. (2008). CareNet: An integrated wireless sensor networking environment for remote healthcare. In Proceedings of the 7th International Conference On Body Area Networks. Tempe, Arizona.

    Google Scholar 

  14. Sukor, M., Ariffin, S., Fisal, N., Yusuf, S. S., & Abdullah, A. (2008). Performance study of wireless body area network in medical environment. In Asia International Conference on Mathematical Modelling and Computer Simulation (pp. 202–206).

    Google Scholar 

  15. IEEE standard for information technology- telecommunications and information exchange between systems- local and metropolitan area networks- specific requirements part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPANs). (2006). IEEE Std 802.15.4-2006 (Revision of IEEE Std 802.15.4-2003) (pp. 1–305).

    Google Scholar 

  16. Kwak, K., Ullah, S., & Ullah, N. (2010). An overview of IEEE 802.15.6 standard. In 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL) (pp. 1–6).

    Google Scholar 

  17. Boulis, A., Smith, D., Miniutti, D., Libman, L., & Tselishchev, Y. (2012). Challenges in body area networks for healthcare: The MAC. IEEE Communication Magazine, Vol. 50, p. 5.

    Google Scholar 

  18. Abolhasan, M., Wysocki, T., & Dutkiewicz, E. (2004). A review of routing protocols for mobile ad hoc networks. Ad Hoc Networks, 2, 1–22.

    Article  Google Scholar 

  19. Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3, 325–349.

    Article  Google Scholar 

  20. Cheng, S., & Huang, C. (2013). Coloring-based inter-WBAN scheduling for mobile wireless body area network. IEEE Transactions on Parallel and Distributed Systems, 24(2), 250–259.

    Article  MathSciNet  Google Scholar 

  21. Ullah, S., Higgins, H., Braem, B., Latre, B., Blondia, C., Moerman, I., et al. (2010). A comprehensive survey of wireless body area networks. Journal of Medical Systems, 1–30.

    Google Scholar 

  22. Maskooki, A., Soh, C. B., Gunawan, E., & Low, K. S. (2011). Opportunistic routing for body area network. In IEEE Consumer Communications and Networking Conference (CCNC) (pp. 237–241).

    Google Scholar 

  23. Tachtatzis, C., Franco, F., Tracey, D., Timmons, N., & Morrison, J. (2010). An energy analysis of IEEE 802.15.6 scheduled access modes. In IEEE GLOBECOM Workshops (GC Wkshps) (pp. 1270–1275).

    Google Scholar 

  24. Takahashi, D., Xiao, Y., Hu, F., Chen, J., & Sun, Y. (2008). Temperature-aware routing for telemedicine applications in embedded biomedical sensor networks. EURASIP Journal on Wireless Communications and Networking 26.

    Google Scholar 

  25. Braem, B., Latré, B., Moerman, I., Blondia, C., & Demeester, P. (2006). The wireless autonomous spanning tree protocol for multi hop wireless body area networks. In Proceedings of 3rd Annual International Conference on Mobile and Ubiquitous Systems: Networking Services (pp. 1–8).

    Google Scholar 

  26. Saleem, S., Ullah, S., & Yoo, H. S. (2009). On the security issues in wireless body area networks. JDCTA, 3(3), 178–184.

    Article  Google Scholar 

  27. IEEE p802.15 working group for wireless personal area networks (WPANs): Medwin MAC and security proposal documentation. (2009). IEEE 802.15.6 Technical Contribution.

    Google Scholar 

  28. Lewis, D. (2008). 802.15.6 call for applications in body area networks-response summary. 15-08-0407-05-0006.

    Google Scholar 

  29. Smith, D., Miniutti, D., Lamahewa, T. A., & Hanlen, L. (2013). Propagation models for body area networks: A survey and new outlook. IEEE Antennas and Propagation Magazine.

    Google Scholar 

  30. Khan, J. Y., Yuce, M. R., Bulger, G., & Harding, B. (2012). Wireless body area network (WBAN) design techniques and performance evaluation. Journal of Medical Systems, 36(3), 1441–1457.

    Article  Google Scholar 

  31. Zhen, B., Patel, M., Lee, S., Won, E., & Astrin, A. (2008). Tg6 technical requirements document (TRD). IEEE p802.15-08-0644-09-0006.

    Google Scholar 

  32. Patel, M., & Wang, J. (2010). Applications, challenges, and prospective in emerging body area networking technologies. Wireless Communication, 17, 80–88.

    Article  Google Scholar 

  33. Scanlon, W., Conway, G., & Cotton, S. (2007). Antennas and propagation considerations for robust wireless communications in medical body area networks. In IET Seminar on Antennas and Propagation for Body- Centric Wireless Communications (p. 37).

    Google Scholar 

  34. Serrano, R., Blanch, S., & Jofre, L. (2006). Small antenna fundamentals and technologies: Future trends. In IEEE 1st European Conference on Antennas and Propagation (EuCAP) (pp. 1–7).

    Google Scholar 

  35. Kiourti, A., & Nikita, K. S. (2012). A review of implantable patch antennas for biomedical telemetry: Challenges and solutions [wireless corner]. IEEE Antennas and Propagation Magazine, 54(3), 210–228.

    Article  Google Scholar 

  36. Higgins, H. (2006). Wireless communication. In G. Z. Yang (Ed.), Body sensor networks (pp. 117–143). London: Springer.

    Chapter  Google Scholar 

  37. Hanson, M., Powell, H., Barth, A., Ringgenberg, K., Calhoun, B., Aylor, J., et al. (2009). Body area sensor networks: Challenges and opportunities. Computer, 42, 58–65.

    Article  Google Scholar 

  38. Yuce, M., & Khan, J. (2011). Wireless body area networks: Technology, implementation, and applications. Singapore: Pan Stanford Publishing.

    Google Scholar 

  39. Kumar, M., Veeraraghavan, A., & Sabharwal, A. (2015). Distance PPG: Robust non-contact vital signs monitoring using a camera. Journal of Biomedical Optics Express, 6, 1565–1588.

    Article  Google Scholar 

  40. Hao, T., Xing, G., & Zhou, G. iSleep: Unobtrusive sleep quality monitoring using smartphones. In Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems, Roma, Italy, November 11–15, 2013.

    Google Scholar 

  41. Kwon, S., Kim, H., & Park, K. S. (2012). Validation of heart rate extraction using video imaging on a built-in camera system of a smartphone. In Proceedings of the IEEE International Conference of Engineering in Medicine and Biology Society, San Diego, CA, 28 August–1 September.

    Google Scholar 

  42. Hao, T., Xing, G., & Zhou, G. (2013). Unobtrusive sleep monitoring using smartphones. In Proceedings of the 7th International Conference on Pervasive Computing Technologies for Healthcare, Venice, Italy, 5–8 May.

    Google Scholar 

  43. Frost, M., Marcu, G., Hansen, R., Szaanto, K., & Bardram, J. E. (2011). The MONARCA self-assessment system: Persuasive personal monitoring for bipolar patients. In Proceedings of the 5th International Conference on Pervasive Computing Technologies for Healthcare, Dublin, Ireland, 23–26 May.

    Google Scholar 

  44. Baumgarten, M., Mulvenna, M., Rooney, N., & Reid, J. (2013). Keyword-based sentiment mining using twitter. International Journal of Ambient Computing and Intelligence, 5(2), 56–69.

    Article  Google Scholar 

  45. Bureš, V., Tučník, P., Mikulecký, P., Mls, K., & Blecha, P. (2016). Application of ambient intelligence in educational institutions: Visions and architectures. International Journal of Ambient Computing and Intelligence (IJACI), 7(1), 94–120.

    Article  Google Scholar 

  46. Fouad, K. M., Hassan, B. M., & Hassan, M. F. (2016). User authentication based on dynamic keystroke recognition. International Journal of Ambient Computing and Intelligence (IJACI), 7(2), 1–32.

    Article  Google Scholar 

  47. Jain, A., & Bhatnagar, V. (2016). Movie analytics for effective recommendation system using Pig with Hadoop. International Journal of Rough Sets and Data Analysis (IJRSDA), 3(2), 82–100.

    Article  Google Scholar 

  48. Kamal, M. S., Nimmy, S. F., Hossain, M. I., Dey, N., Ashour, A. S., & Santhi, V. (2016). ExSep: An exon separation process using neural skyline filter. In IEEE International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) (pp. 48–53).

    Google Scholar 

  49. Klus, H., & Niebuhr, D. (2009). Integrating sensor nodes into a middleware for ambient intelligence. International Journal of Ambient Computing and Intelligence (IJACI), 1(4), 1–11.

    Article  Google Scholar 

  50. Poland, M. P., Nugent, C. D., Wang, H., & Chen, L. (2011). Smart home research: Projects and issues. In Ubiquitous developments in ambient computing and intelligence: Human-centered applications (pp. 259–272). Hershey: IGI Global.

    Google Scholar 

  51. Curran, K., & Norrby, S. (2011). RFID-enabled location determination within indoor environments. In Ubiquitous developments in ambient computing and intelligence: Human-centered applications (pp. 301–324). Hershey: IGI Global.

    Google Scholar 

  52. Zappi, P., Lombriser, C., Benini, L., & Tröster, G. (2012). Collecting datasets from ambient intelligence environments. In Innovative applications of ambient intelligence: Advances in smart systems (pp. 113–127). Hershey: IGI Global.

    Google Scholar 

  53. Al Mushcab, H., Curran, K., & Doherty, J. (2012). An activity monitoring application for windows mobile devices. In Innovative applications of ambient intelligence: Advances in smart systems, (pp. 139–156). Hershey: IGI Global.

    Google Scholar 

  54. Graham, B., Tachtatzis, C., Di Franco, F., Bykowski, M., Tracey, D. C., Timmons, N. F., et al. (2013). Analysis of the effect of human presence on a wireless sensor network. In Pervasive and ubiquitous technology innovations for ambient intelligence environments (pp. 1–11). Hershey: IGI Global.

    Google Scholar 

  55. Chakraborty, C., Gupta, B., & Ghosh, S. K. (2015). Identification of chronic wound status under tele-wound network through smartphone. International Journal of Rough Sets and Data Analysis (IJRSDA), 2(2), 58–77.

    Article  Google Scholar 

  56. Borawake-Satao, R., & Prasad, R. S. (2017). Mobile sink with mobile agents: Effective mobility scheme for wireless sensor network. International Journal of Rough Sets and Data Analysis (IJRSDA), 4(2), 24–35.

    Article  Google Scholar 

  57. Panda, S. K., Mishra, S., & Das, S. (2017). An efficient intra-server and inter-server load balancing algorithm for internet distributed systems. International Journal of Rough Sets and Data Analysis (IJRSDA), 4(1), 1–18.

    Article  Google Scholar 

  58. Dey, N., Dey, G., Chakraborty, S., & Chaudhuri, S. S. (2014). Feature analysis of blind watermarked electromyogram signal in wireless telemonitoring. In Concepts and trends in healthcare information systems (pp. 205–229). Berlin: Springer.

    Google Scholar 

  59. Dey, N., Dey, M., Mahata, S. K., Das, A., & Chaudhuri, S. S. (2015). Tamper detection of electrocardiographic signal using watermarked bio–hash code in wireless cardiology. International Journal of Signal and Imaging Systems Engineering, 8(1–2), 46–58.

    Article  Google Scholar 

  60. Dey, N., Mukhopadhyay, S., Das, A., & Chaudhuri, S. S. (2012). Using DWT analysis of P, QRS and T components and cardiac output modified by blind watermarking technique within the electrocardiogram signal for authentication in the wireless telecardiology. IJ Image, Graphics and Signal Processing (IJIGSP), 4(7), 33–46.

    Article  Google Scholar 

  61. Dey, N., Roy, A. B., Das, A., & Chaudhuri, S. S. (2012). Stationary wavelet transformation based self-recovery of blind-watermark from electrocardiogram signal in wireless telecardiology. In International Conference on Security in Computer Networks and Distributed Systems (pp. 347–357). Berlin: Springer.

    Google Scholar 

  62. Dey, N., Biswas, S., Roy, A. B., Das, A., & Chaudhuri, S. S. (2012). Analysis of photoplethysmographic signals modified by reversible watermarking technique using prediction-error in wireless telecardiology. In International Conference of Intelligent Infrastructure, 47th Annual National Convention of CSI.

    Google Scholar 

  63. Bhatt, C., Dey, N., & Ashour, A. S. (2017). Internet of things and big data technologies for next generation healthcare.

    Google Scholar 

  64. Kamal, S., Ripon, S. H., Dey, N., Ashour, A. S., & Santhi, V. (2016). A MapReduce approach to diminish imbalance parameters for big deoxyribonucleic acid dataset. Computer Methods and Programs in Biomedicine, 131, 191–206.

    Article  Google Scholar 

  65. Solanki, V. K., Katiyar, S., BhashkarSemwal, V., Dewan, P., Venkatasen, M., & Dey, N. (2016). Advanced automated module for smart and secure city. Procedia Computer Science, 78, 367–374.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilanjan Dey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Elhayatmy, G., Dey, N., Ashour, A.S. (2018). Internet of Things Based Wireless Body Area Network in Healthcare. In: Dey, N., Hassanien, A., Bhatt, C., Ashour, A., Satapathy, S. (eds) Internet of Things and Big Data Analytics Toward Next-Generation Intelligence. Studies in Big Data, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-60435-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60435-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60434-3

  • Online ISBN: 978-3-319-60435-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics