Skip to main content

Cortical Bone Screw Fixation

  • Chapter
  • First Online:
  • 1271 Accesses

Abstract

Placement of lumbar fixation screws using the cortical bone trajectory is a novel and potentially valuable technique. In this chapter, we discuss the current literature on clinical outcomes and biomechanical properties of the cortical bone trajectory. We examine indications for which this trajectory may be beneficial compared to a traditional pedicle screw trajectory. The reader is guided through the steps of performing a minimally invasive midline lumbar fusion using the cortical bone screw trajectory, and an illustrative case is provided. In addition, technical pearls as well as common complications and strategies for their avoidance are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Santoni BG, Hynes RA, McGilvray KC, et al. Cortical bone trajectory for lumbar pedicle screws. Spine J. 2009;9(5):366–73.

    Article  CAS  PubMed  Google Scholar 

  2. Hung C-W, Wu M-F, Hong R-T, Weng M-J, Yu G-F, Kao C-H. Comparison of multifidus muscle atrophy after posterior lumbar interbody fusion with conventional and cortical bone trajectory. Clin Neurol Neurosurg. 2016;145:41–5.

    Article  PubMed  Google Scholar 

  3. Hirano T, Hasegawa K, Takahashi HE, et al. Structural characteristics of the pedicle and its role in screw stability. Spine. 1997;22(21):2504–9–discussion 2510.

    Google Scholar 

  4. Mai HT, Mitchell SM, Hashmi SZ, Jenkins TJ, Patel AA, Hsu WK. Differences in bone mineral density of fixation points between lumbar cortical and traditional pedicle screws. Spine J. 2015;16(7):835–41.

    Article  PubMed  Google Scholar 

  5. İnceoğlu S, Montgomery WH, St Clair S, McLain RF. Pedicle screw insertion angle and pullout strength: comparison of 2 proposed strategies. J Neurosurg Spine. 2011;14(5):670–6.

    Article  PubMed  Google Scholar 

  6. Baluch DA, Patel AA, Lullo B, et al. Effect of physiological loads on cortical and traditional pedicle screw fixation. Spine. 2014;39(22):E1297–302.

    Article  PubMed  Google Scholar 

  7. Cheng WK, İnceoğlu S. Cortical and standard trajectory pedicle screw fixation techniques in stabilizing multisegment lumbar spine with low grade spondylolisthesis. Int J Spine Surg. 2015;9:46.

    PubMed  PubMed Central  Google Scholar 

  8. Perez-Orribo L, Kalb S, Reyes PM, Chang SW, Crawford NR. Biomechanics of lumbar cortical screw-rod fixation versus pedicle screw-rod fixation with and without interbody support. Spine. 2013;38(8):635–41.

    Article  PubMed  Google Scholar 

  9. Matsukawa K, Yato Y, Imabayashi H, Hosogane N, Asazuma T, Nemoto K. Biomechanical evaluation of the fixation strength of lumbar pedicle screws using cortical bone trajectory: a finite element study. J Neurosurg Spine. 2015;23(4):471–8.

    Article  PubMed  Google Scholar 

  10. Matsukawa K, Yato Y, Kato T, Imabayashi H, Asazuma T, Nemoto K. In vivo analysis of insertional torque during pedicle screwing using cortical bone trajectory technique. Spine. 2014;39(4):E240–5.

    Article  PubMed  Google Scholar 

  11. Matsukawa K, Kato T, Yato Y, et al. Incidence and risk factors of adjacent cranial facet joint violation following pedicle screw insertion using cortical bone trajectory technique. Spine. 2016;41(14):E851–6.

    Article  PubMed  Google Scholar 

  12. Matsukawa K, Yato Y, Nemoto O, Imabayashi H, Asazuma T, Nemoto K. Morphometric measurement of cortical bone trajectory for lumbar pedicle screw insertion using computed tomography. J Spinal Disord Tech. 2013;26(6):E248–53.

    Article  PubMed  Google Scholar 

  13. Snyder LA, Martinez-Del-Campo E, Neal MT, et al. Lumbar spinal fixation with cortical bone trajectory pedicle screws in 79 patients with degenerative disease: perioperative outcomes and complications. World Neurosurg. 2016;88:205–13.

    Article  PubMed  Google Scholar 

  14. Kasukawa Y, Miyakoshi N, Hongo M, Ishikawa Y, Kudo D, Shimada Y. Short-term results of transforaminal lumbar interbody fusion using pedicle screw with cortical bone trajectory compared with conventional trajectory. Asian Spine J. 2015;9(3):440–8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee GW, Son J-H, Ahn M-W, Kim H-J, Yeom JS. The comparison of pedicle screw and cortical screw in posterior lumbar interbody fusion: a prospective randomized noninferiority trial. Spine J. 2015;15(7):1519–26.

    Article  PubMed  Google Scholar 

  16. Rodriguez A, Neal MT, Liu A, Somasundaram A, Hsu W, Branch CL. Novel placement of cortical bone trajectory screws in previously instrumented pedicles for adjacent-segment lumbar disease using CT image-guided navigation. Neurosurg Focus. 2014;36(3):E9.

    Article  PubMed  Google Scholar 

  17. Berjano P, Damilano M, Ismael M, Formica C, Garbossa D. Erratum to: Minimally invasive PLIF with divergent, cortical trajectory pedicle screws. Eur Spine J. 2015;24(5):654–5.

    Google Scholar 

  18. Ninomiya K, Iwatsuki K, Ohnishi Y-I, Ohkawa T, Yoshimine T. Clear zone formation around screws in the early postoperative stages after posterior lumbar fusion using the cortical bone trajectory technique. Asian Spine J. 2015;9(6):884–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Glennie RA, Dea N, Kwon BK, Street JT. Early clinical results with cortically based pedicle screw trajectory for fusion of the degenerative lumbar spine. J Clin Neurosci. 2015;22(6):972–5.

    Article  PubMed  Google Scholar 

  20. Cheng WK, Akpolat YT, İnceoğlu S, Patel S, Danisa OA. Pars and pedicle fracture and screw loosening associated with cortical bone trajectory: a case series and proposed mechanism through a cadaveric study. Spine J. 2016;16(2):e59–65.

    Article  PubMed  Google Scholar 

  21. Akpolat YT, İnceoğlu S, Kinne N, Hunt D, Cheng WK. Fatigue performance of cortical bone trajectory screw compared with standard trajectory pedicle screw. Spine. 2016;41(6):E335–41.

    Article  PubMed  Google Scholar 

  22. Ueno M, Sakai R, Tanaka K, et al. Should we use cortical bone screws for cortical bone trajectory? J Neurosurg Spine. 2015;22(4):416–21.

    Article  PubMed  Google Scholar 

  23. Wray S, Mimran R, Vadapalli S, Shetye SS, McGilvray KC, Puttlitz CM. Pedicle screw placement in the lumbar spine: effect of trajectory and screw design on acute biomechanical purchase. J Neurosurg Spine. 2015;22(5):503–10.

    Article  PubMed  Google Scholar 

  24. Ueno M, Imura T, Inoue G, Takaso M. Posterior corrective fusion using a double-trajectory technique (cortical bone trajectory combined with traditional trajectory) for degenerative lumbar scoliosis with osteoporosis: technical note. J Neurosurg Spine. 2013;19(5):600–7.

    Article  PubMed  Google Scholar 

  25. Calvert GC, Lawrence BD, Abtahi AM, Bachus KN, Brodke DS. Cortical screws used to rescue failed lumbar pedicle screw construct: a biomechanical analysis. J Neurosurg Spine. 2015;22(2):166–72.

    Article  PubMed  Google Scholar 

  26. Takata Y, Matsuura T, Higashino K, et al. Hybrid technique of cortical bone trajectory and pedicle screwing for minimally invasive spine reconstruction surgery: a technical note. J Med Investig. 2014;61(3–4):388–92.

    Article  Google Scholar 

  27. Matsukawa K, Yato Y, Imabayashi H, Hosogane N, Asazuma T, Chiba K. Biomechanical evaluation of lumbar pedicle screws in spondylolytic vertebrae: comparison of fixation strength between the traditional trajectory and a cortical bone trajectory. J Neurosurg Spine. 2016;24(6):1–6.

    Article  Google Scholar 

  28. Iwatsuki K, Yoshimine T, Ohnishi Y-I, Ninomiya K, Ohkawa T. Isthmus-guided cortical bone trajectory for pedicle screw insertion. Orthop Surg. 2014;6(3):244–8.

    Article  PubMed  Google Scholar 

  29. Matsukawa K, Taguchi E, Yato Y, et al. Evaluation of the fixation strength of pedicle screws using cortical bone trajectory: what is the ideal trajectory for optimal fixation? Spine. 2015;40(15):E873–8.

    Article  PubMed  Google Scholar 

  30. Matsukawa K, Yato Y, Kato T, Imabayashi H, Asazuma T, Nemoto K. Cortical bone trajectory for lumbosacral fixation: penetrating S-1 endplate screw technique: technical note. J Neurosurg Spine. 2014;21(2):203–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles L. Branch Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Frenkel, M.B., Renfrow, J.J., Branch, C.L. (2017). Cortical Bone Screw Fixation. In: Holly, L., Anderson, P. (eds) Essentials of Spinal Stabilization . Springer, Cham. https://doi.org/10.1007/978-3-319-59713-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59713-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59712-6

  • Online ISBN: 978-3-319-59713-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics