Skip to main content

New Techniques and MIS: The Cortical Bone Trajectory Screws—Indications and Limits

  • Chapter
  • First Online:
Modern Thoraco-Lumbar Implants for Spinal Fusion

Abstract

Cortical bone trajectory (CBT) takes divergent and caudocephalad screw path through the pedicle and differs widely from the traditional transpedicular trajectory. The most important advantage of CBT is to maximize the contact between screw thread and cortical bone. Biomechanical studies have shown greater anchoring ability of CBT compared with that of the traditional trajectory. Furthermore, the entry point for CBT requires less soft tissue dissection; thus, these features make the CBT technique attractive for use as a new minimally invasive method for spinal fusion. Clinical studies using the CBT technique demonstrated similar clinical and radiologic outcomes with lower surgical morbidity compared with those using the traditional technique. Meanwhile, it is notable that this technique is not without specific concerns for clinical use due to its own surgical technique, lack of convergence, and short screw length. The purpose of this paper is to provide an overview of the current literature on CBT, with focus on indications, limits, and surgical pitfalls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Santoni BG, Hynes RA, McGilvary KC, Rodriguez-Canessa G, Lyon AS, Henson MAW, et al. Cortical bone trajectory for lumbar pedicle screws. Spine J. 2009;9:366–73.

    Article  CAS  PubMed  Google Scholar 

  2. Matsukawa K, Yato Y, Nemoto O, Imabayashi H, Asazuma T, Nemoto K. Morphometric measurement of cortical bone trajectory for lumbar pedicle screw insertion using computed tomography. J Spinal Disord Tech. 2013;26:E248–53.

    Article  PubMed  Google Scholar 

  3. Matsukawa K, Yato Y, Imabayashi H, Hosogane N, Asazuma T, Nemoto K. Biomechanical evaluation of fixation strength of lumbar pedicle screw using cortical bone trajectory: a finite element study. J Neurosurg Spine. 2015;23:471–8.

    Article  PubMed  Google Scholar 

  4. Ueno M, Sakai R, Tanaka K, Inoue G, Uchida K, Imura T, et al. Should we use cortical bone screws for cortical bone trajectory? J Neurosurg Spine. 2015;22:416–21.

    Article  PubMed  Google Scholar 

  5. Matsukawa K, Yato Y, Kato T, Imabayashi H, Asazuma T, Nemoto K. In vivo analysis of insertional torque during pedicle screwing using cortical bone trajectory technique. Spine. 2014;39:E240–5.

    Article  PubMed  Google Scholar 

  6. Baluch DA, Patel AA, Lullo B, Havey RM, Voronov LI, Nguyen NL, et al. Effect of physiological loads on cortical and traditional pedicle screw fixation. Spine. 2014;39:E1297–302.

    Article  PubMed  Google Scholar 

  7. Perez-Orribo L, Kalb S, Reyes PM, Chang SW, Crawford NR. Biomechanics of lumbar cortical screw-rod fixation versus pedicle screw-rod fixation with and without interbody support. Spine. 2013;38:635–41.

    Article  PubMed  Google Scholar 

  8. Kojima K, Asamoto S, Kobayashi Y, Ishikawa M, Fukui Y. Cortical bone trajectory and traditional trajectory – a radiological evaluation of screw-bone contact. Acta Neurochir. 2015;157:1173–8.

    Article  PubMed  Google Scholar 

  9. Mai HT, Mitchell SM, Hashmi SZ, Jenkins TJ, Patel AA, Hsu WK. Differences in bone mineral density of fixation points between lumbar cortical and traditional pedicle screws. Spine J. 2016;16:835–41.

    Article  PubMed  Google Scholar 

  10. Hung CW, Wu MF, Hong RT, Weng MJ, Yu GF, Kao CH. Comparison of multifidus muscle atrophy after posterior lumbar interbody fusion with conventional and cortical bone trajectory. Clin Neurol Neurosurg. 2016;145:41–5.

    Article  PubMed  Google Scholar 

  11. Khanna N, Deol G, Poulter G, Ahuja A. Medialized, muscle-splitting approach for posterior lumbar interbody fusion. Spine. 2016;41:S90–6.

    Article  PubMed  Google Scholar 

  12. Kasukawa Y, Miyakoshi N, Hongo M, Ishikawa Y, Kudo D, Shimada Y. Short-term results of transforaminal lumbar interbody fusion using pedicle screw with cortical bone trajectory compared with conventional trajectory. Asian Spine J. 2015;9:440–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Matsukawa K, Kato T, Yato Y, Sasao H, Imabayashi H, Hosogane N, et al. Incidence and risk factors of adjacent cranial facet violation following pedicle screw insertion using cortical bone trajectory technique. Spine. 2016;41:E851–6.

    Article  PubMed  Google Scholar 

  14. Regev GJ, Lee YP, Taylor WR, Garfin SR, Kim CW. Nerve injury to the posterior rami medial branch during the insertion of pedicle screws: comparison of mini-open versus percutaneous pedicle screw insertion techniques. Spine. 2009;34:1239–42.

    Article  PubMed  Google Scholar 

  15. Sansur CA, Caffes NM, Ibrahimi DM, Pratt NL, Lewis EM, Murgatroyd AA, et al. Biomechanical fixation properties of cortical versus transpedicular screws in the osteoporotic lumbar spine: an in vitro human cadaveric model. J Neurosurg Spine. 2016;25:467–476.

    Google Scholar 

  16. Calvert GC, Lawrence BD, Abtahi AM, Bachus KN, Brodke DS. Cortical screws used to rescue failed lumbar pedicle screw construct: a biomechanical analysis. J Neurosurg Spine. 2015;22:166–72.

    Article  PubMed  Google Scholar 

  17. Hirano T, Hasegawa K, Takahashi HE, Uchiyama S, Hara T, Washio T, et al. Structural characteristics of the pedicle and its role in screw stability. Spine. 1997;22:2504–10.

    Article  CAS  PubMed  Google Scholar 

  18. Pacione D, Kim I, Wilson TA, Frempong-Boadu A. Cortical screw trajectory for instrumentation and fusion in the setting of osteopathic compression fracture allows for percutaneous kyphoplasty for adjacent level compression fractures. J Clin Neurosci. 2015;22:899–904.

    Article  PubMed  Google Scholar 

  19. Matsukawa K, Yato Y, Hynes RA, Imabayashi H, Hosogane N, Asazuma T, et al. Cortical bone trajectory for thoracic pedicle screw: a technical note. Clin Spine Surg. 2017;30:E497–E504.

    Google Scholar 

  20. Matsukawa K, Yato Y, Kato T, Imabayashi H, Asazuma T, Nemoto K. Cortical bone trajectory for lumbosacral fixation: penetrating S-1 endplate screw technique. J Neurosurg Spine. 2014;21:203–9.

    Article  PubMed  Google Scholar 

  21. Ivanov AA, Faizan A, Ebraheim NA, Yeasting R, Goel VK. The effect of removing the lateral part of the pars interarticularis on stress distribution at the neural arch in lumbar foraminal microdecompression at L3–L4 and L4–L5. Spine. 2007;32:2462–6.

    Article  PubMed  Google Scholar 

  22. Li B, Jiang B, Fu Z, Zhang D, Wang T. Accurate determination of isthmus of lumbar pedicle: a morphometric study using reformatted computed tomographic imaging. Spine. 2004;29:2438–44.

    Article  PubMed  Google Scholar 

  23. Weiner BK, Walker M, Wiley W, McCulloch JA. The lateral buttress: an anatomic feature of the lumbar pars interarticularis. Spine. 2002;27:E385–7.

    Article  PubMed  Google Scholar 

  24. Lee GW, Son JH, Ahn MW, Kim HJ, Yeom JS. The comparison of pedicle screw and cortical screw in posterior lumbar interbody fusion: a prospective randomized noninferiority trial. Spine J. 2015;15:1519–26.

    Article  PubMed  Google Scholar 

  25. Sakaura H, Miwa T, Yamashita T, Kuroda Y, Ohwada T. Posterior lumbar interbody fusion with cortical bone trajectory screw fixation versus posterior lumbar interbody fusion using traditional pedicle screw fixation for degenerative lumbar spondylolisthesis: a comparative study. J Neurosurg Spine J. 2016;25:591–595.

    Google Scholar 

  26. Cardoso MJ, Dmitriev AE, Helgeson M, Lehman RA, Kuklo TR, Rosner MK. Does superior-segment facet violation or laminectomy destabilize the adjacent level in lumbar transpedicular fixation? Spine. 2008;33:2868–73.

    Article  PubMed  Google Scholar 

  27. Kim HJ, Chun HJ, Kang KT, Moon SH, Kim HS, Park JO, et al. The biomechanical effect of pedicle screws’ insertion angle and position on the superior adjacent segment in 1 segment lumbar fusion. Spine. 2012;37:1637–44.

    Article  PubMed  Google Scholar 

  28. Matsukawa K, Yato Y, Imabayashi H, Hosogane N, Asazuma T, Chiba K. Biomechanical evaluation of lumbar pedicle screws in spondylolytic vertebrae: comparison of fixation strength between the traditional trajectory and a cortical bone trajectory. J Neurosurg Spine. 2016;24:910–5.

    Article  PubMed  Google Scholar 

  29. Su BW, Chaput CD. Treatment of spinal conditions in young adults: cortical lumbar screw techniques. Oper Tech Orthop. 2015;25:187–93.

    Article  Google Scholar 

  30. Chen SI, Lin RM, Chang CH. Biomechanical investigation of pedicle screw-vertebrae complex: a finite element approach using bonded and contact interface conditions. Med Eng Phys. 2003;25:275–82.

    Article  PubMed  Google Scholar 

  31. TO MK, McLain RF, Yerby SA, Sharkey NA, Sarigul-Klijn N, Smith TS. Characteristics of pedicle screw loading: effect of surgical technique on intravertebral and intrapedicular bending moments. Spine. 1999;24:18–25.

    Article  Google Scholar 

  32. Matsukawa K, Taguchi E, Yato Y, Imabayashi H, Hosogane N, Asazuma T, et al. Evaluation of the fixation strength of pedicle screws using cortical bone trajectory: what is the ideal trajectory for optimal fixation? Spine. 2015;40:E873–8.

    Article  PubMed  Google Scholar 

  33. Matsukawa K, Yato Y, Imabayashi H, Hosogane N, Abe Y, Asazuma T, et al. Biomechanical evaluation of fixation strength among different sizes of pedicle screws using the cortical bone trajectory: what is the ideal screw size for optimal fixation? Acta Neurochir. 2016;158:465–71.

    Article  PubMed  Google Scholar 

  34. Zander T, Rohlmann A, Klӧckner C, Bergmann G. Influence of graded facetectomy and laminectomy on spinal biomechanics. Eur Spine J. 2003;12:427–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Faizan A, Kiapour A, Kiapour AM, Goel VK. Biomechanical analysis of various footprints of transforaminal lumbar interbody fusion devices. J Spinal Disord Tech. 2014;27:E118–27.

    Article  PubMed  Google Scholar 

  36. Labrom RD, Tan JS, Reilly CW, Tredwell SJ, Fisher CG, Oxland TR. The effect of interbody cage positioning on lumbosacral vertebral endplate failure in compression. Spine. 2005;30:E556–61.

    Article  PubMed  Google Scholar 

  37. Lim TH, Kim JG, Fujiwara A, Yoon TT, Lee SC, Ha JW, et al. Biomechanical evaluation of diagonal fixation in pedicle screw instrumentation. Spine. 2001;26:2498–503.

    Article  CAS  PubMed  Google Scholar 

  38. Cheng WK, Akpolat YT, Inceoglu S, Patel S, Danisa OA. Pars and pedicle fracture and screw loosening associated with cortical bone trajectory: a case series and proposed mechanism through a cadaveric study. Spine J. 2016;16:E59–65.

    Article  PubMed  Google Scholar 

  39. Paik H, Dmitriev AE, Lehman RA, Gaume RE, Ambati DV, Kang DG, et al. The biomechanical effect of pedicle screw hubbing on pullout resistance in the thoracic spine. Spine J. 2012;12:417–24.

    Article  PubMed  Google Scholar 

  40. Mori K, Nishizawa K, Nakamura A, Imai S. Short-term clinical result of cortical bone trajectory technique for the treatment of degenerative lumbar spondylolisthesis with more than 1-year follow-up. Asian Spine J. 2016;10:238–44.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ninomiya K, Iwatsuki K, Ohnishi Y, Ohkawa T, Yoshimine T. Clear-zone formation around screws in the early postoperative stages after posterior lumbar fusion using the cortical bone trajectory technique. Asian Spine J. 2015;9:884–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Glennie RA, Dea N, Kwon BK, Street JT. Early clinical results with cortically based pedicle screw trajectory for fusion of the degenerative lumbar spine. J Clin Neurosci. 2015;22:972–5.

    Article  PubMed  Google Scholar 

  43. Patel SS, Cheng WK, Danisa OA. Early complications after instrumentation of the lumbar spine using cortical bone trajectory technique. J Clin Neurosci. 2016;24:63–7.

    Article  PubMed  Google Scholar 

  44. Wray S, Mimran R, Vadapalli S, Shetye SS, McGilvray KC, Puttlitz CM. Pedicle screw placement in the lumbar spine: effect of trajectory and screw design on acute biomechanical purchase. J Neurosurg Spine. 2015;22:503–10.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

No funds were received in support of this work.

The authors declare no conflict of interest in the subject of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keitaro Matsukawa M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Matsukawa, K. (2018). New Techniques and MIS: The Cortical Bone Trajectory Screws—Indications and Limits. In: Delfini, R., Landi, A., Mancarella, C., Gregori, F. (eds) Modern Thoraco-Lumbar Implants for Spinal Fusion. Springer, Cham. https://doi.org/10.1007/978-3-319-60143-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60143-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60142-7

  • Online ISBN: 978-3-319-60143-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics