Skip to main content

Immunohistochemical Markers in Endometrial Carcinoma

  • Chapter
  • First Online:
  • 632 Accesses

Part of the book series: Molecular Pathology Library ((MPLB,volume 11))

Abstract

The focus of this chapter is to outline an approach to practical issues in the diagnosis of endometrial carcinoma. Topics include the use immunohistochemistry to distinguish primary endometrial carcinoma from metastases to the endometrium, both from extramüllerian tissues as well as from other organs in the Müllerian tract. Consideration of endometrial carcinoma in the context of an unknown primary is also addressed. Next, the chapter covers new insights into endometrial carcinoma biology and emerging novel immunohistochemical panels that aid with endometrial carcinoma subclassification. Finally, the role of immunohistochemistry in endometrial carcinoma testing for Lynch syndrome, including expected patterns, reporting and troubleshooting, is reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mazur MT, Hsueh S, Gersell DJ. Metastases to the female genital tract. Analysis of 325 cases. Cancer. 1984;53(9):1978–84.

    Article  CAS  PubMed  Google Scholar 

  2. Kumar NB, Hart WR. Metastases to the uterine corpus from extragenital cancers. A clinicopathologic study of 63 cases. Cancer. 1982;50(10):2163–9.

    Article  CAS  PubMed  Google Scholar 

  3. Lim D, Oliva E. Nonendometrioid endometrial carcinomas. Semin Diagn Pathol. 2010;27(4):241–60.

    Article  PubMed  Google Scholar 

  4. Karvouni E, Papakonstantinou K, Dimopoulou C, et al. Abnormal uterine bleeding as a presentation of metastatic breast disease in a patient with advanced breast cancer. Arch Gynecol Obstet. 2009;279(2):199–201.

    Article  PubMed  Google Scholar 

  5. Alvarez C, Ortiz-Rey JA, Estevez F, de la Fuente A. Metastatic lobular breast carcinoma to an endometrial polyp diagnosed by hysteroscopic biopsy. Obstet Gynecol. 2003;102(5 Pt 2):1149–51.

    Article  CAS  PubMed  Google Scholar 

  6. Tiseo M, Bersanelli M, Corradi D, et al. Endometrial metastasis of lung adenocarcinoma: a case report. Tumori. 2011;97(3):411–4.

    PubMed  Google Scholar 

  7. Ahmad Z, Raza A, Patel MR. Endometrial metastasis of lung adenocarcinoma: a report of two cases. Am J Case Rep. 2015;16:296–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tretheway D, Gebhardt JG, Dogra VS, Schiffhauer LM. Metastatic versus primary oncocytic papillary adenocarcinoma of the endometrium: a report of a case and review of the literature. Int J Gynecol Pathol. 2009;28(3):256–61.

    Article  PubMed  Google Scholar 

  9. Kefeli M, Gonullu G, Can B, Malatyalioglu E, Kandemir B. Metastasis of adenocarcinoma of the gall bladder to an endometrial polyp detected by endometrial curettage: case report and review of the literature. Int J Gynecol Pathol. 2009;28(4):343–6.

    Article  PubMed  Google Scholar 

  10. Schust DJ, Moore DH, Baird DB, Novotny DB. Primary adenocarcinoma of the gallbladder presenting as primary gynecologic malignancy: a report of two cases. Obstet Gynecol. 1994;83(5 Pt 2):831–4.

    CAS  PubMed  Google Scholar 

  11. Caldarella A, Crocetti E, Bianchi S, et al. Female breast cancer status according to ER, PR and HER2 expression: a population based analysis. Pathol Oncol Res. 2011;17(3):753–8.

    Article  CAS  PubMed  Google Scholar 

  12. Reid-Nicholson M, Iyengar P, Hummer AJ, Linkov I, Asher M, Soslow RA. Immunophenotypic diversity of endometrial adenocarcinomas: implications for differential diagnosis. Mod Pathol. 2006;19(8):1091–100.

    CAS  PubMed  Google Scholar 

  13. Okoye EI, Bruegl AS, Fellman B, Luthra R, Broaddus RR. Defective DNA mismatch repair influences expression of endometrial carcinoma biomarkers. Int J Gynecol Pathol. 2015.

