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Abstract. A brain-computer interface (BCI) measures and interprets
brain signals enabling people to communicate without the use of periph-
eral muscles. One of the common BCI paradigms are steady state visual
evoked potentials (SSVEPs), brain signals induced by gazing at a con-
stantly flickering target. The choice of stimulation frequencies and the
number of simultaneously used stimuli highly influence the performance
of such SSVEP-based BCI. In this article, a dictionary-driven four class
SSVEP-based spelling application is presented, tested, and evaluated.
To enhance classification accuracy, frequencies were determined individ-
ually with a calibration software for SSVEP-BCIs, enabling non-experts
to set up the system. Forty-one healthy participants used the BCI sys-
tem to spell English sentences (lengths between 23 and 37 characters). All
participants completed the spelling task successfully. A mean accuracy
of 97.92% and a mean ITR of 23.84 bits/min were achieved, 18 partici-
pants even reached 100% accuracy. On average the number of commands
needed to spell the example sentences with four classes, without dictio-
nary support is higher by a factor of 1.92. Thanks to the implemented
dictionary the time needed to spell typical everyday sentences can be
drastically reduced.

Keywords: Brain-Computer Interface (BCI) · Steady-state visual
evoked potential (SSVEP) · Dictionary · Wizard

1 Introduction

Brain-Computer Interfaces (BCIs) translate brain signals, usually acquired non-
invasively using electroencephalogram (EEG), in computer commands without
using the brain’s normal output pathways of peripheral nerves and muscles [24].
Such communication technologies have the potential to help people with physical
impairments, as they could provide user interfaces that work independently of
the person’s limitations.

This article focuses on steady state visual evoked potentials (SSVEPs)-based
BCIs [3]; a commonly used BCI paradigm. By looking at a flickering visual stim-
uli, brain signals are modulated with the corresponding frequency. These signals
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are then measured with an EEG and can be classified in real time. An SSVEP-
based BCI can be utilized as communication tool and is one of the fastest BCI
paradigms [1,20].

A crucial point regarding user friendliness is the design of the graphical user
interface (GUI). Four class SSVEP-based BCIs have been proven to grant suffi-
cient control over the system and allow greater freedom in the choice of stimu-
lation frequencies than systems with multiple targets [9,11].

Integrated dictionaries can make spelling applications more efficient [13,23].
However, due to the limited number of commands, implementing a dictionary
in a four class BCI is a challenge. As the English alphabet consists of 26 letters,
multiple steps are necessary to select a letter. Additional steps are needed to
select dictionary suggestions.

Various BCI spelling interfaces with built-in dictionaries have already been
developed by different research groups [17].

When designing a communication system with text predictive mechanisms,
it is important to take its desired use in lifelike scenarios into consideration.
In this regard, the presented dictionary was based on word frequency lists for
spoken language. As the 200 most frequently spoken words form 80% of the
everyday language [4], the use of such frequency lists can greatly accelerate the
communication speed of such systems.

Another way to improve the system speed and accuracy is the careful adjust-
ment of key parameters for SSVEP classification. Auto-calibration procedures
allow expert-independent home-use of a BCI as they allow people with no tech-
nical knowledge to set up the system. Though such calibration methods are
common for other BCI approaches [10,13,15,16], they are rarely used for BCIs
based on the SSVEP paradigm. However, in the here presented dictionary sup-
ported SSVEP-based BCI, a modified version of our earlier developed calibration
methods [9] was integrated to set up user specific stimulation frequencies and
other key parameters associated with the utilized classification methods such as
frequency dependent classification thresholds.

Our goal was to develop a more user-friendly BCI system suitable for daily
communication. To achieve this we improved and consolidated our previous
developments [9,23]. The here presented dictionary driven, four class SSVEP-
based spelling application was tested with 41 participants. We further

– evaluated the efficiency of the integrated dictionary for daily communication
by analyzing results of an online spelling task and

– demonstrate that the modified SSVEP-calibration methods allow expert inde-
pendent adjustment of BCI key parameters.

The paper is organized as follows: the second section describes the experi-
mental setup, and presents details about the spelling interface. The results are
presented in the third section, followed by a discussion and conclusion in the
final section.
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2 Methods and Materials

2.1 Participants

The study was carried out in accordance with the guidelines of the Rhine-Waal
University of Applied Sciences. All participants gave written informed consent in
accordance with the Declaration of Helsinki. Information needed for the analy-
sis of the experiments was stored anonymously during the experiment; results
cannot be traced back to the participant. All participants had the opportunity
to opt-out of the study at any time. Forty-one participants (11 female) with a
mean (SD) age 22.31 (2.73) years participated in the study. All participants were
students or employees of the Rhine-Waal University of Applied Sciences and had
little or no previous experience with BCI systems. The EEG recording took place
in a normal laboratory room (area ≈ 36m2). Spectacles were worn when appro-
priate. Participants did not receive any financial reward for participation in this
study.

2.2 Hardware

Participants were seated in front of a LCD screen (BenQ XL2420T, resolution:
1920 × 1080 pixels, vertical refresh rate: 120 Hz) at a distance of about 60 cm.
The used computer system operated on Microsoft Windows 7 Enterprise running
on an Intel processor (Intel Core i7, 3.40 GHz). Standard Ag/AgCl electrodes
were used to acquire the signals from the surface of the scalp. The ground elec-
trode was placed over AFZ , the reference electrode over CZ , and the eight sig-
nal electrodes were placed at predefined locations on the EEG-cap marked with
PZ , PO3, PO4, O1, O2, OZ , O9, and O10 in accordance with the international sys-
tem of EEG electrode placement. Standard abrasive electrolytic electrode gel was
applied between the electrodes and the scalp to bring impedances below 5 kΩ.
An EEG amplifier, g.USBamp (Guger Technologies, Graz, Austria), was utilized.
The sampling frequency was set to 128 Hz. During the EEG signal acquisition,
an analogue band pass filter (between 2 and 30 Hz) and a notch filter (around
50 Hz) were applied directly in the amplifier.

2.3 Signal Acquisition

Minimum energy combination method (MEC) [7,20] was used for SSVEP signal
classification. To detect a frequency in the spatially filtered signals, the SSVEP
power estimations for the frequencies were normalized into probabilities:

pi =
P̂i

∑Nf

j=1 P̂j

with
Nf∑

i=1

pi = 1 (1)

where Nf is the number of considered frequencies and P̂i is the ith power estima-
tion, 1 ≤ i ≤ Nf . Note that to increase robustness, three additional frequencies
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(means between pairs of target frequencies, see e.g. [21]) were also considered,
hence Nf = 7.

All classifications were performed on the basis of the hardware synchroniza-
tion of the used EEG amplifier (g.USBamp); the new EEG data were transferred
to the PC in blocks of 13 samples (101.5625 ms with the sampling rate of 128 Hz).
The classification was performed with a stepwise increasing sliding window (up to
20 s) after receiving the new EEG data block. If non of the pi exceeded a certain
corresponding threshold βi the classifier output was rejected. The choice of the
βi depended on the corresponding stimulation frequency (in general, lower stim-
ulation frequencies produce higher SSVEP-response) but also on user factors
as the quality of the SSVEP-signals differ between participants. The values for
the βi were determined with a calibration software [9]. After each classification
the classifier output was rejected for the duration of 914 ms (9 blocks). During
this gaze shifting period, the targets did not flicker allowing the user to change
his/her focus to another target (see [20] for more details).

2.4 Auto-calibration

Key SSVEP-parameters were determined individually for each participant in a
short calibration session with the previously developed BCI wizard software [9].
This wizard ran the user through three phases in order to provide participant-
specific stimulation frequencies (phases 1 and 2), classification thresholds, and
minimal time segment lengths (phase 3).

The number of stable frequencies on LCD monitors is limited by the vertical
refresh rate of 120 Hz since the number of frames in a stimulation cycle needs
to be a constant [5]. Therefore, only dividers of the monitor’s vertical refresh
rate were considered as stimulation frequencies. The four optimal stimulation
frequencies were drawn from frequencies obtained with dividers between 6 and
24 of the vertical refresh rate (see x-axis of Fig. 3).

The low frequency band overlaps with the alpha band (8–13 Hz), which can
cause false classifications [26]. Therefore, alpha activity was measured in phase
1 and critical frequencies were filtered: If a possible target frequency interfered
with the users alpha wave (frequency difference less than 0.3 Hz), this frequency
would be neglected as described in [9].

The determination of optimal stimulation frequencies was based on a com-
parison of the integral value of normalized probabilities (1); more details can
be found in [9]. The so called multi-target technique (see [22]) where the user
focuses on multiple simultaneously flickering stimuli at once, was used to find
optimal target frequencies.

In this respect, the user faced sequentially three circles representing possi-
ble stimulation frequencies. Each circle flickered for 10 s while EEG data were
recorded and the probabilities of the possible target frequencies were sorted from
highest averaged probability to lowest. The first two circles contained seven of
the considered frequencies each (see Fig. 1a). In order to avoid mutual influences
between stimulating frequencies, the seven frequencies contained in each circle
followed the additional restrictions rules (see e.g. [22]):
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Fig. 1. (a) One of the circles containing seven of the considered stimulation frequencies
is displayed on the left. Each tested frequency was represented by the same amount of
segments spread randomly across the circle. The random distributed segments repre-
senting one specific frequency are shown on the right side. (b) In phase 3 the BCI user
had to focus on each of the four determined target frequencies. The recorded data were
then analyzed to determine frequency specific classification thresholds. (Color online
figure)

fi �= [fj + fk]/2, fi �= 2fj − fk, fi �= 2fk − fj . (2)

The considered stimulation frequencies for the first circle were 6.32, 7.50, 8.00,
10.00, 10.91, 13.33, and 6.67, 7.06, 8.57, 9.23, 12.00, 15.00, 12.00 Hz for the second
circle.

The third circle contained the seven highest ranked frequencies from the first
two recordings. Finally the top four frequencies from the third recording were
selected as optimal target frequencies. However, if the highest ranked frequency
was more than 20% stronger than the second highest, it was filtered out, as
too strong SSVEP responses to a particular frequency could cause classification
errors.

In order to find optimal thresholds each of the four determined stimulation
frequencies were presented as white boxes on the screen (see Fig. 1b). The boxes
contained the numbers 1, 2, 3, and 4. Initially, the box containing the number 1
had a red frame, while the frames of the remaining boxes were white. An audio
message instructed the user to focus on the box highlighted by the red frame.
Each box flickered for 10 s while EEG data were recorded. The flickering stopped
for a two seconds break so that further recordings would not be influenced by the
SSVEP-responses from the previous one. Then the second box was highlighted
and EEG data were recorded again. This procedure was repeated until data for
all four frequencies were collected.

The classification thresholds were then determined as follows. For each fre-
quency the distributions of correct and false classifications were calculated for dif-
ferent threshold sets. Through comparison of these distributions optimal thresh-
olds were determined. Therefore, the classification outputs of the recorded data
were analyzed with different threshold sets for each frequency. To determine the
threshold for a particular target frequency the distributions of false and correct
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classifications of those outputs were compared. For further details regarding this
procedure please refer to [9].

2.5 Dictionary Driven SSVEP-Based Three-Step Speller

The presented Dictionary driven SSVEP-based Three-step Speller resembles pre-
viously developed GUI layouts [8,14,23] and allows selection of single letters
(spelling mode) as well as complete words (dictionary mode). In each mode, four
frequencies were presented as flickering boxes (175 × 175 pixels) on the monitor.
The size of the boxes varied during the experiment as described in [20]. The out-
put of the Dictionary driven SSVEP-based Three-step Speller, the spelled text,
was displayed at the bottom of the screen.

Spelling Mode. To select a character in the spelling mode three steps were
necessary. Initially a matrix of nine boxes, each containing three letters of the
alphabet (26 letters plus the command space), was presented (see Fig. 2). The
frames of the boxes were colored differently for each row, with each color corre-
sponding to one frequency; green (“A B C”, “D E F”, “G H I”), red (“J K L”,
“M N O”, “P Q R”) and blue (“S T U”, “V W X”, “Y Z ”), respectively. An
additional 10th box with a yellow frame, containing the command “Dict/Del”
(delete the last spelled character or switch to dictionary mode) was located on
the left side of the screen. After first selection, the boxes of the selected row
were highlighted with individual colors (green, red and blue), while the other
rows were grayed out.

To enhance user friendliness, an animation (in the form of a slow rearrange-
ment of the boxes containing the selected single letters) was presented during
the gaze shifting period (between the 2nd and 3rd step of the letter selection -
spelling mode), while the remaining boxes were faded out (Fig. 2b and c). Next
four boxes were presented, three representing a single letter and one for the com-
mand “back”. The purpose of the animation was to show the user from which
box the single letters originated. The animation should ensure that the user did
not have to search for the desired letter as he/she witnessed the position change.
Based on our previous experience, this should reduce the number of wrong selec-
tions in the 3rd step. During the first two steps, no gaze shifting was necessary
as only the frequencies (and frame colors) changed, but not the position of the
target letter. For example, if the user wanted to select the letter “H”, initially
the target letter was contained in a green-framed box (first row), then in the
blue-framed box, and finally in the red-framed box (see Fig. 2a–c). The role of
the yellow-framed box changed depending on the current step of the selection
phase. In the 1st step of the spelling mode the user could enter the dictionary
mode, see Fig. 2(a) box “Dict/Del”, where he/she could delete the last selected
letter or word. In the 2nd and 3rd step of the spelling mode the yellow framed
box contained the command “back” which gave the user the opportunity to go
tho the previous step. In order to increase the user friendliness, every command
classification was followed by an audio feedback with the name of the selected
command or the letter spelled.
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Fig. 2. Graphical user interface of the dictionary driven Three-step speller during the
online experiment. At first the participant was selecting the letter “H” (a–c). After the
character sequence “HEL” had been selected, the participant entered the dictionary
mode (d), and selected the word “HELLO” (e, f). In total, twelve correct commands
were necessary to select the desired word. (Color figure online)

Dictionary Mode. The dictionary mode was used to select from a list of
six suggested words which were positioned above the “Dict/Del” button, see
Fig. 2(a and d). The presented suggestions were entries from a dictionary con-
taining 39 000 words, ordered by word frequency. This dictionary was derived
from a list of the most frequently used words from spoken English (https://
en.wiktionary.org/wiki/Wiktionary:Frequency lists; accessed on 4th November
2015). Initially, the first six entries of the dictionary were displayed as sugges-
tions. After choosing a single letter in the spelling mode, the list of displayed
suggestions was updated and contained the first six words from the dictionary

https://en.wiktionary.org/wiki/Wiktionary:Frequency_lists
https://en.wiktionary.org/wiki/Wiktionary:Frequency_lists
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list, starting with the selected letter or sequence. If the desired word was dis-
played as one of the suggestions, the user could switch to the dictionary mode
and select the whole word directly, or continue to spell the word letter by letter.
For example, after entering “HEL” the user was able to choose a word from the
suggestion list in three steps: First, the “Dict/Del” button had to be selected to
enter the dictionary mode. As only four commands were available, the suggestion
list was split in two. In a second step, those lists could be selected by gazing at
a “select” button located sideways to each list. After selection, the three words
from the selected list were displayed in separate boxes and the desired word could
be directly selected. Figure 2(d–f), shows the three steps necessary to choose the
word “HELLO” after the character chain “HEL” was already selected. When
selecting a word from the suggestion list, the system automatically added a
white space at the end of the word.

2.6 Experimental Setup

After signing the consent form, each participant completed a brief questionnaire.
Thereafter, the participants were prepared for the EEG recording. Participants
participated in a brief test run spelling the word “BCI”, and a short phrase to
get familiar with the application. Next, each participant used the GUI to spell
a randomly selected sentence from a list containing 80 sentences from common
English conversations. Those sentences were selected from English conversations
between two or more people in real life scenarios. Each spelling phase ended
automatically when the sentence was spelled correctly. Spelling errors were cor-
rected via the implemented delete button. The entire session took on average
about 40 min for each participant.

3 Results

Table 1 summarizes results for all participants. Provided are the time needed to
complete the task, the command accuracy and the ITR. It was apparent before-
hand that the dictionary support would increase the overall system performance.

BCI performance was evaluated by calculating the commonly used ITR in
bits/min (see e.g. [24]):

B = log2 N + P log2 P + (1 − P ) log2

[
1 − P

N − 1

]

. (3)

In the formula above, B represents the number of bits per trial. The overall
number of possible choices was four (N = 4), and the accuracy P was calculated
based on the number of correct command classifications C̃n divided by the total
number of classified commands Cn. To obtain ITR in bits per minute, B is
multiplied by the number of command classifications per minute.

Further C̃∗
n denotes the number of commands needed to spell the phrase

without the implemented dictionary (C̃∗
n is three times the sentence length).
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Table 1. Results for 41 participants.

Almost half (18 out of 41) of the participants reached an accuracy of 100% and
the rest scored above 93%. The spelling task length varied negligibly from 27 to
37 characters.

D
is
tr
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ut
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n
(%

)

Frequencies (Hz)

Fig. 3. Frequency power estimations over all participants for the considered frequen-
cies. Probabilities based on the recorded data from the wizard were calculated with
the Minimum Energy Combination algorithm.
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Figure 3 shows the averaged distribution of the probabilities of the consid-
ered frequencies averaged over all participants after the last recording in phase
2 of the wizard. The recorded data were analyzed with the Minimum Energy
Combination algorithm to find the frequencies with highest probabilities.

4 Discussion and Conclusion

Though the introduced interface was more complex due to the implementation of
the dictionary, neither a drop in accuracy nor speed were observed in comparison
to our previous experiments [8,9]. The achieved mean accuracy of 97.92%, as well
as the ITR 23.84 bits/min compete with the results from our previous field study
where a similar user interface and algorithms were tested (97.02% accuracy and
an ITR of 21.58 bits/min were achieved, see [9]).

The dictionary driven speller was implemented as a four-class BCI-system
as those systems allow the majority of users to gain control over the system
[9,11,19]. Indeed, the accuracies achieved as well as the fact that all participants
were able to control the system, confirm that a low number of simultaneously
displayed targets might decrease the number of wrong selections, as discussed
e.g. in [9]. A further advantage of BCIs with a low number of classes is that they
seem to be less stressful for the user (see e.g. [8]). A common drawback of these
systems is that due to the used alphabet several steps are necessary to choose a
desired target. The time needed to solve the tasks is usually quite large compared
to typical input devices or multi-target BCIs (e.g. [12]). However, the accuracy
and speed of the system can be increased through mechanisms like this imple-
mented dictionary or other language-based models (see e.g. the review [17]). The
number of commands needed to complete the spelling tasks increased on average
by a factor of 1.92, if the previously developed three-step spelling application
(without dictionary [8]) was used instead (see C̃∗

n/C̃n in Table 1).
This factor varied; its maximal value was 2.50. Communication was sped up

for almost all participants, however one participant chose purposely not to use
the dictionary (C̃∗

n/C̃n = 1.00). Nevertheless, through the implemented dictio-
nary, the effort to spell typical everyday sentences was reduced immensely for
almost all participants. Choosing an appropriate dictionary for everyday use that
suits the needs of different users is still a challenging task [4].

Communication interfaces developed for other commonly used BCI
approaches yielded similar differences between dictionary driven and conven-
tional spelling. E.g. Akram et al. integrated a word suggestion mechanism in
order to reduce typing time into a conventional P300-based speller [2]. With
the conventional speller an average word typing time of 2.9 min was achieved.
In contrast, with the scheme with word suggestion mechanism the average time
was reduced to 1.66 min, which is 1.74 times as fast. D’albis et al. proposed a
motor imagery based spelling device adopting natural language processing [6].
The spelling speed with the proposed interface was on average 2.1 times faster
(6.15 min compared to 12.93 min with the standard approach).
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The automatic calibration procedure integrated in the here presented spelling
interface allowed non-experts to setup a functioning SSVEP-BCI with user spe-
cific parameters. The experiment was carried out by student assistants with
little to no experience in BCI-setup. All necessary parameters were determined
automatically. After starting the program no further adjustments by the exper-
imenters were necessary.

The wizard determined a set of target frequencies by comparing SSVEP-
responses. As shown in Fig. 3, the lower stimulation frequencies evoked the high-
est SSVEP-responses, which is inline with previous observations [18]. However,
it is known that low frequencies cause more fatigue [25]. A further disadvan-
tage of those frequencies that they overlap with the alpha band (8–13 Hz). If
the participant closed the eyes a little too long false classifications might occur.
In order to omit this problem the wizard checked the considered frequencies for
interference with a participant’s alpha wave.

In order to increase user-friendliness of the calibration procedure, we plan to
integrate the necessary data recordings for calibration in an online copy spelling
task. The dictionary could also be improved. For example, the structure of the
already written part of a sentence could also be considered (e.g. through language
based spelling correction). Another approach could be the implementation of the
detection of error-related potentials that could help the user to correct errors
easily. Future work should take those ideas into consideration.
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