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Abstract. In this paper, a comparative study between two different
neural network models is performed for a very simple type of classifi-
caction problem in 2D. The first model is a deep neural network and
the second is a dendrite morphological neuron. The metrics to be com-
pared are: training time, classification accuracies and number of learning
parameters. We also compare the decision boundaries generated by both
models. The experiments show that the dendrite morphological neurons
surpass the deep neural networks by a wide margin in terms of higher
accuracies and a lesser number of parameters. From this, we raise the
hypothesis that deep learning networks can be improved adding morpho-
logical neurons.

1 Introduction

In the area of Artificial Intelligence there is a great diversity of algorithms for
pattern classification, and one of the most important is the Multi-Layer Per-
ceptron (MLP) which through a training process adjusts the hyperplanes of
each neuron in each layer to separate the classes of some dataset [22,25,26].
The training is often based on gradient descent and back-propagation [22]. This
model since its appearance in 1961 [25] has been widely used in the area of
pattern recognition. However, there are other classification algorithms such as
Dendrite Morphological Neuron (DMN) which use a training algorithm com-
pletely different from back-propagation [22], in the sense that they do not try to
approximate a hyperplane through an iterative training process, analyzing each
sample of the training set. Instead, this type of neuron analyzes the elements as
a complete set and based on lattice operations generate hyperboxes. They are
able to classify the different classes of the training set with a higher rate.

The success of Deep Neural Networks (DNN) is well known for recognizing
objects in images [12] and speech in audio [9]. The mathematical operations
employed in these neurons remain the same as those of a MLP [22]: sums, multi-
plications and some well-known non-linear functions. Furthermore, convolutions
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are used for reducing the number of learning parameters [13]. So, the novelty of
the last 10 years has focused on more computing power, more layers, more data
and the dropout [14,23]. These last two are to avoid overfitting in deep models
that previously prevented the MLPs from giving better results than the Support
Vector Machines (SVM) [3]. It is important to note that these developments are
not related to the mathematical structure. This leads us to ask if there are other
mathematical operations that can improve the recognition performance. In this
paper, we started a research project in that direction. In particular, we com-
pared DNNs with DMNs for a specific type of problem: multi-class spirals with
several loops in 2D. Even when this classification problem is artificial, it is use-
ful for studying the essential properties of the two models. A very first analysis
was published in [27]; here we extend the analysis for deeper models and more
classes. As classification tools, both models are subjects for comparison in terms
of percentage of classification and training times, which depend directly on the
number of parameters that constitute the model.

The rest of the paper is organized as follows. Section 2 provides a brief
description of works that have proposed a different mathematical structure from
the mainstream of neural networks. Sections 3 and 4 present the architecture
of DNNs and DMNs, respectively. Section 5 discusses the experimental results.
Then, in Sect. 6 we give our conclusions and future work.

2 Previous Work

Currently, there are few studies aimed at improving the mathematical structure
of deep neural networks. However, before the term “deep learning” was born,
we could find several papers with interesting proposals. Pessoa and Maragos [18]
combined linear with rank filters. This architecture has shown that it can recog-
nize digits in images, generating similar or better results compared to classical
MLPs in shorter training times. Ivakhnenko [11] proposes a multilayer of polyno-
mials to approximate the decision boundary for clasification problems. This was
the first deep learning model published in literature. Dubin and Rumelhart [4]
introduce product units into neural networks. These units add complexity to the
model in order to use less layers. Other mathematical structures have been pro-
posed such as: higher-order neural networks (NNs) [5], sigma-pi NNs [8], second-
order NNs [17], functionally expanded NNs [10], wavelet NNs [29] and Bayesian
NNs [16]. Glorot investigated more effective ways of training very deep neural
networks using ReLUs as activation functions, achieving results comparable to
the state-of-the-art [6]. Bengio [2] argues that in order to learn complex functions
through training by gradient descent, it is necessary to use deep architectures.
In [1] Bengio also analyzes and considers alternatives to training by standard
gradient descent, due to the trade-off between efficient learning and latching on
information. In this paper, we evaluate the performance of the DNNs with that
of the DMNs to show some limitations of the DNNs and how morphological
operations could improve deep learning.
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3 Deep Neural Networks

“A deep learning architecture is a multilayered stack of simple modules with
multiple non-linear layers” [14] (usually between 5 and 20 layers), and each layer
contains a ni number of modules, where i is the layer number, each module is a
neuron with some activation function such as sigmoid or tanh. So an MLP and its
generalization a DNN are defined by a set of neurons divided into layers: an input,
one or more intermediate and an output layer. Thus, the DNN architectures
that are constructed to classify the datasets are neural networks which have an
i number of intermediate layers and a ni number of neurons per layer, and the
numbers of neurons per layer ni−1 and ni are not necessarily the same. In our
experiments we used the Rectified Linear Unit (ReLU) due to better results in
DNN according to [6,14,15], so that a neuron is defined by:

f (x) = max
(
0, wTx

)
, (1)

where x is the input vector of N dimensions and w is the weights vector that
multiplies the input vector. In the output layer, the activation function is changed
by a softmax, which is commonly used to predict the probabilities associated with
a multinoulli distribution [7], which is defined by

softmax (x)i =
exp (xi)∑n
j=1 exp (xj)

, (2)

The general DNN architecture is shown in Fig. 1. It is also common practice to
vary the number of neurons contained in each layer of the DNN. The training
method used for the DNN is Nesterov gradient descent with a mini-batch size of
64 and a moment of 0.9, which helps us to a more stable and fast convergence.

Fig. 1. Architecture of a DNN, where the number of hidden layers is another hyper-
parameter.

4 Dendrite Morphological Neurons

A DMN segments the input space into hyperboxes of N dimensions. The output
y of a neuron is a scalar given by

y = argmax
k

(dn,k), (3)
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where n is the dendrite number, k is the class number, and dn,k is the scalar
output of a dendrite given by

dn,k = min
i

(min (x − wn
min, wn

max − x)) , (4)

where x is the input vector, wmin and wmax are dendrite weight vectors. The
min operations together check if x is inside the hyperbox limited by wmin and
wmax as the extreme points (see Fig. 2). If dn.k > 0, x is inside the hyperbox,
If dn,k = 0, x is somewhere in the hyperbox boundary; otherwise, it is outside.
A good property of DMN is that they can create complex non-linear decision
boundaries that separate classes with only one neuron [20,21]. The reader can
consult [28] for more information.

Fig. 2. Dendrite morphological neuron and an example of a hyperbox in 2D gener-
ated by its dendrite weights. The hyperbox divides the input space for classification
purposes.

The training goal is to determine the number of hyperboxes and their weights
needed to classify an input pattern. The regularized divide and conquer training
method [28] consists of only two steps. The algorithm begins by opening an
initial hyperbox H0 that encloses all the samples with a margin distance M
respect to each side of H0 to have a better noise tolerance. Next the divide
and conquer strategy is executed in a recursive way. The algorithm chooses a
training sample x to generate a sub-hyperbox Hsub around it. Next it extracts
the samples (XHsub

, THsub
) from (X,T ) that are enclosed in Hsub, where X

is a training samples set represented as a matrix Xε�NxQtrain , Qtrain is the
number of training samples and the target class for each sample is contained
in vector Tε�1xQtrain . The recursion divides H0 until the error rate E% in the
hyperbox H is less or equal to the hyper-parameter E0. The error rate is defined
as E% = |Xmode|

|X| , where Xmode is the set of the most repeated training class
[19]. At the end of the recursion process, the deepest hyperbox is assigned to
the ruling class, which is set to the statistical mode of T . The recursive closing
procedure is executed by appending all generated sub-hyperboxes with their
corresponding classes. The hyperboxes with a common hyperface are joined. A
complete description of this training method can be found in [24,28].
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5 Experiments

The experiments were designed with the aim of comparing the performance of
the two neural networks, taking as a starting point the same training set. The
aspects evaluated are the classification accuracy in the validation set, the training
time, the number of parameters necessary for the network to correctly classify
the training set, and the decision boundaries.

5.1 Spiral Datasets

The training set is a set of synthetic data, designed to test the ability of the
two types of neural networks in the unraveling of the hyperplanes, that is, the
synthetic data is generated with a high rate of entanglement, and a low degree
of overlap between classes. For this purpose the generated data spiral consists of
1 to 5 classes wrapped one over the other, and the number of turns vary between
1 and 10. The representation of said training set is shown in Fig. 3 in such a way
that the training set is shaped as shown in Table 1.

5.2 Experimetal Results for DNNs

In order to classify the patterns presented in the Sect. 5.1 the DNN architecture
varies in depth the number of neurons per layer, as well as the number of hid-
den layers, leaving the hyper-parameters fixed to the following values, learning

Table 1. Datasets for spirals with different number of classes NC = {2, 3, 4, 5, 10}
and increasing number of loops NL = {1, 2, ..., 10}. The number of training patterns is
Qtrain and the number of validation patterns is Qval.

Name NC NL Qtrain Qval Name NC NL Qtrain Qval

1.1 2 1 10000 2500 2.1 3 1 75000 18750

1.2 2 2 10000 2500 2.2 3 2 75000 18750

1.3 2 3 10000 2500 2.3 3 3 75000 18750

1.4 2 4 10000 2500 2.4 3 4 90000 22500

1.5 2 5 10000 2500 2.5 3 5 90000 22500

1.6 2 6 40000 10000

1.7 2 7 50000 12500 Name NC NL Qtrain Qval

1.8 2 8 60000 15000 3.1 4 1 120000 30000

1.9 2 9 60000 15000 3.2 4 2 120000 30000

1.10 2 10 60000 15000 3.3 4 3 120000 30000

3.4 4 4 120000 30000

Name NC NL Qtrain Qval Name NC NL Qtrain Qval

4.1 5 1 150000 37500 5.1 10 1 100000 25000

4.2 5 2 150000 37500 5.2 10 2 100000 25000

4.3 5 3 150000 37500 5.3 10 3 100000 25000

4.4 5 4 150000 37500 5.4 10 4 100000 25000

4.5 5 5 150000 37500 5.5 10 5 100000 25000
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Fig. 3. Spiral of two interlaced spin classes (left), spiral of five classes of one spin per
class (center), spiral of two classes with 10 turns each class.

Table 2. Experimental results for DNNs.

Dataset Np Ta Va Tt Dataset Np Ta Va Tt

1.1 102 0.9947 0.9944 55.68 2.1 252 0.9886 0.9882 35.46

1.2 402 0.9956 0.9953 47.88 2.2 402 0.9844 0.9915 64.35

1.3 1332 0.9986 0.998 202.63 2.3 11332 0.9933 0.9745 329.06

1.4 15552 0.998 0.988 335.67 2.4 35752 0.9971 0.9917 361.26

1.5 55952 0.9564 0.9475 590.43 2.5 55952 0.8696 0.8416 689.51

1.6 76152 0.9038 0.8857 3722.79

1.7 211952 0.8302 0.81154 1026.20 Dataset Np Ta Va Tt

1.8 234602 0.776 0.7721 1185.75 3.1 252 0.9839 0.9836 45.46

1.9 257252 0.7544 0.7306 1508.66 3.2 502 0.9892 0.9812 205.03

1.10 279902 0.7278 0.7083 2476.12 3.3 11432 0.9933 0.9943 201.45

3.4 45852 0.9956 0.9806 437.41

3.5 55952 0.8696 0.8416 565.82

Dataset Np Ta Va Tt Dataset Np Ta Va Tt

4.1 252 0.9808 0.9794 311.89 5.1 45852 0.9477 0.9447 78.57

4.2 502 0.9831 0.9595 256.71 5.2 45852 0.9635 0.9444 91.54

4.3 25652 0.9934 0.9916 523.81 5.3 96352 0.9558 0.9176 455.31

4.4 35752 0.993 0.9556 749.26 5.4 126652 0.9364 0.8397 598.68

4.5 66052 0.9052 0.8131 314.50 5.5 106542 0.8427 0.7573 352.98

rate of 0.1, Nesterov momentum of 0.9 and batch size of 64. The value of the
hyper-parameters was obtained by performing classification tests by varying the
values of the learning rate in a range of [1, 0.001], with increments of 0.01. Table 2
summarizes the resulting architectures applied to each training set; the column
“Dataset” specifies the number of the training set used, column Np specifies
the number of parameters in the neural network model, column Ta specifies the
percentage of classification on the training set, column Va shows the classifica-
tion percentage on the validation set obtained by that neural network model,
and column Tt shows the total training and validation time. Figure 5 shows the
classification accuracies for each neural network, number of classes and number
of loops of each training set; showing better results for DMN over DNN models.
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Fig. 4. Decision boundary generated by DMN (first row) and by DNN (second row).

Fig. 5. (a) Classification percentages for the dataset 1 (2 classes, 10 loops), (b) classi-
fication ratios for datsets 2–5 (2–10 classes, 1–5 loops). (c) and (d) number of parame-
ters used to classify each dataset. (e) and (f) classification times used to classify each
dataset. (NL, number of loops, NC , number of classes).

5.3 Experimetal Results for DMNs

In the same way as in Sect. 5.2, in Table 3 the architecture of the DMN is pre-
sented; the first column shows the training set number used and the third column
Gi shows the index of generalization of the DMN.

5.4 Decision Boundaries

This section compares the decision boundaries generated by the two types of
neural network architectures (DNN and DMN) on the same training sets spec-
ified in Sect. 5.1. As we observe, the nature of each algorithm is very differ-
ent, generating approximations to hyperplanes/hyperboxes, which yield similar
results. However, for the specific dataset used, we can observe that the gener-
ation of hyperboxes of variable size best models the training set with a higher
classification rate and less parameters in the DMN model. These results can be
observed in Fig. 4. Each pair of images grouped by column, shows the decision
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Table 3. Experimental results for DMNs.

Dataset Np Gi Ta Va Tt Dataset Np Gi Ta Va Tt

1.1 264 0.0066 0.9968 0.9924 4.56 2.1 2432 0.0203 0.9979 0.9836 111.62

1.2 356 0.0089 0.9972 0.9936 5.62 2.2 3344 0.0111 0.9977 0.9908 315.09

1.3 544 0.0136 0.9964 0.994 7.77 2.3 2636 0.0088 0.9978 0.9935 266.36

1.4 692 0.0173 0.9977 0.9972 9.84 2.4 3500 0.0097 0.9979 0.9941 388.60

1.5 888 0.0222 0.999 0.9948 11.83 2.5 3900 0.0108 0.9977 0.9946 653.01

1.6 1764 0.011 0.9974 0.9965 95.43

1.7 2216 0.0111 0.9976 0.9973 148.02 Dataset Np Gi Ta Va Tt

1.8 2684 0.0447 0.9978 0.9955 161.81 3.1 4244 0.0265 0.9946 0.9766 279.00

1.9 3080 0.0128 0.9976 0.9967 309.37 3.2 6892 0.0144 0.994 0.9837 1083.17

1.10 3748 0.0156 0.9987 0.9975 268.05 3.3 5944 0.0124 0.9973 0.99 954.77

3.4 6020 0.0125 0.9955 0.9897 1080.68

3.5 6864 0.0143 0.9977 0.9928 1212.82

Dataset Np Gi Ta Va Tt Dataset Np Gi Ta Va Tt

4.1 17632 0.0294 0.9946 0.9715 3953.38 5.1 30812 0.077 0.9921 0.9339 4335.73

4.2 10872 0.0181 0.9978 0.9853 1968.76 5.2 24168 0.0604 0.9942 0.9616 3226.45

4.3 9288 0.0155 0.9954 0.9864 1714.53 5.3 28024 0.0701 0.9941 0.9648 3267.14

4.4 10172 0.017 0.9978 0.9906 1902.82 5.4 36572 0.0914 0.9981 0.965 4417.48

4.5 11080 0.0185 0.9964 0.9906 2150.75 5.5 45544 0.1139 0.998 0.9642 5690.73

boundary generated by the DMN (top) and the DNN (bottom). As can be seen
in column (b), the decision boundaries are best defined by the DMN (column (b),
top) than the decision boundaries generated by the DNN (column (b), bottom).

6 Conclusion and Future Work

Linear filters with non-linear activation functions (and back-propagation) are
today the battle horses of the neural network community. This leads us to
ask the questions: Are there other mathematical structures that produce better
results for some problems? What advantages would they have? The motivation
of this research is to answer these questions. In this paper, we compare DNNs
and DMNs in a very simple 2D classification problem: multi-class spirals with
increasing number of loops. We show that the performance of the DMNs sur-
passes that of the DNNs in terms of higher accuracies and a lesser number of
learning parameters. Of course, these results are limited to spiral-like problems,
which we specifically designed to test the ability of separation for the two neural
architectures. It is clear that the DMN training time is longer than the DNN
training time, furthermore, the classification rate is not compromised, that is,
the DNNs can be trained in a shorter time, but their validation accuracy is much
lower to that obtained by the DMN.

We conclude that this result is due to the nature of both algorithms. The
hyperboxes of DMNs make better models for these types of datasets because
the divide and conquer training is based on geometrical interpretation of the
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whole data, and refines the model each recursion step, while training based on
gradient descent is a search method in a dark environment only guided by partial
dataset information, and local information cost function. From this, we raise the
hypothesis that deep learning networks can be improved adding morphological
neurons. This is a consideration for future research.
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