    Google Scholar 

  14. Tornos C, Soslow R, Chen S, et al. Expression of WT1, CA 125, and GCDFP-15 as useful markers in the differential diagnosis of primary ovarian carcinomas versus metastatic breast cancer to the ovary. Am J Surg Pathol. 2005;29(11):1482–9.

    Article  PubMed  Google Scholar 

  15. Bhargava R, Beriwal S, Dabbs DJ. Mammaglobin vs GCDFP-15: an immunohistologic validation survey for sensitivity and specificity. Am J Clin Pathol. 2007;127(1):103–13.

    Article  CAS  PubMed  Google Scholar 

  16. Yang M, Nonaka D. A study of immunohistochemical differential expression in pulmonary and mammary carcinomas. Mod Pathol. 2010;23(5):654–61.

    Article  CAS  PubMed  Google Scholar 

  17. Hagemann IS, Pfeifer JD, Cao D. Mammaglobin expression in gynecologic adenocarcinomas. Hum Pathol. 2013;44(4):628–35.

    Article  CAS  PubMed  Google Scholar 

  18. Higgins JP, Kaygusuz G, Wang L, et al. Placental S100 (S100P) and GATA3: markers for transitional epithelium and urothelial carcinoma discovered by complementary DNA microarray. Am J Surg Pathol. 2007;31(5):673–80.

    Article  PubMed  Google Scholar 

  19. Miettinen M, McCue PA, Sarlomo-Rikala M, et al. GATA3: a multispecific but potentially useful marker in surgical pathology: a systematic analysis of 2500 epithelial and nonepithelial tumors. Am J Surg Pathol. 2014;38(1):13–22.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Engelsen IB, Stefansson IM, Akslen LA, Salvesen HB. GATA3 expression in estrogen receptor α-negative endometrial carcinomas identifies aggressive tumors with high proliferation and poor patient survival. Am J Obstet Gynecol. 2008;199(5):543.e1–7.

    Article  CAS  Google Scholar 

  21. Brunner AH, Riss P, Heinze G, Meltzow E, Brustmann H. Immunoexpression of PAX 8 in endometrial cancer: relation to high-grade carcinoma and p53. Int J Gynecol Pathol. 2011;30(6):569–75.

    Article  PubMed  Google Scholar 

  22. Ozcan A, Shen SS, Hamilton C, et al. PAX 8 expression in non-neoplastic tissues, primary tumors, and metastatic tumors: a comprehensive immunohistochemical study. Mod Pathol. 2011;24(6):751–64.

    Article  CAS  PubMed  Google Scholar 

  23. McGregor DK, Wu TT, Rashid A, Luthra R, Hamilton SR. Reduced expression of cytokeratin 20 in colorectal carcinomas with high levels of microsatellite instability. Am J Surg Pathol. 2004;28(6):712–8.

    Article  PubMed  Google Scholar 

  24. Wani Y, Notohara K, Saegusa M, Tsukayama C. Aberrant Cdx2 expression in endometrial lesions with squamous differentiation: important role of Cdx2 in squamous morula formation. Hum Pathol. 2008;39(7):1072–9.

    Article  CAS  PubMed  Google Scholar 

  25. Chiarelli S, Buritica C, Litta P, Ciani S, Guarch R, Nogales FF. An immunohistochemical study of morules in endometrioid lesions of the female genital tract: CD10 is a characteristic marker of morular metaplasia. Clin Cancer Res. 2006;12(14 Pt 1):4251–6.

    Article  CAS  PubMed  Google Scholar 

  26. Laury AR, Perets R, Piao H, et al. A comprehensive analysis of PAX8 expression in human epithelial tumors. Am J Surg Pathol. 2011;35(6):816–26.

    Article  PubMed  Google Scholar 

  27. Hornick JL, Lauwers GY, Odze RD. Immunohistochemistry can help distinguish metastatic pancreatic adenocarcinomas from bile duct adenomas and hamartomas of the liver. Am J Surg Pathol. 2005;29(3):381–9.

    Article  PubMed  Google Scholar 

  28. Yantiss RK, Woda BA, Fanger GR, et al. KOC (K homology domain containing protein overexpressed in cancer): a novel molecular marker that distinguishes between benign and malignant lesions of the pancreas. Am J Surg Pathol. 2005;29(2):188–95.

    Article  PubMed  Google Scholar 

  29. Siami K, Glenn McCluggage W, Ordonez NG, et al. Thyroid transcription factor-1 expression in endometrial and endocervical adenocarcinomas. Am J Surg Pathol. 2007;31(11):1759–63.

    Article  PubMed  Google Scholar 

  30. Bishop JA, Sharma R, Illei PB. Napsin A and thyroid transcription factor-1 expression in carcinomas of the lung, breast, pancreas, colon, kidney, thyroid, and malignant mesothelioma. Hum Pathol. 2010;41(1):20–5.

    Article  CAS  PubMed  Google Scholar 

  31. Carcangiu ML, Chambers JT, Voynick IM, Pirro M, Schwartz PE. Immunohistochemical evaluation of estrogen and progesterone receptor content in 183 patients with endometrial carcinoma. Part I: clinical and histologic correlations. Am J Clin Pathol. 1990;94(3):247–54.

    Article  CAS  PubMed  Google Scholar 

  32. Chambers JT, Carcangiu ML, Voynick IM, Schwartz PE. Immunohistochemical evaluation of estrogen and progesterone receptor content in 183 patients with endometrial carcinoma. Part II: correlation between biochemical and immunohistochemical methods and survival. Am J Clin Pathol. 1990;94(3):255–60.

    Article  CAS  PubMed  Google Scholar 

  33. McCluggage WG, Sumathi VP, McBride HA, Patterson A. A panel of immunohistochemical stains, including carcinoembryonic antigen, vimentin, and estrogen receptor, aids the distinction between primary endometrial and endocervical adenocarcinomas. Int J Gynecol Pathol. 2002;21(1):11–5.

    Article  PubMed  Google Scholar 

  34. Dabbs DJ, Sturtz K, Zaino RJ. The immunohistochemical discrimination of endometrioid adenocarcinomas. Hum Pathol. 1996;27(2):172–7.

    Article  CAS  PubMed  Google Scholar 

  35. Castrillon DH, Lee KR, Nucci MR. Distinction between endometrial and endocervical adenocarcinoma: an immunohistochemical study. Int J Gynecol Pathol. 2002;21(1):4–10.

    Article  PubMed  Google Scholar 

  36. Staebler A, Sherman ME, Zaino RJ, Ronnett BM. Hormone receptor immunohistochemistry and human papillomavirus in situ hybridization are useful for distinguishing endocervical and endometrial adenocarcinomas. Am J Surg Pathol. 2002;26(8):998–1006.

    Article  PubMed  Google Scholar 

  37. Ansari-Lari MA, Staebler A, Zaino RJ, Shah KV, Ronnett BM. Distinction of endocervical and endometrial adenocarcinomas: immunohistochemical p16 expression correlated with human papillomavirus (HPV) DNA detection. Am J Surg Pathol. 2004;28(2):160–7.

    Article  PubMed  Google Scholar 

  38. Yemelyanova A, Ji H, Shih Ie M, Wang TL, Wu LS, Ronnett BM. Utility of p16 expression for distinction of uterine serous carcinomas from endometrial endometrioid and endocervical adenocarcinomas: immunohistochemical analysis of 201 cases. Am J Surg Pathol. 2009;33(10):1504–14.

    Article  PubMed  Google Scholar 

  39. Kong CS, Beck AH, Longacre TA. A panel of 3 markers including p16, ProExC, or HPV ISH is optimal for distinguishing between primary endometrial and endocervical adenocarcinomas. Am J Surg Pathol. 2010;34(7):915–26.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Han CP, Lee MY, Kok LF, et al. Adding the p16(INK4a) marker to the traditional 3-marker (ER/Vim/CEA) panel engenders no supplemental benefit in distinguishing between primary endocervical and endometrial adenocarcinomas in a tissue microarray study. Int J Gynecol Pathol. 2009;28(5):489–96.

    Article  PubMed  Google Scholar 

  41. Kamoi S, AlJuboury MI, Akin MR, Silverberg SG. Immunohistochemical staining in the distinction between primary endometrial and endocervical adenocarcinomas: another viewpoint. Int J Gynecol Pathol. 2002;21(3):217–23.

    Article  PubMed  Google Scholar 

  42. Nofech-Mozes S, Khalifa MM, Ismiil N, et al. Detection of HPV-DNA by a PCR-based method in formalin-fixed, paraffin-embedded tissue from rare endocervical carcinoma types. Appl Immunohistochem Mol Morphol. 2010;18(1):80–5.

    Article  CAS  PubMed  Google Scholar 

  43. Pirog EC, Kleter B, Olgac S, et al. Prevalence of human papillomavirus DNA in different histological subtypes of cervical adenocarcinoma. Am J Pathol. 2000;157(4):1055–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Park KJ, Kiyokawa T, Soslow RA, et al. Unusual endocervical adenocarcinomas: an immunohistochemical analysis with molecular detection of human papillomavirus. Am J Surg Pathol. 2011;35(5):633–46.

    Article  PubMed  Google Scholar 

  45. Toki T, Zhai YL, Park JS, Fujii S. Infrequent occurrence of high-risk human papillomavirus and of p53 mutation in minimal deviation adenocarcinoma of the cervix. Int J Gynecol Pathol. 1999;18(3):215–9.

    Article  CAS  PubMed  Google Scholar 

  46. Xu JY, Hashi A, Kondo T, et al. Absence of human papillomavirus infection in minimal deviation adenocarcinoma and lobular endocervical glandular hyperplasia. Int J Gynecol Pathol. 2005;24(3):296–302.

    Article  PubMed  Google Scholar 

  47. Fukushima M, Shimano S, Yamakawa Y, et al. The detection of human papillomavirus (HPV) in a case of minimal deviation adenocarcinoma of the uterine cervix (adenoma malignum) using in situ hybridization. Jpn J Clin Oncol. 1990;20(4):407–12.

    CAS  PubMed  Google Scholar 

  48. Grayson W, Taylor LF, Cooper K. Adenoid basal carcinoma of the uterine cervix: detection of integrated human papillomavirus in a rare tumor of putative “reserve cell” origin. Int J Gynecol Pathol. 1997;16(4):307–12.

    Article  CAS  PubMed  Google Scholar 

  49. Horn LC, Lindner K, Szepankiewicz G, et al. p16, p14, p53, and cyclin D1 expression and HPV analysis in small cell carcinomas of the uterine cervix. Int J Gynecol Pathol. 2006;25(2):182–6.

    Article  PubMed  Google Scholar 

  50. Jiang L, Malpica A, Deavers MT, et al. Endometrial endometrioid adenocarcinoma of the uterine corpus involving the cervix: some cases probably represent independent primaries. Int J Gynecol Pathol. 2010;29(2):146–56.

    Article  PubMed  Google Scholar 

  51. Westin SN, Lacour RA, Urbauer DL, et al. Carcinoma of the lower uterine segment: a newly described association with Lynch syndrome. J Clin Oncol. 2008;26(36):5965–71.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kos Z, Broaddus RR, Djordjevic B. Fallopian tube high-grade serous carcinoma with intramucosal spread and presenting as a malignancy on pap smear. Int J Gynecol Pathol. 2014;33(4):443–8.

    Article  PubMed  Google Scholar 

  53. McCluggage WG, Hurrell DP, Kennedy K. Metastatic carcinomas in the cervix mimicking primary cervical adenocarcinoma and adenocarcinoma in situ: report of a series of cases. Am J Surg Pathol. 2010;34(5):735–41.

    PubMed  Google Scholar 

  54. Hashi A, Yuminamochi T, Murata S, Iwamoto H, Honda T, Hoshi K. Wilms tumor gene immunoreactivity in primary serous carcinomas of the fallopian tube, ovary, endometrium, and peritoneum. Int J Gynecol Pathol. 2003;22(4):374–7.

    Article  PubMed  Google Scholar 

  55. Nofech-Mozes S, Khalifa MA, Ismiil N, et al. Immunophenotyping of serous carcinoma of the female genital tract. Mod Pathol. 2008;21(9):1147–55.

    Article  CAS  PubMed  Google Scholar 

  56. Al-Hussaini M, Stockman A, Foster H, McCluggage WG. WT-1 assists in distinguishing ovarian from uterine serous carcinoma and in distinguishing between serous and endometrioid ovarian carcinoma. Histopathology. 2004;44(2):109–15.

    Article  CAS  PubMed  Google Scholar 

  57. Euscher ED, Malpica A, Deavers MT, Silva EG. Differential expression of WT-1 in serous carcinomas in the peritoneum with or without associated serous carcinoma in endometrial polyps. Am J Surg Pathol. 2005;29(8):1074–8.

    PubMed  Google Scholar 

  58. Hirschowitz L, Ganesan R, McCluggage WG. WT1, p53 and hormone receptor expression in uterine serous carcinoma. Histopathology. 2009;55(4):478–82.

    Article  PubMed  Google Scholar 

  59. Alkushi A, Kobel M, Kalloger SE, Gilks CB. High-grade endometrial carcinoma: serous and grade 3 endometrioid carcinomas have different immunophenotypes and outcomes. Int J Gynecol Pathol. 2010;29(4):343–50.

    Article  PubMed  Google Scholar 

  60. Goldstein NS, Uzieblo A. WT1 immunoreactivity in uterine papillary serous carcinomas is different from ovarian serous carcinomas. Am J Clin Pathol. 2002;117(4):541–5.

    Article  PubMed  Google Scholar 

  61. Soliman PT, Broaddus RR, Schmeler KM, et al. Women with synchronous primary cancers of the endometrium and ovary: do they have Lynch syndrome? J Clin Oncol. 2005;23(36):9344–50.

    Article  PubMed  Google Scholar 

  62. Bokhman JV. Two pathogenetic types of endometrial carcinoma. Gynecol Oncol. 1983;15(1):10–7.

    Article  CAS  PubMed  Google Scholar 

  63. Kurman RJ, Carcangiu ML, Herrington CS, Young RH, editors. WHO classification of tumors of female reproductive organs. Lyon: International Agency for Research on Cancer (IARC); 2014.

    Google Scholar 

  64. Soslow RA. Endometrial carcinomas with ambiguous features. Semin Diagn Pathol. 2010;27(4):261–73.

    Article  PubMed  Google Scholar 

  65. Gilks CB, Oliva E, Soslow RA. Poor interobserver reproducibility in the diagnosis of high-grade endometrial carcinoma. Am J Surg Pathol. 2013;37(6):874–81.

    Article  PubMed  Google Scholar 

  66. Hoang LN, McConechy MK, Kobel M, et al. Histotype-genotype correlation in 36 high-grade endometrial carcinomas. Am J Surg Pathol. 2013;37(9):1421–32.

    Article  PubMed  Google Scholar 

  67. Kandoth C, Schultz N, Cherniack AD, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73.

    Article  PubMed  CAS  Google Scholar 

  68. Meng B, Hoang LN, McIntyre JB, et al. POLE exonuclease domain mutation predicts long progression-free survival in grade 3 endometrioid carcinoma of the endometrium. Gynecol Oncol. 2014;134(1):15–9.

    Article  CAS  PubMed  Google Scholar 

  69. Hussein YR, Weigelt B, Levine DA, et al. Clinicopathological analysis of endometrial carcinomas harboring somatic POLE exonuclease domain mutations. Mod Pathol. 2015;28(4):505–14.

    Article  CAS  PubMed  Google Scholar 

  70. Church DN, Stelloo E, Nout RA, et al. Prognostic significance of POLE proofreading mutations in endometrial cancer. J Natl Cancer Inst. 2015;107(1):402.

    Article  PubMed  CAS  Google Scholar 

  71. Tobon H, Watkins GJ. Secretory adenocarcinoma of the endometrium. Int J Gynecol Pathol. 1985;4(4):328–35.

    Article  CAS  PubMed  Google Scholar 

  72. Clement PB, Young RH. Endometrioid carcinoma of the uterine corpus: a review of its pathology with emphasis on recent advances and problematic aspects. Adv Anat Pathol. 2002;9(3):145–84.

    Article  PubMed  Google Scholar 

  73. Hoang LN, Han G, McConechy M, et al. Immunohistochemical characterization of prototypical endometrial clear cell carcinoma–diagnostic utility of HNF-1beta and oestrogen receptor. Histopathology. 2014;64(4):585–96.

    Article  PubMed  Google Scholar 

  74. Mhawech-Fauceglia P, Yan L, Liu S, Pejovic T. ER+/PR+/TFF3+/IMP3 immunoprofile distinguishes endometrioid from serous and clear cell carcinomas of the endometrium: a study of 401 cases. Histopathology. 2013;62(7):976–85.

    Article  PubMed  Google Scholar 

  75. Lax SF, Pizer ES, Ronnett BM, Kurman RJ. Clear cell carcinoma of the endometrium is characterized by a distinctive profile of p53, Ki-67, estrogen, and progesterone receptor expression. Hum Pathol. 1998;29(6):551–8.

    Article  CAS  PubMed  Google Scholar 

  76. Yamamoto S, Tsuda H, Aida S, Shimazaki H, Tamai S, Matsubara O. Immunohistochemical detection of hepatocyte nuclear factor 1beta in ovarian and endometrial clear-cell adenocarcinomas and nonneoplastic endometrium. Hum Pathol. 2007;38(7):1074–80.

    Article  CAS  PubMed  Google Scholar 

  77. Fadare O, Liang SX. Diagnostic utility of hepatocyte nuclear factor 1-beta immunoreactivity in endometrial carcinomas: lack of specificity for endometrial clear cell carcinoma. Appl Immunohistochem Mol Morphol. 2012;20(6):580–7.

    Article  CAS  PubMed  Google Scholar 

  78. Fadare O, Desouki MM, Gwin K, et al. Frequent expression of napsin A in clear cell carcinoma of the endometrium: potential diagnostic utility. Am J Surg Pathol. 2014;38(2):189–96.

    Article  PubMed  Google Scholar 

  79. Iwamoto M, Nakatani Y, Fugo K, Kishimoto T, Kiyokawa T. Napsin A is frequently expressed in clear cell carcinoma of the ovary and endometrium. Hum Pathol. 2015;46(7):957–62.

    Article  CAS  PubMed  Google Scholar 

  80. Jiang Z, Woda BA, Rock KL, et al. P504S: a new molecular marker for the detection of prostate carcinoma. Am J Surg Pathol. 2001;25(11):1397–404.

    Article  CAS  PubMed  Google Scholar 

  81. Jiang Z, Fanger GR, Woda BA, et al. Expression of alpha-methylacyl-CoA racemase (P504s) in various malignant neoplasms and normal tissues: a study of 761 cases. Hum Pathol. 2003;34(8):792–6.

    Article  CAS  PubMed  Google Scholar 

  82. Zhou M, Chinnaiyan AM, Kleer CG, Lucas PC, Rubin MA. Alpha-Methylacyl-CoA racemase: a novel tumor marker over-expressed in several human cancers and their precursor lesions. Am J Surg Pathol. 2002;26(7):926–31.

    Article  PubMed  Google Scholar 

  83. Allo G, Bernardini MQ, Wu RC, et al. ARID1A loss correlates with mismatch repair deficiency and intact p53 expression in high-grade endometrial carcinomas. Mod Pathol. 2014;27(2):255–61.

    Article  CAS  PubMed  Google Scholar 

  84. Zhang ZM, Xiao S, Sun GY, et al. The clinicopathologic significance of the loss of BAF250a (ARID1A) expression in endometrial carcinoma. Int J Gynecol Cancer. 2014;24(3):534–40.

    Article  PubMed  Google Scholar 

  85. Fadare O, Gwin K, Desouki MM, et al. The clinicopathologic significance of p53 and BAF-250a (ARID1A) expression in clear cell carcinoma of the endometrium. Mod Pathol. 2013;26(8):1101–10.

    Article  CAS  PubMed  Google Scholar 

  86. Fadare O, Renshaw IL, Liang SX. Does the loss of ARID1A (BAF-250a) expression in endometrial clear cell carcinomas have any clinicopathologic significance?. A pilot assessment. J Cancer. 2012;3:129–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wiegand KC, Lee AF, Al-Agha OM, et al. Loss of BAF250a (ARID1A) is frequent in high-grade endometrial carcinomas. J Pathol. 2011;224(3):328–33.

    Article  CAS  PubMed  Google Scholar 

  88. Vang R, Barner R, Wheeler DT, Strauss BL. Immunohistochemical staining for Ki-67 and p53 helps distinguish endometrial Arias-Stella reaction from high-grade carcinoma, including clear cell carcinoma. Int J Gynecol Pathol. 2004;23(3):223–33.

    Article  PubMed  Google Scholar 

  89. Murray SK, Young RH, Scully RE. Uterine endometrioid carcinoma with small nonvillous papillae: an analysis of 26 cases of a favorable-prognosis tumor to be distinguished from serous carcinoma. Int J Surg Pathol. 2000;8(4):279–89.

    Article  PubMed  Google Scholar 

  90. Ambros RA, Ballouk F, Malfetano JH, Ross JS. Significance of papillary (villoglandular) differentiation in endometrioid carcinoma of the uterus. Am J Surg Pathol. 1994;18(6):569–75.

    CAS  PubMed  Google Scholar 

  91. Garg K, Broaddus RR, Soslow RA, Urbauer DL, Levine DA, Djordjevic B. Pathologic scoring of PTEN immunohistochemistry in endometrial carcinoma is highly reproducible. Int J Gynecol Pathol. 2012;31(1):48–56.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Pallares J, Bussaglia E, Martinez-Guitarte JL, et al. Immunohistochemical analysis of PTEN in endometrial carcinoma: a tissue microarray study with a comparison of four commercial antibodies in correlation with molecular abnormalities. Mod Pathol. 2005;18(5):719–27.

    Article  CAS  PubMed  Google Scholar 

  93. Maiques O, Santacana M, Valls J, et al. Optimal protocol for PTEN immunostaining; role of analytical and preanalytical variables in PTEN staining in normal and neoplastic endometrial, breast, and prostatic tissues. Hum Pathol. 2014;45(3):522–32.

    Article  PubMed  Google Scholar 

  94. Djordjevic B, Hennessy BT, Li J, et al. Clinical assessment of PTEN loss in endometrial carcinoma: immunohistochemistry outperforms gene sequencing. Mod Pathol. 2012;25(5):699–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tashiro H, Blazes MS, Wu R, et al. Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res. 1997;57(18):3935–40.

    CAS  PubMed  Google Scholar 

  96. Risinger JI, Hayes K, Maxwell GL, et al. PTEN mutation in endometrial cancers is associated with favorable clinical and pathologic characteristics. Clin Cancer Res. 1998;4(12):3005–10.

    CAS  PubMed  Google Scholar 

  97. Sun H, Enomoto T, Fujita M, et al. Mutational analysis of the PTEN gene in endometrial carcinoma and hyperplasia. Am J Clin Pathol. 2001;115(1):32–8.

    Article  CAS  PubMed  Google Scholar 

  98. Darvishian F, Hummer AJ, Thaler HT, et al. Serous endometrial cancers that mimic endometrioid adenocarcinomas: a clinicopathologic and immunohistochemical study of a group of problematic cases. Am J Surg Pathol. 2004;28(12):1568–78.

    Article  PubMed  Google Scholar 

  99. Zheng W, Yi X, Fadare O, et al. The oncofetal protein IMP3: a novel biomarker for endometrial serous carcinoma. Am J Surg Pathol. 2008;32(2):304–15.

    Article  PubMed  Google Scholar 

  100. Lax SF, Kendall B, Tashiro H, Slebos RJ, Hedrick L. The frequency of p53, K-ras mutations, and microsatellite instability differs in uterine endometrioid and serous carcinoma: evidence of distinct molecular genetic pathways. Cancer. 2000;88(4):814–24.

    Article  CAS  PubMed  Google Scholar 

  101. Kane MF, Loda M, Gaida GM, et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 1997;57(5):808–11.

    CAS  PubMed  Google Scholar 

  102. Herman JG, Umar A, Polyak K, et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci U S A. 1998;95(12):6870–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Salvesen HB, MacDonald N, Ryan A, et al. Methylation of hMLH1 in a population-based series of endometrial carcinomas. Clin Cancer Res. 2000;6(9):3607–13.

    CAS  PubMed  Google Scholar 

  104. Goodfellow PJ, Buttin BM, Herzog TJ, et al. Prevalence of defective DNA mismatch repair and MSH6 mutation in an unselected series of endometrial cancers. Proc Natl Acad Sci U S A. 2003;100(10):5908–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Broaddus RR, Lynch HT, Chen LM, et al. Pathologic features of endometrial carcinoma associated with HNPCC: a comparison with sporadic endometrial carcinoma. Cancer. 2006;106(1):87–94.

    Article  CAS  PubMed  Google Scholar 

  106. Lu KH, Dinh M, Kohlmann W, et al. Gynecologic cancer as a “sentinel cancer” for women with hereditary nonpolyposis colorectal cancer syndrome. Obstet Gynecol. 2005;105(3):569–74.

    Article  PubMed  Google Scholar 

  107. Backes FJ, Hampel H, Backes KA, et al. Are prediction models for Lynch syndrome valid for probands with endometrial cancer? Fam Cancer. 2009;8(4):483–7.

    Article  CAS  PubMed  Google Scholar 

  108. SGO clinical practice statement: screening for Lynch syndrome in endometrial cancer. 2014. Available from: https://www.sgo.org/clinical-practice/guidelines/screening-for-lynch-syndrome-in-endometrial-cancer/.

  109. Mercado RC, Hampel H, Kastrinos F, et al. Performance of PREMM (1,2,6), MMRpredict, and MMRpro in detecting Lynch syndrome among endometrial cancer cases. Genet Med. 2012;14(7):670–80.

    Google Scholar 

  110. Bartley AN, Luthra R, Saraiya DS, Urbauer DL, Broaddus RR. Identification of cancer patients with Lynch syndrome: clinically significant discordances and problems in tissue-based mismatch repair testing. Cancer Prev Res (Phila). 2012;5(2):320–7.

    Article  PubMed  Google Scholar 

  111. Rosen DG, Cai KQ, Luthra R, Liu J. Immunohistochemical staining of hMLH1 and hMSH2 reflects microsatellite instability status in ovarian carcinoma. Mod Pathol. 2006;19(11):1414–20.

    CAS  PubMed  Google Scholar 

  112. Cai KQ, Albarracin C, Rosen D, et al. Microsatellite instability and alteration of the expression of hMLH1 and hMSH2 in ovarian clear cell carcinoma. Hum Pathol. 2004;35(5):552–9.

    Article  CAS  PubMed  Google Scholar 

  113. Modica I, Soslow RA, Black D, Tornos C, Kauff N, Shia J. Utility of immunohistochemistry in predicting microsatellite instability in endometrial carcinoma. Am J Surg Pathol. 2007;31(5):744–51.

    Article  PubMed  Google Scholar 

  114. Ferguson SE, Aronson M, Pollett A, et al. Performance characteristics of screening strategies for Lynch syndrome in unselected women with newly diagnosed endometrial cancer who have undergone universal germline mutation testing. Cancer. 2014;120 (24), 3932–9.

    Google Scholar 

  115. Buchanan DD, Tan YY, Walsh MD, et al. Tumor mismatch repair immunohistochemistry and DNA MLH1 methylation testing of patients with endometrial cancer diagnosed at age younger than 60 years optimizes triage for population-level germline mismatch repair gene mutation testing. J Clin Oncol. 2014;32(2):90–100.

    Article  CAS  PubMed  Google Scholar 

  116. Djordjevic B, Barkoh BA, Luthra R, Broaddus RR. Relationship between PTEN, DNA mismatch repair, and tumor histotype in endometrial carcinoma: retained positive expression of PTEN preferentially identifies sporadic non-endometrioid carcinomas. Mod Pathol. 2013;26(10):1401–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Boland CR, Fishel R. Lynch syndrome: form, function, proteins, and basketball. Gastroenterology. 2005;129(2):751–5.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH 1P50CA098258 (SPORE in Uterine Cancer).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojana Djordjevic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Djordjevic, B., Broaddus, R.R. (2017). Immunohistochemical Markers in Endometrial Carcinoma. In: Deavers, M., Coffey, D. (eds) Precision Molecular Pathology of Uterine Cancer. Molecular Pathology Library, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-57985-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57985-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57983-2

  • Online ISBN: 978-3-319-57985-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics