
3Diffusion Equations

The famous diffusion equation, also known as the heat equation, reads

@u

@t
D ˛

@2u

@x2
;

where u.x; t/ is the unknown function to be solved for, x is a coordinate in space,
and t is time. The coefficient ˛ is the diffusion coefficient and determines how fast
u changes in time. A quick short form for the diffusion equation is ut D ˛uxx.

Compared to the wave equation, utt D c2uxx , which looks very similar, the
diffusion equation features solutions that are very different from those of the wave
equation. Also, the diffusion equation makes quite different demands to the numer-
ical methods.

Typical diffusion problems may experience rapid change in the very beginning,
but then the evolution of u becomes slower and slower. The solution is usually very
smooth, and after some time, one cannot recognize the initial shape of u. This is in
sharp contrast to solutions of the wave equation where the initial shape is preserved
in homogeneous media – the solution is then basically a moving initial condition.
The standard wave equation utt D c2uxx has solutions that propagate with speed
c forever, without changing shape, while the diffusion equation converges to a sta-
tionary solution Nu.x/ as t ! 1. In this limit, ut D 0, and Nu is governed by
Nu00.x/ D 0. This stationary limit of the diffusion equation is called the Laplace
equation and arises in a very wide range of applications throughout the sciences.

It is possible to solve for u.x; t/ using an explicit scheme, as we do in Sect. 3.1,
but the time step restrictions soon become much less favorable than for an explicit
scheme applied to the wave equation. And of more importance, since the solution
u of the diffusion equation is very smooth and changes slowly, small time steps are
not convenient and not required by accuracy as the diffusion process converges to a
stationary state. Therefore, implicit schemes (as described in Sect. 3.2) are popular,
but these require solutions of systems of algebraic equations. We shall use ready-
made software for this purpose, but also program some simple iterative methods.
The exposition is, as usual in this book, very basic and focuses on the basic ideas
and how to implement. More comprehensive mathematical treatments and classical
analysis of the methods are found in lots of textbooks. A favorite of ours in this
respect is the one by LeVeque [13]. The books by Strikwerda [17] and by Lapidus
and Pinder [12] are also highly recommended as additional material on the topic.
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208 3 Diffusion Equations

3.1 An Explicit Method for the 1D Diffusion Equation

Explicit finite difference methods for the wave equation utt D c2uxx can be used,
with small modifications, for solving ut D ˛uxx as well. The exposition below
assumes that the reader is familiar with the basic ideas of discretization and imple-
mentation of wave equations from Chapter 2. Readers not familiar with the Forward
Euler, Backward Euler, and Crank-Nicolson (or centered or midpoint) discretization
methods in time should consult, e.g., Section 1.1 in [9].

3.1.1 The Initial-Boundary Value Problem for 1D Diffusion

To obtain a unique solution of the diffusion equation, or equivalently, to apply nu-
merical methods, we need initial and boundary conditions. The diffusion equation
goes with one initial condition u.x; 0/ D I.x/, where I is a prescribed function.
One boundary condition is required at each point on the boundary, which in 1D
means that u must be known, ux must be known, or some combination of them.

We shall start with the simplest boundary condition: u D 0. The complete
initial-boundary value diffusion problem in one space dimension can then be spec-
ified as

@u

@t
D ˛

@2u

@x2
C f; x 2 .0; L/; t 2 .0; T � (3.1)

u.x; 0/ D I.x/; x 2 Œ0; L� (3.2)

u.0; t/ D 0; t > 0; (3.3)

u.L; t/ D 0; t > 0 : (3.4)

With only a first-order derivative in time, only one initial condition is needed, while
the second-order derivative in space leads to a demand for two boundary condi-
tions. We have added a source term f D f .x; t/, which is convenient when testing
implementations.

Diffusion equations like (3.1) have a wide range of applications throughout phys-
ical, biological, and financial sciences. One of the most common applications is
propagation of heat, where u.x; t/ represents the temperature of some substance at
point x and time t . Other applications are listed in Sect. 3.8.

3.1.2 Forward Euler Scheme

The first step in the discretization procedure is to replace the domain Œ0; L�� Œ0; T �
by a set of mesh points. Here we apply equally spaced mesh points

xi D i�x; i D 0; : : : ; Nx;

and
tn D n�t; n D 0; : : : ; Nt :

http://dx.doi.org/10.1007/978-3-319-55456-3_2
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Moreover, uni denotes the mesh function that approximates u.xi ; tn/ for i D
0; : : : ; Nx and n D 0; : : : ; Nt . Requiring the PDE (3.1) to be fulfilled at a mesh
point .xi ; tn/ leads to the equation

@

@t
u.xi ; tn/ D ˛

@2

@x2
u.xi ; tn/C f .xi ; tn/ : (3.5)

The next step is to replace the derivatives by finite difference approximations. The
computationally simplest method arises from using a forward difference in time and
a central difference in space:

ŒDC
t u D ˛DxDxuC f �ni : (3.6)

Written out,
unC1i � uni

�t
D ˛

uniC1 � 2uni C uni�1
�x2

C f ni : (3.7)

We have turned the PDE into algebraic equations, also often called discrete equa-
tions. The key property of the equations is that they are algebraic, which makes
them easy to solve. As usual, we anticipate that uni is already computed such that
unC1i is the only unknown in (3.7). Solving with respect to this unknown is easy:

unC1i D uni C F
�
uniC1 � 2uni C uni�1

�C�tf ni ; (3.8)

where we have introduced the mesh Fourier number:

F D ˛
�t

�x2
: (3.9)

F is the key parameter in the discrete diffusion equation
Note that F is a dimensionless number that lumps the key physical parameter
in the problem, ˛, and the discretization parameters �x and �t into a single
parameter. Properties of the numerical method are critically dependent upon the
value of F (see Sect. 3.3 for details).

The computational algorithm then becomes

1. compute u0i D I.xi/ for i D 0; : : : ; Nx
2. for n D 0; 1; : : : ; Nt :

(a) apply (3.8) for all the internal spatial points i D 1; : : : ; Nx � 1
(b) set the boundary values unC1i D 0 for i D 0 and i D Nx

The algorithm is compactly and fully specified in Python:

import numpy as np
x = np.linspace(0, L, Nx+1) # mesh points in space
dx = x[1] - x[0]
t = np.linspace(0, T, Nt+1) # mesh points in time
dt = t[1] - t[0]
F = a*dt/dx**2
u = np.zeros(Nx+1) # unknown u at new time level
u_n = np.zeros(Nx+1) # u at the previous time level
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# Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_n[i] = I(x[i])

for n in range(0, Nt):
# Compute u at inner mesh points
for i in range(1, Nx):

u[i] = u_n[i] + F*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
dt*f(x[i], t[n])

# Insert boundary conditions
u[0] = 0; u[Nx] = 0

# Update u_n before next step
u_n[:]= u

Note that we use a for ˛ in the code, motivated by easy visual mapping between the
variable name and the mathematical symbol in formulas.

We need to state already now that the shown algorithm does not produce mean-
ingful results unless F � 1=2. Why is explained in Sect. 3.3.

3.1.3 Implementation

The file diffu1D_u0.py contains a complete function solver_FE_simple for
solving the 1D diffusion equation with u D 0 on the boundary as specified in the
algorithm above:

import numpy as np

def solver_FE_simple(I, a, f, L, dt, F, T):
"""
Simplest expression of the computational algorithm
using the Forward Euler method and explicit Python loops.
For this method F <= 0.5 for stability.
"""
import time; t0 = time.clock() # For measuring the CPU time

Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time
dx = np.sqrt(a*dt/F)
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1) # Mesh points in space
# Make sure dx and dt are compatible with x and t
dx = x[1] - x[0]
dt = t[1] - t[0]

u = np.zeros(Nx+1)
u_n = np.zeros(Nx+1)

# Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_n[i] = I(x[i])

http://tinyurl.com/nu656p2/diffu/diffu1D_u0.py
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for n in range(0, Nt):
# Compute u at inner mesh points
for i in range(1, Nx):

u[i] = u_n[i] + F*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
dt*f(x[i], t[n])

# Insert boundary conditions
u[0] = 0; u[Nx] = 0

# Switch variables before next step
#u_n[:] = u # safe, but slow
u_n, u = u, u_n

t1 = time.clock()
return u_n, x, t, t1-t0 # u_n holds latest u

A faster alternative is available in the function solver_FE, which adds the pos-
sibility of solving the finite difference scheme by vectorization. The vectorized
version replaces the explicit loop

for i in range(1, Nx):
u[i] = u_n[i] + F*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) \

+ dt*f(x[i], t[n])

by arithmetics on displaced slices of the u array:

u[1:Nx] = u_n[1:Nx] + F*(u_n[0:Nx-1] - 2*u_n[1:Nx] + u_n[2:Nx+1]) \
+ dt*f(x[1:Nx], t[n])

# or
u[1:-1] = u_n[1:-1] + F*(u_n[0:-2] - 2*u_n[1:-1] + u_n[2:]) \

+ dt*f(x[1:-1], t[n])

For example, the vectorized version runs 70 times faster than the scalar version in a
case with 100 time steps and a spatial mesh of 105 cells.

The solver_FE function also features a callback function such that the user
can process the solution at each time level. The callback function looks like
user_action(u, x, t, n), where u is the array containing the solution at time
level n, x holds all the spatial mesh points, while t holds all the temporal mesh
points. The solver_FE function is very similar to solver_FE_simple above:

def solver_FE(I, a, f, L, dt, F, T,
user_action=None, version=’scalar’):

"""
Vectorized implementation of solver_FE_simple.
"""
import time; t0 = time.clock() # for measuring the CPU time
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Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time
dx = np.sqrt(a*dt/F)
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1) # Mesh points in space
# Make sure dx and dt are compatible with x and t
dx = x[1] - x[0]
dt = t[1] - t[0]

u = np.zeros(Nx+1) # solution array
u_n = np.zeros(Nx+1) # solution at t-dt

# Set initial condition
for i in range(0,Nx+1):

u_n[i] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)

for n in range(0, Nt):
# Update all inner points
if version == ’scalar’:

for i in range(1, Nx):
u[i] = u_n[i] +\

F*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) +\
dt*f(x[i], t[n])

elif version == ’vectorized’:
u[1:Nx] = u_n[1:Nx] + \

F*(u_n[0:Nx-1] - 2*u_n[1:Nx] + u_n[2:Nx+1]) +\
dt*f(x[1:Nx], t[n])

else:
raise ValueError(’version=%s’ % version)

# Insert boundary conditions
u[0] = 0; u[Nx] = 0
if user_action is not None:

user_action(u, x, t, n+1)

# Switch variables before next step
u_n, u = u, u_n

t1 = time.clock()
return t1-t0

3.1.4 Verification

Exact solution of discrete equations Before thinking about running the functions
in the previous section, we need to construct a suitable test example for verification.
It appears that a manufactured solution that is linear in time and at most quadratic
in space fulfills the Forward Euler scheme exactly. With the restriction that u D 0

for x D 0;L, we can try the solution

u.x; t/ D 5tx.L � x/ :
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Inserted in the PDE, it requires a source term

f .x; t/ D 10˛t C 5x.L� x/ :

With the formulas from Appendix A.4 we can easily check that the manufactured u
fulfills the scheme:

ŒDC
t u D ˛DxDxuC f �ni D Œ5x.L� x/DC

t t D 5t˛DxDx.xL � x2/
C 10˛t C 5x.L � x/�ni

D Œ5x.L� x/ D 5t˛.�2/C 10˛t C 5x.L� x/�ni ;

which is a 0=0 expression. The computation of the source term, given any u, is
easily automated with sympy:

import sympy as sym
x, t, a, L = sym.symbols(’x t a L’)
u = x*(L-x)*5*t

def pde(u):
return sym.diff(u, t) - a*sym.diff(u, x, x)

f = sym.simplify(pde(u))

Now we can choose any expression for u and automatically get the suitable source
term f. However, the manufactured solution u will in general not be exactly repro-
duced by the scheme: only constant and linear functions are differentiated correctly
by a forward difference, while only constant, linear, and quadratic functions are
differentiated exactly by a ŒDxDxu�

n
i difference.

The numerical code will need to access the u and f above as Python func-
tions. The exact solution is wanted as a Python function u_exact(x, t), while
the source term is wanted as f(x, t). The parameters a and L in u and f above
are symbols and must be replaced by float objects in a Python function. This can
be done by redefining a and L as float objects and performing substitutions of
symbols by numbers in u and f. The appropriate code looks like this:

a = 0.5
L = 1.5
u_exact = sym.lambdify(

[x, t], u.subs(’L’, L).subs(’a’, a), modules=’numpy’)
f = sym.lambdify(

[x, t], f.subs(’L’, L).subs(’a’, a), modules=’numpy’)
I = lambda x: u_exact(x, 0)

Here we also make a function I for the initial condition.
The idea now is that our manufactured solution should be exactly reproduced

by the code (to machine precision). For this purpose we make a test function for
comparing the exact and numerical solutions at the end of the time interval:
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def test_solver_FE():
# Define u_exact, f, I as explained above

dx = L/3 # 3 cells
F = 0.5
dt = F*dx**2

u, x, t, cpu = solver_FE_simple(
I=I, a=a, f=f, L=L, dt=dt, F=F, T=2)

u_e = u_exact(x, t[-1])
diff = abs(u_e - u).max()
tol = 1E-14
assert diff < tol, ’max diff solver_FE_simple: %g’ % diff

u, x, t, cpu = solver_FE(
I=I, a=a, f=f, L=L, dt=dt, F=F, T=2,
user_action=None, version=’scalar’)

u_e = u_exact(x, t[-1])
diff = abs(u_e - u).max()
tol = 1E-14
assert diff < tol, ’max diff solver_FE, scalar: %g’ % diff

u, x, t, cpu = solver_FE(
I=I, a=a, f=f, L=L, dt=dt, F=F, T=2,
user_action=None, version=’vectorized’)

u_e = u_exact(x, t[-1])
diff = abs(u_e - u).max()
tol = 1E-14
assert diff < tol, ’max diff solver_FE, vectorized: %g’ % diff

The critical valueF D 0:5

We emphasize that the value F=0.5 is critical: the tests above will fail if F has a
larger value. This is because the Forward Euler scheme is unstable for F > 1=2.

The reader may wonder if F D 1=2 is safe or if F < 1=2 should be required.
Experiments show that F D 1=2 works fine for ut D ˛uxx, so there is no
accumulation of rounding errors in this case and hence no need to introduce any
safety factor to keep F away from the limiting value 0.5.

Checking convergence rates If our chosen exact solution does not satisfy the dis-
crete equations exactly, we are left with checking the convergence rates, just as
we did previously for the wave equation. However, with the Euler scheme here,
we have different accuracies in time and space, since we use a second order ap-
proximation to the spatial derivative and a first order approximation to the time
derivative. Thus, we must expect different convergence rates in time and space. For
the numerical error,

E D Ct�t
r C Cx�x

p;

we should get convergence rates r D 1 and p D 2 (Ct and Cx are unknown con-
stants). As previously, in Sect. 2.2.3, we simplify matters by introducing a single
discretization parameter h:

h D �t; �x D Khr=p;

http://dx.doi.org/10.1007/978-3-319-55456-3_2
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where K is any constant. This allows us to factor out only one discretization pa-
rameter h from the formula:

E D CthC Cx.Kh
r=p/p D QChr ; QC D Ct C CsK

r :

The computed rate r should approach 1 with increasing resolution.
It is tempting, for simplicity, to choose K D 1, which gives �x D hr=p , ex-

pected to be
p
�t . However, we have to control the stability requirement: F � 1

2
,

which means
˛�t

�x2
� 1

2
) �x 	 p

2˛h1=2;

implying that K D p
2˛ is our choice in experiments where we lie on the stability

limit F D 1=2.

3.1.5 Numerical Experiments

When a test function like the one above runs silently without errors, we have some
evidence for a correct implementation of the numerical method. The next step is to
do some experiments with more interesting solutions.

We target a scaled diffusion problem where x=L is a new spatial coordinate and
˛t=L2 is a new time coordinate. The source term f is omitted, and u is scaled by
maxx2Œ0;L� jI.x/j (see Section 3.2 in [11] for details). The governing PDE is then

@u

@t
D @2u

@x2
;

in the spatial domain Œ0; L�, with boundary conditions u.0/ D u.1/ D 0. Two
initial conditions will be tested: a discontinuous plug,

I.x/ D
(
0; jx � L=2j > 0:1
1; otherwise

and a smooth Gaussian function,

I.x/ D e
� 1

2�2
.x�L=2/2

:

The functions plug and gaussian in diffu1D_u0.py run the two cases, respec-
tively:

def plug(scheme=’FE’, F=0.5, Nx=50):
L = 1.
a = 1.
T = 0.1
# Compute dt from Nx and F
dx = L/Nx; dt = F/a*dx**2

http://tinyurl.com/nu656p2/diffu/diffu1D_u0.py
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def I(x):
"""Plug profile as initial condition."""
if abs(x-L/2.0) > 0.1:

return 0
else:

return 1

cpu = viz(I, a, L, dt, F, T,
umin=-0.1, umax=1.1,
scheme=scheme, animate=True, framefiles=True)

print ’CPU time:’, cpu

def gaussian(scheme=’FE’, F=0.5, Nx=50, sigma=0.05):
L = 1.
a = 1.
T = 0.1
# Compute dt from Nx and F
dx = L/Nx; dt = F/a*dx**2

def I(x):
"""Gaussian profile as initial condition."""
return exp(-0.5*((x-L/2.0)**2)/sigma**2)

u, cpu = viz(I, a, L, dt, F, T,
umin=-0.1, umax=1.1,
scheme=scheme, animate=True, framefiles=True)

print ’CPU time:’, cpu

These functions make use of the function viz for running the solver and visualizing
the solution using a callback function with plotting:

def viz(I, a, L, dt, F, T, umin, umax,
scheme=’FE’, animate=True, framefiles=True):

def plot_u(u, x, t, n):
plt.plot(x, u, ’r-’, axis=[0, L, umin, umax],

title=’t=%f’ % t[n])
if framefiles:

plt.savefig(’tmp_frame%04d.png’ % n)
if t[n] == 0:

time.sleep(2)
elif not framefiles:

# It takes time to write files so pause is needed
# for screen only animation
time.sleep(0.2)

user_action = plot_u if animate else lambda u,x,t,n: None

cpu = eval(’solver_’+scheme)(I, a, L, dt, F, T,
user_action=user_action)

return cpu

Notice that this viz function stores all the solutions in a list solutions in the
callback function. Modern computers have hardly any problem with storing a lot
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Fig. 3.1 Forward Euler scheme for F D 0:5

of such solutions for moderate values of Nx in 1D problems, but for 2D and 3D
problems, this technique cannot be used and solutions must be stored in files.

Our experiments employ a time step �t D 0:0002 and simulate for t 2 Œ0; 0:1�.
First we try the highest value of F : F D 0:5. This resolution corresponds to
Nx D 50. A possible terminal command is

Terminal

Terminal> python -c ’from diffu1D_u0 import gaussian
gaussian("solver_FE", F=0.5, dt=0.0002)’

The u.x; t/ curve as a function of x is shown in Fig. 3.1 at four time levels.

Movie 1 https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/pub/book/html/
mov-diffu/diffu1D_u0_FE_plug/movie.ogg

We see that the curves have saw-tooth waves in the beginning of the simulation.
This non-physical noise is smoothed out with time, but solutions of the diffusion
equations are known to be smooth, and this numerical solution is definitely not
smooth. Lowering F helps: F � 0:25 gives a smooth solution, see Fig. 3.2 (and
a movie1).

1 http://tinyurl.com/gokgkov/mov-diffu/diffu1D_u0_FE_plug_F025/movie.ogg

https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/pub/book/html/mov-diffu/diffu1D_u0_FE_plug/movie.ogg
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/pub/book/html/mov-diffu/diffu1D_u0_FE_plug/movie.ogg
http://tinyurl.com/gokgkov/mov-diffu/diffu1D_u0_FE_plug_F025/movie.ogg
http://tinyurl.com/gokgkov/mov-diffu/diffu1D_u0_FE_plug_F025/movie.ogg
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Fig. 3.2 Forward Euler scheme for F D 0:25

Increasing F slightly beyond the limit 0.5, to F D 0:51, gives growing, non-
physical instabilities, as seen in Fig. 3.3.

Instead of a discontinuous initial condition we now try the smooth Gaussian
function for I.x/. A simulation for F D 0:5 is shown in Fig. 3.4. Now the numeri-
cal solution is smooth for all times, and this is true for any F � 0:5.

Experiments with these two choices of I.x/ reveal some important observations:

� The Forward Euler scheme leads to growing solutions if F > 1
2
.

� I.x/ as a discontinuous plug leads to a saw tooth-like noise for F D 1
2
, which is

absent for F � 1
4
.

� The smooth Gaussian initial function leads to a smooth solution for all relevant
F values (F � 1

2
).

3.2 Implicit Methods for the 1D Diffusion Equation

Simulations with the Forward Euler scheme show that the time step restriction,
F � 1

2
, which means �t � �x2=.2˛/, may be relevant in the beginning of the

diffusion process, when the solution changes quite fast, but as time increases, the
process slows down, and a small �t may be inconvenient. With implicit schemes,
which lead to coupled systems of linear equations to be solved at each time level,
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Fig. 3.3 Forward Euler scheme for F D 0:51

any size of �t is possible (but the accuracy decreases with increasing �t). The
Backward Euler scheme, derived and implemented below, is the simplest implicit
scheme for the diffusion equation.

3.2.1 Backward Euler Scheme

In (3.5), we now apply a backward difference in time, but the same central differ-
ence in space:

ŒD�
t u D DxDxuC f �ni ; (3.10)

which written out reads

uni � un�1i

�t
D ˛

uniC1 � 2uni C uni�1
�x2

C f ni : (3.11)

Now we assume un�1i is already computed, but that all quantities at the “new” time
level n are unknown. This time it is not possible to solve with respect to uni because
this value couples to its neighbors in space, uni�1 and u

n
iC1, which are also unknown.

Let us examine this fact for the case when Nx D 3. Equation (3.11) written for
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Fig. 3.4 Forward Euler scheme for F D 0:5

i D 1; : : : ; Nx � 1 D 1; 2 becomes

un1 � un�11

�t
D ˛

un2 � 2un1 C un0
�x2

C f n
1 (3.12)

un2 � un�12

�t
D ˛

un3 � 2un2 C un1
�x2

C f n
2 : (3.13)

The boundary values un0 and un3 are known as zero. Collecting the unknown new
values un1 and u

n
2 on the left-hand side and multiplying by �t gives

.1C 2F / un1 � Fun2 D un�11 C�tf n1 ; (3.14)

�Fun1 C .1C 2F / un2 D un�12 C�tf n2 : (3.15)

This is a coupled 2 � 2 system of algebraic equations for the unknowns un1 and u
n
2 .

The equivalent matrix form is 
1C 2F �F
�F 1C 2F

! 
un1
un2

!
D
 
un�11 C�tf n1
un�12 C�tf n2

!
:

Terminology: implicit vs. explicit methods
Discretization methods that lead to a coupled system of equations for the un-
known function at a new time level are said to be implicit methods. The coun-
terpart, explicit methods, refers to discretization methods where there is a simple
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explicit formula for the values of the unknown function at each of the spatial
mesh points at the new time level. From an implementational point of view, im-
plicit methods are more comprehensive to code since they require the solution of
coupled equations, i.e., a matrix system, at each time level. With explicit meth-
ods we have a closed-form formula for the value of the unknown at each mesh
point.

Very often explicit schemes have a restriction on the size of the time step
that can be relaxed by using implicit schemes. In fact, implicit schemes are
frequently unconditionally stable, so the size of the time step is governed by
accuracy and not by stability. This is the great advantage of implicit schemes.

In the general case, (3.11) gives rise to a coupled .Nx � 1/ � .Nx � 1/ system
of algebraic equations for all the unknown uni at the interior spatial points i D
1; : : : ; Nx � 1. Collecting the unknowns on the left-hand side, (3.11) can be written

� Funi�1 C .1C 2F / uni � FuniC1 D un�1i�1 ; (3.16)

for i D 1; : : : ; Nx � 1. One can either view these equations as a system where the
uni values at the internal mesh points, i D 1; : : : ; Nx � 1, are unknown, or we may
append the boundary values un0 and u

n
Nx

to the system. In the latter case, all uni for
i D 0; : : : ; Nx are considered unknown, and we must add the boundary equations
to the Nx � 1 equations in (3.16):

un0 D 0; (3.17)

unNx D 0 : (3.18)

A coupled system of algebraic equations can be written on matrix form, and this
is important if we want to call up ready-made software for solving the system. The
equations (3.16) and (3.17)–(3.18) correspond to the matrix equation

AU D b

where U D .un0; : : : ; u
n
Nx
/, and the matrix A has the following structure:

A D

0
BBBBBBBBBBBBBBBBBBBBB@

A0;0 A0;1 0 � � � � � � � � � � � � � � � 0

A1;0 A1;1 A1;2
: : :

:::

0 A2;1 A2;2 A2;3
: : :

:::
:::

: : :
: : :

: : : 0
:::

:::
: : :

: : :
: : :

: : :
: : :

:::
::: 0 Ai;i�1 Ai;i Ai;iC1

: : :
:::

:::
: : :

: : :
: : :

: : : 0
:::

: : :
: : :

: : : ANx�1;Nx
0 � � � � � � � � � � � � � � � 0 ANx;Nx�1 ANx;Nx

1
CCCCCCCCCCCCCCCCCCCCCA

:

(3.19)
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The nonzero elements are given by

Ai;i�1 D �F (3.20)

Ai;i D 1C 2F (3.21)

Ai;iC1 D �F (3.22)

in the equations for internal points, i D 1; : : : ; Nx � 1. The first and last equation
correspond to the boundary condition, where we know the solution, and therefore
we must have

A0;0 D 1; (3.23)

A0;1 D 0; (3.24)

ANx;Nx�1 D 0; (3.25)

ANx;Nx D 1 : (3.26)

The right-hand side b is written as

b D

0
BBBBBBBBBB@

b0

b1
:::

bi
:::

bNx

1
CCCCCCCCCCA

(3.27)

with

b0 D 0; (3.28)

bi D un�1i ; i D 1; : : : ; Nx � 1; (3.29)

bNx D 0 : (3.30)

We observe that the matrix A contains quantities that do not change in time.
Therefore, A can be formed once and for all before we enter the recursive formulas
for the time evolution. The right-hand side b, however, must be updated at each
time step. This leads to the following computational algorithm, here sketched with
Python code:

x = np.linspace(0, L, Nx+1) # mesh points in space
dx = x[1] - x[0]
t = np.linspace(0, T, N+1) # mesh points in time
u = np.zeros(Nx+1) # unknown u at new time level
u_n = np.zeros(Nx+1) # u at the previous time level
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# Data structures for the linear system
A = np.zeros((Nx+1, Nx+1))
b = np.zeros(Nx+1)

for i in range(1, Nx):
A[i,i-1] = -F
A[i,i+1] = -F
A[i,i] = 1 + 2*F

A[0,0] = A[Nx,Nx] = 1

# Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_n[i] = I(x[i])

import scipy.linalg

for n in range(0, Nt):
# Compute b and solve linear system
for i in range(1, Nx):

b[i] = -u_n[i]
b[0] = b[Nx] = 0
u[:] = scipy.linalg.solve(A, b)

# Update u_n before next step
u_n[:] = u

Regarding verification, the same considerations apply as for the Forward Euler
method (Sect. 3.1.4).

3.2.2 Sparse Matrix Implementation

We have seen from (3.19) that the matrix A is tridiagonal. The code segment above
used a full, dense matrix representation of A, which stores a lot of values we know
are zero beforehand, and worse, the solution algorithm computes with all these
zeros. With Nx C 1 unknowns, the work by the solution algorithm is 1

3
.Nx C 1/3

and the storage requirements .Nx C 1/2. By utilizing the fact that A is tridiagonal
and employing corresponding software tools that work with the three diagonals, the
work and storage demands can be proportional to Nx only. This leads to a dramatic
improvement: with Nx D 200, which is a realistic resolution, the code runs about
40,000 times faster and reduces the storage to just 1.5%! It is no doubt that we
should take advantage of the fact that A is tridiagonal.

The key idea is to apply a data structure for a tridiagonal or sparse matrix. The
scipy.sparse package has relevant utilities. For example, we can store only the
nonzero diagonals of a matrix. The package also has linear system solvers that
operate on sparse matrix data structures. The code below illustrates how we can
store only the main diagonal and the upper and lower diagonals.
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# Representation of sparse matrix and right-hand side
main = np.zeros(Nx+1)
lower = np.zeros(Nx)
upper = np.zeros(Nx)
b = np.zeros(Nx+1)

# Precompute sparse matrix
main[:] = 1 + 2*F
lower[:] = -F
upper[:] = -F
# Insert boundary conditions
main[0] = 1
main[Nx] = 1

A = scipy.sparse.diags(
diagonals=[main, lower, upper],
offsets=[0, -1, 1], shape=(Nx+1, Nx+1),
format=’csr’)

print A.todense() # Check that A is correct

# Set initial condition
for i in range(0,Nx+1):

u_n[i] = I(x[i])

for n in range(0, Nt):
b = u_n
b[0] = b[-1] = 0.0 # boundary conditions
u[:] = scipy.sparse.linalg.spsolve(A, b)
u_n[:] = u

The scipy.sparse.linalg.spsolve function utilizes the sparse storage struc-
ture of A and performs, in this case, a very efficient Gaussian elimination solve.

The program diffu1D_u0.py contains a function solver_BE, which imple-
ments the Backward Euler scheme sketched above. As mentioned in Sect. 3.1.2,
the functions plug and gaussian run the case with I.x/ as a discontinuous plug or
a smooth Gaussian function. All experiments point to two characteristic features of
the Backward Euler scheme: 1) it is always stable, and 2) it always gives a smooth,
decaying solution.

3.2.3 Crank-Nicolson Scheme

The idea in the Crank-Nicolson scheme is to apply centered differences in space
and time, combined with an average in time. We demand the PDE to be fulfilled at
the spatial mesh points, but midway between the points in the time mesh:

@

@t
u
�
xi ; tnC 1

2

�
D ˛

@2

@x2
u
�
xi ; tnC 1

2

�
C f

�
xi ; tnC 1

2

�
;

for i D 1; : : : ; Nx � 1 and n D 0; : : : ; Nt � 1.
With centered differences in space and time, we get

ŒDtu D ˛DxDxuC f �
nC 1

2

i :

http://tinyurl.com/nu656p2/diffu/diffu1D_u0.py
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On the right-hand side we get an expression

1

�x2

�
u
nC 1

2

i�1 � 2unC 1
2

i C u
nC 1

2

iC1

�
C f

nC 1
2

i :

This expression is problematic since u
nC 1

2

i is not one of the unknowns we compute.

A possibility is to replace u
nC 1

2

i by an arithmetic average:

u
nC 1

2

i � 1

2

�
uni C unC1i

�
:

In the compact notation, we can use the arithmetic average notation ut :

ŒDtu D ˛DxDxu
t C f �

nC 1
2

i :

We can also use an average for f
nC 1

2

i :

ŒDtu D ˛DxDxu
t C f

t
�
nC 1

2

i :

After writing out the differences and average, multiplying by �t , and collecting
all unknown terms on the left-hand side, we get

unC1i � 1

2
F
�
unC1i�1 � 2unC1i C unC1iC1

� D uni C
1

2
F
�
uni�1 � 2uni C uniC1

�

C 1

2
f nC1i C 1

2
f ni : (3.31)

Also here, as in the Backward Euler scheme, the new unknowns unC1i�1 , u
nC1
i , and

unC1iC1 are coupled in a linear system AU D b, where A has the same structure as in
(3.19), but with slightly different entries:

Ai;i�1 D �1
2
F (3.32)

Ai;i D 1C F (3.33)

Ai;iC1 D �1
2
F (3.34)

in the equations for internal points, i D 1; : : : ; Nx � 1. The equations for the
boundary points correspond to

A0;0 D 1; (3.35)

A0;1 D 0; (3.36)

ANx;Nx�1 D 0; (3.37)

ANx;Nx D 1 : (3.38)
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The right-hand side b has entries

b0 D 0; (3.39)

bi D un�1i C 1

2

�
f n
i C f nC1i

�
; i D 1; : : : ; Nx � 1; (3.40)

bNx D 0 : (3.41)

When verifying some implementation of the Crank-Nicolson scheme by conver-
gence rate testing, one should note that the scheme is second order accurate in both
space and time. The numerical error then reads

E D Ct�t
r C Cx�x

r ;

where r D 2 (Ct and Cx are unknown constants, as before). When introducing a
single discretization parameter, we may now simply choose

h D �x D �t;

which gives
E D Cth

r C Cxh
r D .Ct C Cx/h

r ;

where r should approach 2 as resolution is increased in the convergence rate com-
putations.

3.2.4 The Unifying � Rule

For the equation
@u

@t
D G.u/;

where G.u/ is some spatial differential operator, the �-rule looks like

unC1i � uni
�t

D �G.unC1i /C .1 � �/G.uni / :

The important feature of this time discretization scheme is that we can implement
one formula and then generate a family of well-known and widely used schemes:

� � D 0 gives the Forward Euler scheme in time
� � D 1 gives the Backward Euler scheme in time
� � D 1

2
gives the Crank-Nicolson scheme in time

In the compact difference notation, we write the � rule as

ŒDtu D ˛DxDxu�
nC� :

We have that tnC� D � tnC1 C .1 � �/tn.
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Applied to the 1D diffusion problem, the �-rule gives

unC1i � uni
�t

D ˛

 
�
unC1iC1 � 2unC1i C unC1i�1

�x2
C .1 � �/u

n
iC1 � 2uni C uni�1

�x2

!

C �f nC1i C .1 � �/f n
i :

This scheme also leads to a matrix system with entries

Ai;i�1 D �F�; Ai;i D 1C 2F�; Ai;iC1 D �F�;

while right-hand side entry bi is

bi D uni C F.1 � �/u
n
iC1 � 2uni C uni�1

�x2
C�t�f nC1i C�t.1 � �/f n

i :

The corresponding entries for the boundary points are as in the Backward Euler and
Crank-Nicolson schemes listed earlier.

Note that convergence rate testing with implementations of the theta rule must
adjust the error expression according to which of the underlying schemes is ac-
tually being run. That is, if � D 0 (i.e., Forward Euler) or � D 1 (i.e., Back-
ward Euler), there should be first order convergence, whereas with � D 0:5 (i.e.,
Crank-Nicolson), one should get second order convergence (as outlined in previous
sections).

3.2.5 Experiments

We can repeat the experiments from Sect. 3.1.5 to see if the Backward Euler or
Crank-Nicolson schemes have problems with sawtooth-like noise when starting
with a discontinuous initial condition. We can also verify that we can have F > 1

2
,

which allows larger time steps than in the Forward Euler method.
The Backward Euler scheme always produces smooth solutions for any F . Fig-

ure 3.5 shows one example. Note that the mathematical discontinuity at t D 0 leads
to a linear variation on a mesh, but the approximation to a jump becomes better as
Nx increases. In our simulation, we specify�t and F , and set Nx to L=

p
˛�t=F .

SinceNx �
p
F , the discontinuity looks sharper in the Crank-Nicolson simulations

with larger F .
The Crank-Nicolson method produces smooth solutions for small F , F � 1

2
,

but small noise gets more and more evident as F increases. Figures 3.6 and 3.7
demonstrate the effect for F D 3 and F D 10, respectively. Section 3.3 explains
why such noise occur.

3.2.6 The Laplace and Poisson Equation

The Laplace equation, r2u D 0, and the Poisson equation, �r2u D f , occur in
numerous applications throughout science and engineering. In 1D these equations
read u00.x/ D 0 and �u00.x/ D f .x/, respectively. We can solve 1D variants of the
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Fig. 3.5 Backward Euler scheme for F D 0:5

Laplace equations with the listed software, because we can interpret uxx D 0 as the
limiting solution of ut D ˛uxx when u reaches a steady state limit where ut ! 0.
Similarly, Poisson’s equation �uxx D f arises from solving ut D uxx C f and
letting t ! 1 so ut ! 0.

Technically in a program, we can simulate t ! 1 by just taking one large time
step: �t ! 1. In the limit, the Backward Euler scheme gives

�u
nC1
iC1 � 2unC1i C unC1i�1

�x2
D f nC1

i ;

which is nothing but the discretization Œ�DxDxu D f �nC1i D 0 of �uxx D f .
The result above means that the Backward Euler scheme can solve the limit

equation directly and hence produce a solution of the 1D Laplace equation. With
the Forward Euler scheme we must do the time stepping since �t > �x2=˛ is
illegal and leads to instability. We may interpret this time stepping as solving the
equation system from �uxx D f by iterating on a pseudo time variable.
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Fig. 3.6 Crank-Nicolson scheme for F D 3

3.3 Analysis of Schemes for the Diffusion Equation

The numerical experiments in Sect. 3.1.5 and 3.2.5 reveal that there are some nu-
merical problems with the Forward Euler and Crank-Nicolson schemes: sawtooth-
like noise is sometimes present in solutions that are, from a mathematical point of
view, expected to be smooth. This section presents a mathematical analysis that
explains the observed behavior and arrives at criteria for obtaining numerical solu-
tions that reproduce the qualitative properties of the exact solutions. In short, we
shall explain what is observed in Fig. 3.1–3.7.

3.3.1 Properties of the Solution

A particular characteristic of diffusive processes, governed by an equation like

ut D ˛uxx; (3.42)

is that the initial shape u.x; 0/ D I.x/ spreads out in space with time, along with
a decaying amplitude. Three different examples will illustrate the spreading of u in
space and the decay in time.



230 3 Diffusion Equations

Fig. 3.7 Crank-Nicolson scheme for F D 10

Similarity solution The diffusion equation (3.42) admits solutions that depend on
� D .x � c/=p4˛t for a given value of c. One particular solution is

u.x; t/ D a erf.�/C b; (3.43)

where

erf.�/ D 2p
�

�Z
0

e��
2

d�; (3.44)

is the error function, and a and b are arbitrary constants. The error function lies in
.�1; 1/, is odd around � D 0, and goes relatively quickly to ˙1:

lim
�!�1 erf.�/ D �1;
lim
�!1 erf.�/ D 1;

erf.�/ D �erf.��/;
erf.0/ D 0;

erf.2/ D 0:99532227;

erf.3/ D 0:99997791 :
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As t ! 0, the error function approaches a step function centered at x D c. For
a diffusion problem posed on the unit interval Œ0; 1�, we may choose the step at
x D 1=2 (meaning c D 1=2), a D �1=2, b D 1=2. Then

u.x; t/ D 1

2

 
1 � erf

 
x � 1

2p
4˛t

!!
D 1

2
erfc

 
x � 1

2p
4˛t

!
; (3.45)

where we have introduced the complementary error function erfc.�/ D 1 � erf.�/.
The solution (3.45) implies the boundary conditions

u.0; t/ D 1

2

�
1 � erf

� �1=2p
4˛t

��
; (3.46)

u.1; t/ D 1

2

�
1 � erf

�
1=2p
4˛t

��
: (3.47)

For small enough t , u.0; t/ � 1 and u.1; t/ � 0, but as t ! 1, u.x; t/! 1=2 on
Œ0; 1�.

Solution for a Gaussian pulse The standard diffusion equation ut D ˛uxx admits
a Gaussian function as solution:

u.x; t/ D 1p
4�˛t

exp

�
� .x � c/2

4˛t

�
: (3.48)

At t D 0 this is a Dirac delta function, so for computational purposes one must start
to view the solution at some time t D t
 > 0. Replacing t by t
 C t in (3.48) makes
it easy to operate with a (new) t that starts at t D 0 with an initial condition with
a finite width. The important feature of (3.48) is that the standard deviation � of a
sharp initial Gaussian pulse increases in time according to � D p

2˛t , making the
pulse diffuse and flatten out.

Solution for a sine component Also, (3.42) admits a solution of the form

u.x; t/ D Qe�at sin .kx/ : (3.49)

The parametersQ and k can be freely chosen, while inserting (3.49) in (3.42) gives
the constraint

a D �˛k2 :
A very important feature is that the initial shape I.x/ D Q sin .kx/ undergoes a
damping exp .�˛k2t/, meaning that rapid oscillations in space, corresponding to
large k, are very much faster dampened than slow oscillations in space, correspond-
ing to small k. This feature leads to a smoothing of the initial condition with time.
(In fact, one can use a few steps of the diffusion equation as a method for removing
noise in signal processing.) To judge how good a numerical method is, we may look
at its ability to smoothen or dampen the solution in the same way as the PDE does.
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Fig. 3.8 Evolution of the solution of a diffusion problem: initial condition (upper left), 1/100
reduction of the small waves (upper right), 1/10 reduction of the long wave (lower left), and 1/100
reduction of the long wave (lower right)

The following example illustrates the damping properties of (3.49). We consider
the specific problem

ut D uxx; x 2 .0; 1/; t 2 .0; T �;
u.0; t/ D u.1; t/ D 0; t 2 .0; T �;
u.x; 0/ D sin.�x/C 0:1 sin.100�x/ :

The initial condition has been chosen such that adding two solutions like (3.49)
constructs an analytical solution to the problem:

u.x; t/ D e��
2t sin.�x/C 0:1e��

2104t sin.100�x/ : (3.50)

Figure 3.8 illustrates the rapid damping of rapid oscillations sin.100�x/ and the
very much slower damping of the slowly varying sin.�x/ term. After about t D
0:5 � 10�4 the rapid oscillations do not have a visible amplitude, while we have to
wait until t � 0:5 before the amplitude of the long wave sin.�x/ becomes very
small.



3.3 Analysis of Schemes for the Diffusion Equation 233

3.3.2 Analysis of Discrete Equations

A counterpart to (3.49) is the complex representation of the same function:

u.x; t/ D Qe�at eikx;

where i D p�1 is the imaginary unit. We can add such functions, often referred to
as wave components, to make a Fourier representation of a general solution of the
diffusion equation:

u.x; t/ �
X
k2K

bke
�˛k2t eikx; (3.51)

where K is a set of an infinite number of k values needed to construct the solution.
In practice, however, the series is truncated and K is a finite set of k values needed
to build a good approximate solution. Note that (3.50) is a special case of (3.51)
where K D f�; 100�g, b� D 1, and b100� D 0:1.

The amplitudes bk of the individual Fourier waves must be determined from the
initial condition. At t D 0 we have u � P

k bk exp .ikx/ and find K and bk such
that

I.x/ �
X
k2K

bke
ikx : (3.52)

(The relevant formulas for bk come from Fourier analysis, or equivalently, a least-
squares method for approximating I.x/ in a function space with basis exp .ikx/.)

Much insight about the behavior of numerical methods can be obtained by inves-
tigating how a wave component exp .�˛k2t/ exp .ikx/ is treated by the numerical
scheme. It appears that such wave components are also solutions of the schemes,
but the damping factor exp .�˛k2t/ varies among the schemes. To ease the forth-
coming algebra, we write the damping factor as An. The exact amplification factor
corresponding to A is Ae D exp .�˛k2�t/.

3.3.3 Analysis of the Finite Difference Schemes

We have seen that a general solution of the diffusion equation can be built as a linear
combination of basic components

e�˛k
2t eikx :

A fundamental question is whether such components are also solutions of the finite
difference schemes. This is indeed the case, but the amplitude exp .�˛k2t/ might
be modified (which also happens when solving the ODE counterpart u0 D �˛u).
We therefore look for numerical solutions of the form

unq D Aneikq�x D Aneikx; (3.53)

where the amplification factor A must be determined by inserting the component
into an actual scheme. Note that An means A raised to the power of n, n being the
index in the time mesh, while the superscript n in unq just denotes u at time tn.
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Stability The exact amplification factor isAe D exp .�˛2k2�t/. We should there-
fore require jAj < 1 to have a decaying numerical solution as well. If �1 � A < 0,
An will change sign from time level to time level, and we get stable, non-physical
oscillations in the numerical solutions that are not present in the exact solution.

Accuracy To determine how accurately a finite difference scheme treats one wave
component (3.53), we see that the basic deviation from the exact solution is reflected
in how well An approximates Ane, or how well A approximates Ae. We can plot Ae
and the various expressions for A, and we can make Taylor expansions of A=Ae to
see the error more analytically.

Truncation error As an alternative to examining the accuracy of the damping of
a wave component, we can perform a general truncation error analysis as explained
in Appendix B. Such results are more general, but less detailed than what we get
from the wave component analysis. The truncation error can almost always be
computed and represents the error in the numerical model when the exact solution
is substituted into the equations. In particular, the truncation error analysis tells
the order of the scheme, which is of fundamental importance when verifying codes
based on empirical estimation of convergence rates.

3.3.4 Analysis of the Forward Euler Scheme

The Forward Euler finite difference scheme for ut D ˛uxx can be written as

ŒDC
t u D ˛DxDxu�

n
q :

Inserting a wave component (3.53) in the scheme demands calculating the terms

eikq�xŒDC
t A�

n D eikq�xAn
A � 1
�t

;

and

AnDxDxŒe
ikx�q D An

�
�eikq�x 4

�x2
sin2

�
k�x

2

��
:

Inserting these terms in the discrete equation and dividing by Aneikq�x leads to

A� 1
�t

D �˛ 4

�x2
sin2

�
k�x

2

�
;

and consequently
A D 1 � 4F sin2 p (3.54)

where

F D ˛�t

�x2
(3.55)

is the numerical Fourier number, and p D k�x=2. The complete numerical solu-
tion is then

unq D
�
1 � 4F sin2 p

�n
eikq�x : (3.56)
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Stability We easily see that A � 1. However, the A can be less than �1, which
will lead to growth of a numerical wave component. The criterion A 	 �1 implies

4F sin2.p=2/ � 2 :

The worst case is when sin2.p=2/ D 1, so a sufficient criterion for stability is

F � 1

2
; (3.57)

or expressed as a condition on �t :

�t � �x2

2˛
: (3.58)

Note that halving the spatial mesh size, �x ! 1
2
�x, requires�t to be reduced by

a factor of 1=4. The method hence becomes very expensive for fine spatial meshes.

Accuracy Since A is expressed in terms of F and the parameter we now call p D
k�x=2, we should also express Ae by F and p. The exponent in Ae is �˛k2�t ,
which equals �Fk2�x2 D �F 4p2. Consequently,

Ae D exp .�˛k2�t/ D exp .�4Fp2/ :

All our A expressions as well as Ae are now functions of the two dimensionless
parameters F and p.

Computing the Taylor series expansion ofA=Ae in terms of F can easily be done
with aid of sympy:

def A_exact(F, p):
return exp(-4*F*p**2)

def A_FE(F, p):
return 1 - 4*F*sin(p)**2

from sympy import *
F, p = symbols(’F p’)
A_err_FE = A_FE(F, p)/A_exact(F, p)
print A_err_FE.series(F, 0, 6)

The result is

A

Ae
D 1 � 4F sin2 p C 2Fp2 � 16F 2p2 sin2 p C 8F 2p4 C � � �

Recalling that F D ˛�t=�x2, p D k�x=2, and that sin2 p � 1, we realize that
the dominating terms in A=Ae are at most

1 � 4˛ �t
�x2

C ˛�t � 4˛2�t2 C ˛2�t2�x2 C � � � :
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Truncation error We follow the theory explained in Appendix B. The recipe is to
set up the scheme in operator notation and use formulas from Appendix B.2.4 to de-
rive an expression for the residual. The details are documented in Appendix B.6.1.
We end up with a truncation error

Rni D O.�t/CO.�x2/ :

Although this is not the true error ue.xi ; tn/ � uni , it indicates that the true error is
of the form

E D Ct�t C Cx�x
2

for two unknown constants Ct and Cx .

3.3.5 Analysis of the Backward Euler Scheme

Discretizing ut D ˛uxx by a Backward Euler scheme,

ŒD�
t u D ˛DxDxu�

n
q;

and inserting a wave component (3.53), leads to calculations similar to those arising
from the Forward Euler scheme, but since

eikq�xŒD�
t A�

n D Aneikq�x
1 � A�1

�t
;

we get
1 � A�1

�t
D �˛ 4

�x2
sin2

�
k�x

2

�
;

and then
A D �

1C 4F sin2 p
��1

: (3.59)

The complete numerical solution can be written

unq D
�
1C 4F sin2 p

��n
eikq�x : (3.60)

Stability We see from (3.59) that 0 < A < 1, which means that all numerical wave
components are stable and non-oscillatory for any �t > 0.

Truncation error The derivation of the truncation error for the Backward Euler
scheme is almost identical to that for the Forward Euler scheme. We end up with

Rni D O.�t/CO.�x2/ :
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3.3.6 Analysis of the Crank-Nicolson Scheme

The Crank-Nicolson scheme can be written as

ŒDtu D ˛DxDxu
x�
nC 1

2
q ;

or

ŒDtu�
nC 1

2
q D 1

2
˛
�
ŒDxDxu�

n
q C ŒDxDxu�

nC1
q

�
:

Inserting (3.53) in the time derivative approximation leads to

ŒDtA
neikq�x�nC

1
2 D AnC

1
2 eikq�x

A
1
2 � A� 1

2

�t
D Aneikq�x

A � 1
�t

:

Inserting (3.53) in the other terms and dividing by Aneikq�x gives the relation

A � 1
�t

D �1
2
˛
4

�x2
sin2

�
k�x

2

�
.1C A/;

and after some more algebra,

A D 1 � 2F sin2 p

1C 2F sin2 p
: (3.61)

The exact numerical solution is hence

unq D
 
1 � 2F sin2 p

1C 2F sin2 p

!n
eikq�x : (3.62)

Stability The criteria A > �1 and A < 1 are fulfilled for any �t > 0. Therefore,
the solution cannot grow, but it will oscillate if 1 � 2F sinp < 0. To avoid such
non-physical oscillations, we must demand F � 1

2
.

Truncation error The truncation error is derived in Appendix B.6.1:

R
nC 1

2

i D O.�x2/CO.�t2/ :

3.3.7 Analysis of the Leapfrog Scheme

An attractive feature of the Forward Euler scheme is the explicit time stepping and
no need for solving linear systems. However, the accuracy in time is only O.�t/.
We can get an explicit second-order scheme in time by using the Leapfrog method:

ŒD2tu D ˛DxDxuC f �nq :

Written out,

unC1q D un�1q C 2˛�t

�x2

�
unqC1 � 2unq C unq�1

�
C f .xq; tn/ :
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Fig. 3.9 Amplification factors for large time steps

We need some formula for the first step, u1q , but for that we can use a Forward Euler
step.

Unfortunately, the Leapfrog scheme is always unstable for the diffusion equa-
tion. To see this, we insert a wave component Aneikx and get

A� A�1

�t
D �˛ 4

�x2
sin2 p;

or
A2 C 4F sin2 p A� 1 D 0;

which has roots

A D �2F sin2 p ˙
q
4F 2 sin4 p C 1 :

Both roots have jAj > 1 so the amplitude always grows, which is not in accordance
with the physics of the problem. However, for a PDE with a first-order derivative
in space, instead of a second-order one, the Leapfrog scheme performs very well.
Details are provided in Sect. 4.1.3.

3.3.8 Summary of Accuracy of Amplification Factors

We can plot the various amplification factors against p D k�x=2 for different
choices of the F parameter. Figures 3.9, 3.10, and 3.11 show how long and small
waves are damped by the various schemes compared to the exact damping. As
long as all schemes are stable, the amplification factor is positive, except for Crank-
Nicolson when F > 0:5.

The effect of negative amplification factors is that An changes sign from one
time level to the next, thereby giving rise to oscillations in time in an animation of
the solution. We see from Fig. 3.9 that for F D 20, waves with p 	 �=4 undergo
a damping close to �1, which means that the amplitude does not decay and that the
wave component jumps up and down (flips amplitude) in time. For F D 2 we have
a damping of a factor of 0.5 from one time level to the next, which is very much
smaller than the exact damping. Short waves will therefore fail to be effectively

http://dx.doi.org/10.1007/978-3-319-55456-3_4


3.3 Analysis of Schemes for the Diffusion Equation 239

Fig. 3.10 Amplification factors for time steps around the Forward Euler stability limit

Fig. 3.11 Amplification factors for small time steps

dampened. These waves will manifest themselves as high frequency oscillatory
noise in the solution.

A value p D �=4 corresponds to four mesh points per wave length of eikx , while
p D �=2 implies only two points per wave length, which is the smallest number of
points we can have to represent the wave on the mesh.

To demonstrate the oscillatory behavior of the Crank-Nicolson scheme, we
choose an initial condition that leads to short waves with significant amplitude. A
discontinuous I.x/ will in particular serve this purpose: Figures 3.6 and 3.7 corre-
spond to F D 3 and F D 10, respectively, and we see how short waves pollute the
overall solution.

3.3.9 Analysis of the 2D Diffusion Equation

Diffusion in several dimensions is treated later, but it is appropriate to include the
analysis here. We first consider the 2D diffusion equation

ut D ˛.uxx C uyy/;
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which has Fourier component solutions of the form

u.x; y; t/ D Ae�˛k
2t ei.kxxCkyy/;

and the schemes have discrete versions of this Fourier component:

unq;r D A�nei.kxq�xCkyr�y/ :

The Forward Euler scheme For the Forward Euler discretization,

ŒDC
t u D ˛.DxDxuCDyDyu/�

n
q;r ;

we get
� � 1
�t

D �˛ 4

�x2
sin2

�
kx�x

2

�
� ˛ 4

�y2
sin2

�
ky�y

2

�
:

Introducing

px D kx�x

2
; py D ky�y

2
;

we can write the equation for � more compactly as

� � 1
�t

D �˛ 4

�x2
sin2 px � ˛ 4

�y2
sin2 py;

and solve for �:
� D 1 � 4Fx sin2 px � 4Fy sin2 py : (3.63)

The complete numerical solution for a wave component is

unq;r D A.1 � 4Fx sin2 px � 4Fy sin2 py/nei.kxq�xCkyr�y/ : (3.64)

For stability we demand �1 � � � 1, and �1 � � is the critical limit, since
clearly � � 1, and the worst case happens when the sines are at their maximum.
The stability criterion becomes

Fx C Fy � 1

2
: (3.65)

For the special, yet common, case �x D �y D h, the stability criterion can be
written as

�t � h2

2d˛
;

where d is the number of space dimensions: d D 1; 2; 3.
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The Backward Euler scheme The Backward Euler method,

ŒD�
t u D ˛.DxDxuCDyDyu/�

n
q;r ;

results in
1 � ��1 D �4Fx sin2 px � 4Fy sin2 py;

and
� D .1C 4Fx sin

2 px C 4Fy sin
2 py/

�1;

which is always in .0; 1�. The solution for a wave component becomes

unq;r D A.1C 4Fx sin
2 px C 4Fy sin

2 py/
�nei.kxq�xCkyr�y/ : (3.66)

The Crank-Nicolson scheme With a Crank-Nicolson discretization,

ŒDtu�
nC 1

2
q;r D 1

2
Œ˛.DxDxuCDyDyu/�

nC1
q;r C 1

2
Œ˛.DxDxuCDyDyu/�

n
q;r ;

we have, after some algebra,

� D 1 � 2.Fx sin2 px C Fx sin
2 py/

1C 2.Fx sin
2 px C Fx sin

2 py/
:

The fraction on the right-hand side is always less than 1, so stability in the sense
of non-growing wave components is guaranteed for all physical and numerical pa-
rameters. However, the fraction can become negative and result in non-physical
oscillations. This phenomenon happens when

Fx sin
2 px C Fx sin

2 py >
1

2
:

A criterion against non-physical oscillations is therefore

Fx C Fy � 1

2
;

which is the same limit as the stability criterion for the Forward Euler scheme.
The exact discrete solution is

unq;r D A

 
1 � 2.Fx sin2 px C Fx sin

2 py/

1C 2.Fx sin
2 px C Fx sin

2 py/

!n
ei.kxq�xCkyr�y/ : (3.67)

3.3.10 Explanation of Numerical Artifacts

The behavior of the solution generated by Forward Euler discretization in time (and
centered differences in space) is summarized at the end of Sect. 3.1.5. Can we, from
the analysis above, explain the behavior?



242 3 Diffusion Equations

We may start by looking at Fig. 3.3 where F D 0:51. The figure shows that
the solution is unstable and grows in time. The stability limit for such growth is
F D 0:5 and since the F in this simulation is slightly larger, growth is unavoidable.

Figure 3.1 has unexpected features: we would expect the solution of the diffusion
equation to be smooth, but the graphs in Fig. 3.1 contain non-smooth noise. Turning
to Fig. 3.4, which has a quite similar initial condition, we see that the curves are
indeed smooth. The problem with the results in Fig. 3.1 is that the initial condition
is discontinuous. To represent it, we need a significant amplitude on the shortest
waves in the mesh. However, for F D 0:5, the shortest wave (p D �=2) gives the
amplitude in the numerical solution as .1�4F /n, which oscillates between negative
and positive values at subsequent time levels for F > 1

4
. Since the shortest waves

have visible amplitudes in the solution profile, the oscillations becomes visible.
The smooth initial condition in Fig. 3.4, on the other hand, leads to very small
amplitudes of the shortest waves. That these waves then oscillate in a non-physical
way for F D 0:5 is not a visible effect. The oscillations in time in the amplitude
.1 � 4F /n disappear for F � 1

4
, and that is why also the discontinuous initial

condition always leads to smooth solutions in Fig. 3.2, where F D 1
4
.

Turning the attention to the Backward Euler scheme and the experiments in
Fig. 3.5, we see that even the discontinuous initial condition gives smooth solu-
tions for F D 0:5 (and in fact all other F values). From the exact expression of the
numerical amplitude, .1 C 4F sin2 p/�1, we realize that this factor can never flip
between positive and negative values, and no instabilities can occur. The conclu-
sion is that the Backward Euler scheme always produces smooth solutions. Also,
the Backward Euler scheme guarantees that the solution cannot grow in time (un-
less we add a source term to the PDE, but that is meant to represent a physically
relevant growth).

Finally, we have some small, strange artifacts when simulating the development
of the initial plug profile with the Crank-Nicolson scheme, see Fig. 3.7, where
F D 3. The Crank-Nicolson scheme cannot give growing amplitudes, but it may
give oscillating amplitudes in time. The critical factor is 1 � 2F sin2 p, which for
the shortest waves (p D �=2) indicates a stability limit F D 0:5. With the discon-
tinuous initial condition, we have enough amplitude on the shortest waves so their
wrong behavior is visible, and this is what we see as small instabilities in Fig. 3.7.
The only remedy is to lower the F value.

3.4 Exercises

Exercise 3.1: Explore symmetry in a 1D problem
This exercise simulates the exact solution (3.48). Suppose for simplicity that c D 0.

a) Formulate an initial-boundary value problem that has (3.48) as solution in the
domain Œ�L;L�. Use the exact solution (3.48) as Dirichlet condition at the
boundaries. Simulate the diffusion of the Gaussian peak. Observe that the solu-
tion is symmetric around x D 0.

b) Show from (3.48) that ux.c; t/ D 0. Since the solution is symmetric around
x D c D 0, we can solve the numerical problem in half of the domain, using
a symmetry boundary condition ux D 0 at x D 0. Set up the initial-boundary
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value problem in this case. Simulate the diffusion problem in Œ0; L� and compare
with the solution in a).

Filename: diffu_symmetric_gaussian.

Exercise 3.2: Investigate approximation errors from a ux D 0 boundary
condition
We consider the problem solved in Exercise 3.1 part b). The boundary condition
ux.0; t/ D 0 can be implemented in two ways: 1) by a standard symmetric finite
difference ŒD2xu�

n
i D 0, or 2) by a one-sided difference ŒDCu D 0�ni D 0. Investi-

gate the effect of these two conditions on the convergence rate in space.

Hint If you use a Forward Euler scheme, choose a discretization parameter h D
�t D �x2 and assume the error goes like E � hr . The error in the scheme is
O.�t;�x2/ so one should expect that the estimated r approaches 1. The question
is if a one-sided difference approximation to ux.0; t/ D 0 destroys this convergence
rate.
Filename: diffu_onesided_fd.

Exercise 3.3: Experiment with open boundary conditions in 1D
We address diffusion of a Gaussian function as in Exercise 3.1, in the domain Œ0; L�,
but now we shall explore different types of boundary conditions on x D L. In real-
life problems we do not know the exact solution on x D L and must use something
simpler.

a) Imagine that we want to solve the problem numerically on Œ0; L�, with a symme-
try boundary condition ux D 0 at x D 0, but we do not know the exact solution
and cannot of that reason assign a correct Dirichlet condition at x D L. One
idea is to simply set u.L; t/ D 0 since this will be an accurate approximation
before the diffused pulse reaches x D L and even thereafter it might be a satis-
factory condition if the exact u has a small value. Let ue be the exact solution
and let u be the solution of ut D ˛uxx with an initial Gaussian pulse and the
boundary conditions ux.0; t/ D u.L; t/ D 0. Derive a diffusion problem for
the error e D ue � u. Solve this problem numerically using an exact Dirichlet
condition at x D L. Animate the evolution of the error and make a curve plot
of the error measure

E.t/ D
vuutR L

0
e2dxR L

0
udx

:

Is this a suitable error measure for the present problem?
b) Instead of using u.L; t/ D 0 as approximate boundary condition for letting the

diffused Gaussian pulse move out of our finite domain, one may try ux.L; t/ D
0 since the solution for large t is quite flat. Argue that this condition gives
a completely wrong asymptotic solution as t ! 0. To do this, integrate the
diffusion equation from 0 to L, integrate uxx by parts (or use Gauss’ divergence
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theorem in 1D) to arrive at the important property

d

dt

LZ
0

u.x; t/dx D 0;

implying that
R L
0
udx must be constant in time, and therefore

LZ
0

u.x; t/dx D
LZ
0

I.x/dx :

The integral of the initial pulse is 1.
c) Another idea for an artificial boundary condition at x D L is to use a cooling

law
� ˛ux D q.u � uS/; (3.68)

where q is an unknown heat transfer coefficient and uS is the surrounding
temperature in the medium outside of Œ0; L�. (Note that arguing that uS is ap-
proximately u.L; t/ gives the ux D 0 condition from the previous subexercise
that is qualitatively wrong for large t .) Develop a diffusion problem for the error
in the solution using (3.68) as boundary condition. Assume one can take uS D 0

“outside the domain” since ue ! 0 as x ! 1. Find a function q D q.t/ such
that the exact solution obeys the condition (3.68). Test some constant values
of q and animate how the corresponding error function behaves. Also compute
E.t/ curves as defined above.

Filename: diffu_open_BC.

Exercise 3.4: Simulate a diffused Gaussian peak in 2D/3D

a) Generalize (3.48) to multi dimensions by assuming that one-dimensional solu-
tions can be multiplied to solve ut D ˛r2u. Set c D 0 such that the peak of the
Gaussian is at the origin.

b) One can from the exact solution show that ux D 0 on x D 0, uy D 0 on y D 0,
and uz D 0 on z D 0. The approximately correct condition u D 0 can be set
on the remaining boundaries (say x D L, y D L, z D L), cf. Exercise 3.3.
Simulate a 2D case and make an animation of the diffused Gaussian peak.

c) The formulation in b) makes use of symmetry of the solution such that we can
solve the problem in the first quadrant (2D) or octant (3D) only. To check that
the symmetry assumption is correct, formulate the problemwithout symmetry in
a domain Œ�L;L�� ŒL;L� in 2D. Use u D 0 as approximately correct boundary
condition. Simulate the same case as in b), but in a four times as large domain.
Make an animation and compare it with the one in b).

Filename: diffu_symmetric_gaussian_2D.
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Exercise 3.5: Examine stability of a diffusion model with a source term
Consider a diffusion equation with a linear u term:

ut D ˛uxx C ˇu :

a) Derive in detail the Forward Euler, Backward Euler, and Crank-Nicolson
schemes for this type of diffusion model. Thereafter, formulate a �-rule to
summarize the three schemes.

b) Assume a solution like (3.49) and find the relation between a, k, ˛, and ˇ.

Hint Insert (3.49) in the PDE problem.

c) Calculate the stability of the Forward Euler scheme. Design numerical experi-
ments to confirm the results.

Hint Insert the discrete counterpart to (3.49) in the numerical scheme. Run exper-
iments at the stability limit and slightly above.

d) Repeat c) for the Backward Euler scheme.
e) Repeat c) for the Crank-Nicolson scheme.
f) How does the extra term bu impact the accuracy of the three schemes?

Hint For analysis of the accuracy, compare the numerical and exact amplification
factors, in graphs and/or by Taylor series expansion.
Filename: diffu_stability_uterm.

3.5 Diffusion in HeterogeneousMedia

Diffusion in heterogeneous media normally implies a non-constant diffusion coef-
ficient ˛ D ˛.x/. A 1D diffusion model with such a variable diffusion coefficient
reads

@u

@t
D @

@x

�
˛.x/

@u

@x

�
C f .x; t/; x 2 .0; L/; t 2 .0; T �; (3.69)

u.x; 0/ D I.x/; x 2 Œ0; L�; (3.70)

u.0; t/ D U0; t > 0; (3.71)

u.L; t/ D UL; t > 0: (3.72)

A short form of the diffusion equation with variable coefficients is ut D .˛ux/x C
f .

3.5.1 Discretization

We can discretize (3.69) by a �-rule in time and centered differences in space:

ŒDtu�
nC 1

2

i D �ŒDx.˛
xDxu/C f �nC1i C .1 � �/ŒDx.˛

xDxu/C f �ni :
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Written out, this becomes

unC1i � uni
�t

D �
1

�x2

�
˛iC 1

2
.unC1iC1 � unC1i / � ˛i� 1

2
.unC1i � unC1i�1 /

�

C .1 � �/ 1

�x2

�
˛iC 1

2
.uniC1 � uni / � ˛i� 1

2
.uni � uni�1/

�

C �f nC1i C .1 � �/f n
i ;

where, e.g., an arithmetic mean can to be used for ˛iC 1
2
:

˛iC 1
2
D 1

2
.˛i C ˛iC1/ :

3.5.2 Implementation

Suitable code for solving the discrete equations is very similar to what we created
for a constant ˛. Since the Fourier number has no meaning for varying ˛, we
introduce a related parameterD D �t=�x2.

def solver_theta(I, a, L, Nx, D, T, theta=0.5, u_L=1, u_R=0,
user_action=None):

x = linspace(0, L, Nx+1) # mesh points in space
dx = x[1] - x[0]
dt = D*dx**2
Nt = int(round(T/float(dt)))
t = linspace(0, T, Nt+1) # mesh points in time

u = zeros(Nx+1) # solution array at t[n+1]
u_n = zeros(Nx+1) # solution at t[n]

Dl = 0.5*D*theta
Dr = 0.5*D*(1-theta)

# Representation of sparse matrix and right-hand side
diagonal = zeros(Nx+1)
lower = zeros(Nx)
upper = zeros(Nx)
b = zeros(Nx+1)

# Precompute sparse matrix (scipy format)
diagonal[1:-1] = 1 + Dl*(a[2:] + 2*a[1:-1] + a[:-2])
lower[:-1] = -Dl*(a[1:-1] + a[:-2])
upper[1:] = -Dl*(a[2:] + a[1:-1])
# Insert boundary conditions
diagonal[0] = 1
upper[0] = 0
diagonal[Nx] = 1
lower[-1] = 0

A = scipy.sparse.diags(
diagonals=[diagonal, lower, upper],
offsets=[0, -1, 1],
shape=(Nx+1, Nx+1),
format=’csr’)
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# Set initial condition
for i in range(0,Nx+1):

u_n[i] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)

# Time loop
for n in range(0, Nt):

b[1:-1] = u_n[1:-1] + Dr*(
(a[2:] + a[1:-1])*(u_n[2:] - u_n[1:-1]) -
(a[1:-1] + a[0:-2])*(u_n[1:-1] - u_n[:-2]))

# Boundary conditions
b[0] = u_L(t[n+1])
b[-1] = u_R(t[n+1])
# Solve
u[:] = scipy.sparse.linalg.spsolve(A, b)

if user_action is not None:
user_action(u, x, t, n+1)

# Switch variables before next step
u_n, u = u, u_n

The code is found in the file diffu1D_vc.py.

3.5.3 Stationary Solution

As t ! 1, the solution of the problem (3.69)–(3.72) will approach a stationary
limit where @u=@t D 0. The governing equation is then

d

dx

�
˛
du

dx

�
D 0; (3.73)

with boundary conditions u.0/ D U0 and u.L/ D UL. It is possible to obtain an
exact solution of (3.73) for any ˛. Integrating twice and applying the boundary
conditions to determine the integration constants gives

u.x/ D U0 C .UL � U0/
R x
0 .˛.�//

�1d�R L
0
.˛.�//�1d�

: (3.74)

3.5.4 Piecewise Constant Medium

Consider a medium built ofM layers. The layer boundaries are denoted b0; : : : ; bM ,
where b0 D 0 and bM D L. If the layers potentially have different material prop-
erties, but these properties are constant within each layer, we can express ˛ as a

http://tinyurl.com/nu656p2/diffu/diffu1D_vc.py
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piecewise constant function according to

˛.x/ D

8̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂:

˛0; b0 � x < b1;
:::

˛i ; bi � x < biC1;
:::

˛M�1; bM�1 � x � bM :

(3.75)

The exact solution (3.74) in case of such a piecewise constant ˛ function is easy
to derive. Assume that x is in the m-th layer: x 2 Œbm; bmC1�. In the integralR x
0
.a.�//�1d� we must integrate through the first m � 1 layers and then add the

contribution from the remaining part x � bm into them-th layer:

u.x/ D U0 C .UL � U0/
Pm�1
jD0 .bjC1 � bj /=˛.bj /C .x � bm/=˛.bm/PM�1

jD0 .bjC1 � bj /=˛.bj /
: (3.76)

Remark It may sound strange to have a discontinuous ˛ in a differential equation
where one is to differentiate, but a discontinuous ˛ is compensated by a discontin-
uous ux such that ˛ux is continuous and therefore can be differentiated as .˛ux/x .

3.5.5 Implementation of Diffusion in a Piecewise Constant Medium

Programming with piecewise function definitions quickly becomes cumbersome
as the most naive approach is to test for which interval x lies, and then start
evaluating a formula like (3.76). In Python, vectorized expressions may help to
speed up the computations. The convenience classes PiecewiseConstant and
IntegratedPiecewiseConstant in the Heaviside module were made to sim-
plify programming with functions like (3.75) and expressions like (3.76). These
utilities not only represent piecewise constant functions, but also smoothed versions
of them where the discontinuities can be smoothed out in a controlled fashion.

The PiecewiseConstant class is created by sending in the domain as a 2-tuple
or 2-list and a data object describing the boundaries b0; : : : ; bM and the corre-
sponding function values ˛0; : : : ; ˛M�1. More precisely, data is a nested list,
where data[i][0] holds bi and data[i][1] holds the corresponding value ˛i ,
for i D 0; : : : ;M � 1. Given bi and ˛i in arrays b and a, it is easy to fill out the
nested list data.

In our application, we want to represent ˛ and 1=˛ as piecewise constant func-
tions, in addition to the u.x/ function which involves the integrals of 1=˛. A class
creating the functions we need and a method for evaluating u, can take the form

class SerialLayers:
"""
b: coordinates of boundaries of layers, b[0] is left boundary
and b[-1] is right boundary of the domain [0,L].
a: values of the functions in each layer (len(a) = len(b)-1).
U_0: u(x) value at left boundary x=0=b[0].
U_L: u(x) value at right boundary x=L=b[0].
"""

http://tinyurl.com/nu656p2/diffu/Heaviside.py
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def __init__(self, a, b, U_0, U_L, eps=0):
self.a, self.b = np.asarray(a), np.asarray(b)
self.eps = eps # smoothing parameter for smoothed a
self.U_0, self.U_L = U_0, U_L

a_data = [[bi, ai] for bi, ai in zip(self.b, self.a)]
domain = [b[0], b[-1]]
self.a_func = PiecewiseConstant(domain, a_data, eps)

# inv_a = 1/a is needed in formulas
inv_a_data = [[bi, 1./ai] for bi, ai in zip(self.b, self.a)]
self.inv_a_func = \

PiecewiseConstant(domain, inv_a_data, eps)
self.integral_of_inv_a_func = \

IntegratedPiecewiseConstant(domain, inv_a_data, eps)
# Denominator in the exact formula is constant
self.inv_a_0L = self.integral_of_inv_a_func(b[-1])

def __call__(self, x):
solution = self.U_0 + (self.U_L-self.U_0)*\

self.integral_of_inv_a_func(x)/self.inv_a_0L
return solution

A visualization method is also convenient to have. Below we plot u.x/ along
with ˛.x/ (which works well as long as max˛.x/ is of the same size as maxu D
max.U0; UL/).

class SerialLayers:
...

def plot(self):
x, y_a = self.a_func.plot()
x = np.asarray(x); y_a = np.asarray(y_a)
y_u = self.u_exact(x)
import matplotlib.pyplot as plt
plt.figure()
plt.plot(x, y_u, ’b’)
plt.hold(’on’) # Matlab style
plt.plot(x, y_a, ’r’)
ymin = -0.1
ymax = 1.2*max(y_u.max(), y_a.max())
plt.axis([x[0], x[-1], ymin, ymax])
plt.legend([’solution $u$’, ’coefficient $a$’], loc=’upper left’)
if self.eps > 0:

plt.title(’Smoothing eps: %s’ % self.eps)
plt.savefig(’tmp.pdf’)
plt.savefig(’tmp.png’)
plt.show()

Figure 3.12 shows the case where

b = [0, 0.25, 0.5, 1] # material boundaries
a = [0.2, 0.4, 4] # material values
U_0 = 0.5; U_L = 5 # boundary conditions
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Fig. 3.12 Solution of the stationary diffusion equation corresponding to a piecewise constant dif-
fusion coefficient

Fig. 3.13 Solution of the stationary diffusion equation corresponding to a smoothed piecewise
constant diffusion coefficient

By adding the eps parameter to the constructor of the SerialLayers class,
we can experiment with smoothed versions of ˛ and see the (small) impact on u.
Figure 3.13 shows the result.
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3.5.6 Axi-Symmetric Diffusion

Suppose we have a diffusion process taking place in a straight tube with radius R.
We assume axi-symmetry such that u is just a function of r and t , with r being the
radial distance from the center axis of the tube to a point. With such axi-symmetry
it is advantageous to introduce cylindrical coordinates r , � , and z, where z is in
the direction of the tube and .r; �/ are polar coordinates in a cross section. Axi-
symmetry means that all quantities are independent of � . From the relations x D
cos � , y D sin � , and z D z, between Cartesian and cylindrical coordinates, one can
(with some effort) derive the diffusion equation in cylindrical coordinates, which
with axi-symmetry takes the form

@u

@t
D 1

r

@

@r

�
r˛.r; z/

@u

@r

�
C @

@z

�
˛.r; z/

@u

@z

�
C f .r; z; t/ :

Let us assume that u does not change along the tube axis so it suffices to compute
variations in a cross section. Then @u=@z D 0 and we have a 1D diffusion equation
in the radial coordinate r and time t . In particular, we shall address the initial-
boundary value problem

@u

@t
D 1

r

@

@r

�
r˛.r/

@u

@r

�
C f .t/; r 2 .0;R/; t 2 .0; T �; (3.77)

@u

@r
.0; t/ D 0; t 2 .0; T �; (3.78)

u.R; t/ D 0; t 2 .0; T �; (3.79)

u.r; 0/ D I.r/; r 2 Œ0; R�: (3.80)

The condition (3.78) is a necessary symmetry condition at r D 0, while (3.79) could
be any Dirichlet or Neumann condition (or Robin condition in case of cooling or
heating).

The finite difference approximation will need the discretized version of the PDE
for r D 0 (just as we use the PDE at the boundary when implementing Neumann
conditions). However, discretizing the PDE at r D 0 poses a problem because of
the 1=r factor. We therefore need to work out the PDE for discretization at r D 0

with care. Let us, for the case of constant ˛, expand the spatial derivative term to

˛
@2u

@r2
C ˛

1

r

@u

@r
:

The last term faces a difficulty at r D 0, since it becomes a 0=0 expression caused
by the symmetry condition at r D 0. However, L’Hosptial’s rule can be used:

lim
r!0

1

r

@u

@r
D @2u

@r2
:

The PDE at r D 0 therefore becomes

@u

@t
D 2˛

@2u

@r2
C f .t/ : (3.81)
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For a variable coefficient ˛.r/ the expanded spatial derivative term reads

˛.r/
@2u

@r2
C 1

r
.˛.r/C r˛0.r//

@u

@r
:

We are interested in this expression for r D 0. A necessary condition for u to
be axi-symmetric is that all input data, including ˛, must also be axi-symmetric,
implying that ˛0.0/ D 0 (the second term vanishes anyway because of r D 0). The
limit of interest is

lim
r!0

1

r
˛.r/

@u

@r
D ˛.0/

@2u

@r2
:

The PDE at r D 0 now looks like

@u

@t
D 2˛.0/

@2u

@r2
C f .t/; (3.82)

so there is no essential difference between the constant coefficient and variable co-
efficient cases.

The second-order derivative in (3.81) and (3.82) is discretized in the usual way.

2˛
@2

@r2
u.r0; tn/ � Œ2˛DrDru�

n
0 D 2˛

un1 � 2un0 C un�1
�r2

:

The fictitious value un�1 can be eliminated using the discrete symmetry condition

ŒD2ru D 0�n0 ) un�1 D un1;

which then gives the modified approximation to the term with the second-order
derivative of u in r at r D 0:

4˛
un1 � un0
�r2

: (3.83)

The discretization of the termwith the second-order derivative in r at any internal
mesh point is straightforward:

�
1

r

@

@r

�
r˛
@u

@r

�	n
i

� Œr�1Dr.r˛Dru/�
n
i

D 1

ri

1

�r2

�
riC 1

2
˛iC 1

2
.uniC1 � uni /� ri� 1

2
˛i� 1

2
.uni � uni�1/

�
:

To complete the discretization, we need a scheme in time, but that can be done
as before and does not interfere with the discretization in space.

3.5.7 Spherically-Symmetric Diffusion

Discretization in spherical coordinates Let us now pose the problem from
Sect. 3.5.6 in spherical coordinates, where u only depends on the radial coordinate
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r and time t . That is, we have spherical symmetry. For simplicity we restrict the
diffusion coefficient ˛ to be a constant. The PDE reads

@u

@t
D ˛

r

@

@r

�
r

@u

@r

�
C f .t/; (3.84)

for r 2 .0;R/ and t 2 .0; T �. The parameter 
 is 2 for spherically-symmetric
problems and 1 for axi-symmetric problems. The boundary and initial conditions
have the same mathematical form as in (3.77)–(3.80).

Since the PDE in spherical coordinates has the same form as the PDE in
Sect. 3.5.6, just with the 
 parameter being different, we can use the same dis-
cretization approach. At the origin r D 0 we get problems with the term




r

@u

@t
;

but L’Hosptial’s rule shows that this term equals 
@2u=@r2, and the PDE at r D 0

becomes
@u

@t
D .
 C 1/˛

@2u

@r2
C f .t/ : (3.85)

The associated discrete form is then

�
Dtu D 1

2
.
 C 1/˛DrDru

t C f
t
	nC 1

2

i

; (3.86)

for a Crank-Nicolson scheme.

Discretization in Cartesian coordinates The spherically-symmetric spatial
derivative can be transformed to the Cartesian counterpart by introducing

v.r; t/ D ru.r; t/ :

Inserting u D v=r in
1

r2
@

@r

�
˛.r/r2

@u

@r

�
;

yields

r

�
d˛

dr

@v

@r
C ˛

@2v

@r2

�
� d˛

dr
v :

The two terms in the parenthesis can be combined to

r
@

@r

�
˛
@v

@r

�
:

The PDE for v takes the form

@v

@t
D @

@r

�
˛
@v

@r

�
� 1

r

d˛

dr
v C rf .r; t/; r 2 .0;R/; t 2 .0; T � : (3.87)
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For ˛ constant we immediately realize that we can reuse a solver in Cartesian co-
ordinates to compute v. With variable ˛, a “reaction” term v=r needs to be added
to the Cartesian solver. The boundary condition @u=@r D 0 at r D 0, implied by
symmetry, forces v.0; t/ D 0, because

@u

@r
D 1

r2

�
r
@v

@r
� v

�
D 0; r D 0 :

3.6 Diffusion in 2D

We now address diffusion in two space dimensions:

@u

@t
D ˛

�
@2u

@x2
C @2u

@x2

�
C f .x; y/; (3.88)

in a domain
.x; y/ 2 .0; Lx/ � .0; Ly/; t 2 .0; T �;

with u D 0 on the boundary and u.x; y; 0/ D I.x; y/ as initial condition.

3.6.1 Discretization

For generality, it is natural to use a �-rule for the time discretization. Standard,
second-order accurate finite differences are used for the spatial derivatives. We
sample the PDE at a space-time point .i; j; nC 1

2
/ and apply the difference approx-

imations:

ŒDtu�
nC 1

2 D �Œ˛.DxDxuCDyDyu/C f �nC1

C .1 � �/Œ˛.DxDxuCDyDyu/C f �n : (3.89)

Written out,

unC1i;j � uni;j
�t

D �

 
˛

 
unC1i�1;j � 2unC1i;j C unC1iC1;j

�x2
C unC1i;j�1 � 2unC1i;j C unC1i;jC1

�y2

!
C f nC1i;j

!

C .1 � �/
�
˛

�
uni�1;j � 2uni;j C uniC1;j

�x2
C uni;j�1 � 2uni;j C uni;jC1

�y2

�
C f n

i;j

�
:

(3.90)
We collect the unknowns on the left-hand side

unC1i;j � �
�
Fx.u

nC1
i�1;j � 2unC1i;j C unC1iC1;j /C Fy.u

nC1
i;j�1 � 2unC1i;j C unC1i;jC1/

�

D .1 � �/
�
Fx.u

n
i�1;j � 2uni;j C uniC1;j /C Fy.u

n
i;j�1 � 2uni;j C uni;jC1/

�

C ��tf nC1i;j C .1 � �/�tf ni;j C uni;j ; (3.91)
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Fig. 3.14 3x2 2D mesh

where

Fx D ˛�t

�x2
; Fy D ˛�t

�y2
;

are the Fourier numbers in x and y direction, respectively.

3.6.2 Numbering of Mesh Points Versus Equations and Unknowns

The equations (3.91) are coupled at the new time level nC1. That is, we must solve
a system of (linear) algebraic equations, which we will write as Ac D b, where A
is the coefficient matrix, c is the vector of unknowns, and b is the right-hand side.

Let us examine the equations in Ac D b on a mesh with Nx D 3 and Ny D 2

cells in the respective spatial directions. The spatial mesh is depicted in Fig. 3.14.
The equations at the boundary just implement the boundary condition u D 0:

unC10;0 D unC11;0 D unC12;0 D unC13;0 D unC10;1

D unC13;1 D unC10;2 D unC11;2 D unC12;2 D unC13;2 D 0 :
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We are left with two interior points, with i D 1, j D 1 and i D 2, j D 1. The
corresponding equations are

unC1i;j � �
�
Fx.u

nC1
i�1;j � 2unC1i;j C unC1iC1;j /C Fy.u

nC1
i;j�1 � 2unC1i;j C unC1i;jC1/

�

D .1 � �/
�
Fx.u

n
i�1;j � 2uni;j C uniC1;j /C Fy.u

n
i;j�1 � 2uni;j C uni;jC1/

�

C ��tf nC1i;j C .1 � �/�tf ni;j C uni;j :

There are in total 12 unknowns unC1i;j for i D 0; 1; 2; 3 and j D 0; 1; 2. To
solve the equations, we need to form a matrix system Ac D b. In that system,
the solution vector c can only have one index. Thus, we need a numbering of the
unknowns with one index, not two as used in the mesh. We introduce a mapping
m.i; j / from a mesh point with indices .i; j / to the corresponding unknown p in
the equation system:

p D m.i; j /D j.Nx C 1/C i :

When i and j run through their values, we see the following mapping to p:

.0; 0/! 0; .0; 1/! 1; .0; 2/! 2; .0; 3/! 3;

.1; 0/! 4; .1; 1/! 5; .1; 2/! 6; .1; 3/! 7;

.2; 0/! 8; .2; 1/! 9; .2; 2/! 10; .2; 3/! 11 :

That is, we number the points along the x axis, starting with y D 0, and then
progress one “horizontal” mesh line at a time. In Fig. 3.14 you can see that the
.i; j / and the corresponding single index (p) are listed for each mesh point.

We could equally well have numbered the equations in other ways, e.g., let the
j index be the fastest varying index: p D m.i; j / D i.Ny C 1/C j .

Let us form the coefficient matrix A, or more precisely, insert a matrix element
(according Python’s convention with zero as base index) for each of the nonzero
elements in A (the indices run through the values of p, i.e., p D 0; : : : ; 11):

0
BBBBBBBBBBBBBB@

.0; 0/ 0 0 0 0 0 0 0 0 0 0 0

0 .1; 1/ 0 0 0 0 0 0 0 0 0 0

0 0 .2; 2/ 0 0 0 0 0 0 0 0 0

0 0 0 .3; 3/ 0 0 0 0 0 0 0 0

0 0 0 0 .4; 4/ 0 0 0 0 0 0 0

0 .5; 1/ 0 0 .5; 4/ .5; 5/ .5; 6/ 0 0 .5; 9/ 0 0

0 0 .6; 2/ 0 0 .6; 5/ .6; 6/ .6; 7/ 0 0 .6; 10/ 0

0 0 0 0 0 0 0 .7; 7/ 0 0 0 0

0 0 0 0 0 0 0 0 .8; 8/ 0 0 0

0 0 0 0 0 0 0 0 0 .9; 9/ 0 0

0 0 0 0 0 0 0 0 0 0 .10; 10/ 0

0 0 0 0 0 0 0 0 0 0 0 .11; 11/

1
CCCCCCCCCCCCCCA

:
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Here is a more compact visualization of the coefficient matrix where we insert dots
for zeros and bullets for non-zero elements:0

BBBBBBBBBBBBBBBBBB@

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

1
CCCCCCCCCCCCCCCCCCA

:

It is clearly seen that most of the elements are zero. This is a general feature of
coefficient matrices arising from discretizing PDEs by finite difference methods.
We say that the matrix is sparse.

Let Ap;q be the value of element .p; q/ in the coefficient matrix A, where p and
q now correspond to the numbering of the unknowns in the equation system. We
have Ap;q D 1 for p D q D 0; 1; 2; 3; 4; 7; 8; 9; 10; 11, corresponding to all the
known boundary values. Let p be m.i; j /, i.e., the single index corresponding to
mesh point .i; j /. Then we have

Am.i;j /;m.i;j / D Ap;p D 1C �.Fx C Fy/; (3.92)

Ap;m.i�1;j / D Ap;p�1 D ��Fx; (3.93)

Ap;m.iC1;j / D Ap;pC1 D ��Fx; (3.94)

Ap;m.i;j�1/ D Ap;p�.NxC1/ D ��Fy; (3.95)

Ap;m.i;jC1/ D Ap;pC.NxC1/ D ��Fy; (3.96)

for the equations associated with the two interior mesh points. At these interior
points, the single index p takes on the specific values p D 5; 6, corresponding to
the values .1; 1/ and .1; 2/ of the pair .i; j /.

The above values for Ap;q can be inserted in the matrix:

0
BBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 ��Fy 0 0 ��Fx 1C 2�Fx ��Fx 0 0 ��Fy 0 0

0 0 ��Fy 0 0 ��Fx 1C 2�Fx ��Fx 0 0 ��Fy 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCA

:
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The corresponding right-hand side vector in the equation system has the entries bp ,
where p numbers the equations. We have

b0 D b1 D b2 D b3 D b4 D b7 D b8 D b9 D b10 D b11 D 0;

for the boundary values. For the equations associated with the interior points, we
get for p D 5; 6, corresponding to i D 1; 2 and j D 1:

bp D uni;j C .1 � �/
�
Fx.u

n
i�1;j � 2uni;j C uniC1;j /C Fy.u

n
i;j�1 � 2uni;j C uni;jC1/

�

C ��tf nC1i;j C .1 � �/�tf ni;j :

Recall that p D m.i; j / D j.Nx C 1/C j in this expression.
We can, as an alternative, leave the boundary mesh points out of the matrix

system. For a mesh with Nx D 3 and Ny D 2 there are only two internal mesh
points whose unknowns will enter the matrix system. We must now number the
unknowns at the interior points:

p D .j � 1/.Nx � 1/C i;

for i D 1; : : : ; Nx � 1, j D 1; : : : ; Ny � 1.
We can continue with illustrating a bit larger mesh, Nx D 4 and Ny D 3, see

Fig. 3.15. The corresponding coefficient matrix with dots for zeros and bullets for
non-zeroes looks as follows (values at boundary points are included in the equation
system):

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

:

The coefficientmatrix is banded
Besides being sparse, we observe that the coefficient matrix is banded: it has five
distinct bands. We have the diagonalAi;i , the subdiagonalAi�1;j , the superdiag-
onal Ai;iC1, a lower diagonal Ai;i�.NxC1/, and an upper diagonal Ai;iC.NxC1/.
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Fig. 3.15 4x3 2D mesh

The other matrix entries are known to be zero. With Nx C 1 D Ny C 1 D N ,
only a fraction 5N �2 of the matrix entries are nonzero, so the matrix is clearly
very sparse for relevant N values. The more we can compute with the nonzeros
only, the faster the solution methods will potentially be.

3.6.3 Algorithm for Setting Up the Coefficient Matrix

We looked at a specific mesh in the previous section, formulated the equations, and
saw what the corresponding coefficient matrix and right-hand side are. Now our
aim is to set up a general algorithm, for any choice of Nx and Ny , that produces the
coefficient matrix and the right-hand side vector. We start with a zero matrix and
vector, run through each mesh point, and fill in the values depending on whether the
mesh point is an interior point or on the boundary.

� for i D 0; : : : ; Nx
– for j D 0; : : : ; Ny


 p D j.Nx C 1/C i
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 if point .i; j / is on the boundary:
� Ap;p D 1, bp D 0


 else:
� fill Ap;m.i�1;j /, Ap;m.iC1;j /, Ap;m.i;j /, Ap;m.i;j�1/, Ap;m.i;jC1/, and bp

To ease the test on whether .i; j / is on the boundary or not, we can split the loops a
bit, starting with the boundary line j D 0, then treat the interior lines 1 � j < Ny ,
and finally treat the boundary line j D Ny :

� for i D 0; : : : ; Nx
– boundary j D 0: p D j.Nx C 1/C i , Ap;p D 1

� for j D 0; : : : ; Ny
– boundary i D 0: p D j.Nx C 1/C i , Ap;p D 1

– for i D 1; : : : ; Nx � 1

 interior point p D j.Nx C 1/C i


 fill Ap;m.i�1;j /, Ap;m.iC1;j /, Ap;m.i;j /, Ap;m.i;j�1/, Ap;m.i;jC1/, and bp
– boundary i D Nx: p D j.Nx C 1/C i , Ap;p D 1

� for i D 0; : : : ; Nx
– boundary j D Ny: p D j.Nx C 1/C i , Ap;p D 1

The right-hand side is set up as follows.

� for i D 0; : : : ; Nx
– boundary j D 0: p D j.Nx C 1/C i , bp D 0

� for j D 0; : : : ; Ny
– boundary i D 0: p D j.Nx C 1/C i , bp D 0

– for i D 1; : : : ; Nx � 1

 interior point p D j.Nx C 1/C i


 fill bp
– boundary i D Nx: p D j.Nx C 1/C i , bp D 0

� for i D 0; : : : ; Nx
– boundary j D Ny: p D j.Nx C 1/C i , bp D 0

3.6.4 Implementation with a Dense Coefficient Matrix

The goal now is to map the algorithms in the previous section to Python code.
One should, for computational efficiency reasons, take advantage of the fact that
the coefficient matrix is sparse and/or banded, i.e., take advantage of all the zeros.
However, we first demonstrate how to fill an N � N dense square matrix, where
N is the number of unknowns, here N D .Nx C 1/.Ny C 1/. The dense matrix is
much easier to understand than the sparse matrix case.

import numpy as np

def solver_dense(
I, a, f, Lx, Ly, Nx, Ny, dt, T, theta=0.5, user_action=None):
"""
Solve u_t = a*(u_xx + u_yy) + f, u(x,y,0)=I(x,y), with u=0
on the boundary, on [0,Lx]x[0,Ly]x[0,T], with time step dt,
using the theta-scheme.
"""
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x = np.linspace(0, Lx, Nx+1) # mesh points in x dir
y = np.linspace(0, Ly, Ny+1) # mesh points in y dir
dx = x[1] - x[0]
dy = y[1] - y[0]

dt = float(dt) # avoid integer division
Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1) # mesh points in time

# Mesh Fourier numbers in each direction
Fx = a*dt/dx**2
Fy = a*dt/dy**2

The unC1i;j and uni;j mesh functions are represented by their spatial values at the mesh
points:

u = np.zeros((Nx+1, Ny+1)) # unknown u at new time level
u_n = np.zeros((Nx+1, Ny+1)) # u at the previous time level

It is a good habit (for extensions) to introduce index sets for all mesh points:

Ix = range(0, Nx+1)
Iy = range(0, Ny+1)
It = range(0, Nt+1)

The initial condition is easy to fill in:

# Load initial condition into u_n
for i in Ix:

for j in Iy:
u_n[i,j] = I(x[i], y[j])

The memory for the coefficient matrix and right-hand side vector is allocated by

N = (Nx+1)*(Ny+1) # no of unknowns
A = np.zeros((N, N))
b = np.zeros(N)

The filling of A goes like this:

m = lambda i, j: j*(Nx+1) + i

# Equations corresponding to j=0, i=0,1,... (u known)
j = 0
for i in Ix:

p = m(i,j); A[p, p] = 1
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# Loop over all internal mesh points in y diretion
# and all mesh points in x direction
for j in Iy[1:-1]:

i = 0; p = m(i,j); A[p, p] = 1 # Boundary
for i in Ix[1:-1]: # Interior points

p = m(i,j)
A[p, m(i,j-1)] = - theta*Fy
A[p, m(i-1,j)] = - theta*Fx
A[p, p] = 1 + 2*theta*(Fx+Fy)
A[p, m(i+1,j)] = - theta*Fx
A[p, m(i,j+1)] = - theta*Fy

i = Nx; p = m(i,j); A[p, p] = 1 # Boundary
# Equations corresponding to j=Ny, i=0,1,... (u known)
j = Ny
for i in Ix:

p = m(i,j); A[p, p] = 1

Since A is independent of time, it can be filled once and for all before the time loop.
The right-hand side vector must be filled at each time level inside the time loop:

import scipy.linalg

for n in It[0:-1]:
# Compute b
j = 0
for i in Ix:

p = m(i,j); b[p] = 0 # Boundary
for j in Iy[1:-1]:

i = 0; p = m(i,j); b[p] = 0 # Boundary
for i in Ix[1:-1]: # Interior points

p = m(i,j)
b[p] = u_n[i,j] + \

(1-theta)*(
Fx*(u_n[i+1,j] - 2*u_n[i,j] + u_n[i-1,j]) +\
Fy*(u_n[i,j+1] - 2*u_n[i,j] + u_n[i,j-1]))\

+ theta*dt*f(i*dx,j*dy,(n+1)*dt) + \
(1-theta)*dt*f(i*dx,j*dy,n*dt)

i = Nx; p = m(i,j); b[p] = 0 # Boundary
j = Ny
for i in Ix:

p = m(i,j); b[p] = 0 # Boundary

# Solve matrix system A*c = b
c = scipy.linalg.solve(A, b)

# Fill u with vector c
for i in Ix:

for j in Iy:
u[i,j] = c[m(i,j)]

# Update u_n before next step
u_n, u = u, u_n

We use solve from scipy.linalg and not from numpy.linalg. The difference
is stated below.
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scipy.linalg versus numpy.linalg
Quote from the SciPy documentation2:

scipy.linalg contains all the functions in numpy.linalg plus some other
more advanced ones not contained in numpy.linalg.

Another advantage of using scipy.linalg over numpy.linalg is that it is al-
ways compiled with BLAS/LAPACK support, while for NumPy this is optional.
Therefore, the SciPy version might be faster depending on how NumPy was in-
stalled.

Therefore, unless you don’t want to add SciPy as a dependency to your
NumPy program, use scipy.linalg instead of numpy.linalg.

The code shown above is available in the solver_dense function in the file
diffu2D_u0.py, differing only in the boundary conditions, which in the code can
be an arbitrary function along each side of the domain.

We do not bother to look at vectorized versions of filling A since a dense matrix
is just used of pedagogical reasons for the very first implementation. Vectorization
will be treated when A has a sparse matrix representation, as in Sect. 3.6.7.

How to debug the computation of A and b

A good starting point for debugging the filling of A and b is to choose a very
coarse mesh, say Nx D Ny D 2, where there is just one internal mesh point,
compute the equations by hand, and print out A and b for comparison in the
code. If wrong elements in A or b occur, print out each assignment to elements
in A and b inside the loops and compare with what you expect.

To let the user store, analyze, or visualize the solution at each time level, we
include a callback function, named user_action, to be called before the time loop
and in each pass in that loop. The function has the signature

user_action(u, x, xv, y, yv, t, n)

where u is a two-dimensional array holding the solution at time level n and time
t[n]. The x and y coordinates of the mesh points are given by the arrays x and y,
respectively. The arrays xv and yv are vectorized representations of the mesh points
such that vectorized function evaluations can be invoked. The xv and yv arrays are
defined by

xv = x[:,np.newaxis]
yv = y[np.newaxis,:]

One can then evaluate, e.g., f .x; y; t/ at all internal mesh points at time level n by
first evaluating f at all points,

f_a = f(xv, yv, t[n])

2 http://docs.scipy.org/doc/scipy/reference/tutorial/linalg.html

http://docs.scipy.org/doc/scipy/reference/tutorial/linalg.html
http://tinyurl.com/nu656p2/diffu/diffu2D_u0.py
http://docs.scipy.org/doc/scipy/reference/tutorial/linalg.html
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and then use slices to extract a view of the values at the internal mesh points:
f_a[1:-1,1:-1]. The next section features an example on writing a user_action
callback function.

3.6.5 Verification: Exact Numerical Solution

A good test example to start with is one that preserves the solution u D 0, i.e.,
f D 0 and I.x; y/ D 0. This trivial solution can uncover some bugs.

The first real test example is based on having an exact solution of the discrete
equations. This solution is linear in time and quadratic in space:

u.x; y; t/ D 5tx.Lx � x/y.y � Ly/ :
Inserting this manufactured solution in the PDE shows that the source term f must
be

f .x; y; t/ D 5x.Lx � x/y.y � Ly/C 10˛t.x.Lx � x/C y.y � Ly// :
We can use the user_action function to compare the numerical solution with

the exact solution at each time level. A suitable helper function for checking the
solution goes like this:

def quadratic(theta, Nx, Ny):

def u_exact(x, y, t):
return 5*t*x*(Lx-x)*y*(Ly-y)

def I(x, y):
return u_exact(x, y, 0)

def f(x, y, t):
return 5*x*(Lx-x)*y*(Ly-y) + 10*a*t*(y*(Ly-y)+x*(Lx-x))

# Use rectangle to detect errors in switching i and j in scheme
Lx = 0.75
Ly = 1.5
a = 3.5
dt = 0.5
T = 2

def assert_no_error(u, x, xv, y, yv, t, n):
"""Assert zero error at all mesh points."""
u_e = u_exact(xv, yv, t[n])
diff = abs(u - u_e).max()
tol = 1E-12
msg = ’diff=%g, step %d, time=%g’ % (diff, n, t[n])
print msg
assert diff < tol, msg

solver_dense(
I, a, f, Lx, Ly, Nx, Ny,
dt, T, theta, user_action=assert_no_error)

A true test function for checking the quadratic solution for several different meshes
and � values can take the form
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def test_quadratic():
# For each of the three schemes (theta = 1, 0.5, 0), a series of
# meshes are tested (Nx > Ny and Nx < Ny)
for theta in [1, 0.5, 0]:

for Nx in range(2, 6, 2):
for Ny in range(2, 6, 2):

print ’testing for %dx%d mesh’ % (Nx, Ny)
quadratic(theta, Nx, Ny)

3.6.6 Verification: Convergence Rates

For 2D verification with convergence rate computations, the expressions and com-
putations just build naturally on what we saw for 1D diffusion. Truncation error
analysis and other forms of error analysis point to a numerical error formula like

E D Ct�t
p C Cx�x

2 C Cy�y
2;

where p, Ct , Cx , and Cy are constants. Often, the analysis of a Crank-Nicolson
method can show that p D 2, while the Forward and Backward Euler schemes have
p D 1.

When checking the error formula empirically, we need to reduce it to a formE D
Chr with a single discretization parameter h and some rate r to be estimated. For
the Backward Euler method, where p D 1, we can introduce a single discretization
parameter according to

h D �x2 D �y2; h D K�1�t;

where K is a constant. The error formula then becomes

E D CtKhC CxhC Cyh D QCh; QC D CtK C Cx C Cy :

The simplest choice is obviouslyK D 1. With the Forward Euler method, however,
stability requires�t D hK � h=.4˛/, so K � 1=.4˛/.

For the Crank-Nicolson method, p D 2, and we can simply choose

h D �x D �y D �t;

since there is no restriction on�t in terms of �x and �y.
A frequently used error measure is the `2 norm of the error mesh point val-

ues. Section 2.2.3 and the formula (2.26) shows the error measure for a 1D time-
dependent problem. The extension to the current 2D problem reads

E D
0
@�t�x�y

NtX
nD0

NxX
iD0

NyX
jD0

.ue.xi ; yj ; tn/ � uni;j /2
1
A

1
2

:

One attractive manufactured solution is

ue D e�pt sin.kxx/ sin.kyy/; kx D �

Lx
; ky D �

Ly
;

http://dx.doi.org/10.1007/978-3-319-55456-3_2
http://dx.doi.org/10.1007/978-3-319-55456-3_2
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where p can be arbitrary. The required source term is

f D .˛.k2x C k2y/ � p/ue :
The function convergence_rates in diffu2D_u0.py implements a conver-

gence rate test. Two potential difficulties are important to be aware of:

1. The error formula is assumed to be correct when h ! 0, so for coarse meshes
the estimated rate r may be somewhat away from the expected value. Fine
meshes may lead to prohibitively long execution times.

2. Choosing p D ˛.k2x C k2y/ in the manufactured solution above seems attractive
(f D 0), but leads to a slower approach to the asymptotic range where the error
formula is valid (i.e., r fluctuates and needs finer meshes to stabilize).

3.6.7 Implementation with a Sparse Coefficient Matrix

We used a sparse matrix implementation in Sect. 3.2.2 for a 1D problemwith a tridi-
agonal matrix. The present matrix, arising from a 2D problem, has five diagonals,
but we can use the same sparse matrix data structure scipy.sparse.diags.

Understanding the diagonals Let us look closer at the diagonals in the example
with a 4 � 3 mesh as depicted in Fig. 3.15 and its associated matrix visualized by
dots for zeros and bullets for nonzeros. From the example mesh, we may generalize
to an Nx �Ny mesh.

0 D m.0; 0/ � � � � � � � � � � � � � � � � � � � �
1 D m.1; 0/ � � � � � � � � � � � � � � � � � � � �
2 D m.2; 0/ � � � � � � � � � � � � � � � � � � � �
3 D m.3; 0/ � � � � � � � � � � � � � � � � � � � �
Nx D m.Nx; 0/ � � � � � � � � � � � � � � � � � � � �
Nx C 1 D m.0; 1/ � � � � � � � � � � � � � � � � � � � �
.Nx C 1/C 1 D m.1; 1/ � � � � � � � � � � � � � � � � � � � �
.Nx C 1/C 2 D m.2; 1/ � � � � � � � � � � � � � � � � � � � �
.Nx C 1/C 3 D m.3; 1/ � � � � � � � � � � � � � � � � � � � �
.Nx C 1/C Nx D m.Nx; 1/ � � � � � � � � � � � � � � � � � � � �
2.Nx C 1/ D m.0; 2/ � � � � � � � � � � � � � � � � � � � �
2.Nx C 1/C 1 D m.1; 2/ � � � � � � � � � � � � � � � � � � � �
2.Nx C 1/C 2 D m.2; 2/ � � � � � � � � � � � � � � � � � � � �
2.Nx C 1/C 3 D m.3; 2/ � � � � � � � � � � � � � � � � � � � �
2.Nx C 1/C Nx D m.Nx; 2/ � � � � � � � � � � � � � � � � � � � �
Ny.Nx C 1/ D m.0;Ny/ � � � � � � � � � � � � � � � � � � � �
Ny.Nx C 1/C 1 D m.1;Ny/ � � � � � � � � � � � � � � � � � � � �
Ny.Nx C 1/C 2 D m.2;Ny/ � � � � � � � � � � � � � � � � � � � �
Ny.Nx C 1/C 3 D m.3;Ny/ � � � � � � � � � � � � � � � � � � � �
Ny.Nx C 1/CNx D m.Nx;Ny/ � � � � � � � � � � � � � � � � � � � �

The main diagonal has N D .Nx C 1/.Ny C 1/ elements, while the sub- and
super-diagonals have N � 1 elements. By looking at the matrix above, we realize
that the lower diagonal starts in row Nx C 1 and goes to row N , so its length
is N � .Nx C 1/. Similarly, the upper diagonal starts at row 0 and lasts to row
N � .Nx C 1/, so it has the same length. Based on this information, we declare the
diagonals by

http://tinyurl.com/nu656p2/diffu/diffu2D_u0.py
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main = np.zeros(N) # diagonal
lower = np.zeros(N-1) # subdiagonal
upper = np.zeros(N-1) # superdiagonal
lower2 = np.zeros(N-(Nx+1)) # lower diagonal
upper2 = np.zeros(N-(Nx+1)) # upper diagonal
b = np.zeros(N) # right-hand side

Filling the diagonals We run through all mesh points and fill in elements on the
various diagonals. The line of mesh points corresponding to j D 0 are all on the
boundary, and only the main diagonal gets a contribution:

m = lambda i, j: j*(Nx+1) + i
j = 0; main[m(0,j):m(Nx+1,j)] = 1 # j=0 boundary line

Then we run through all interior j D const lines of mesh points. The first and the
last point on each line, i D 0 and i D Nx , correspond to boundary points:

for j in Iy[1:-1]: # Interior mesh lines j=1,...,Ny-1
i = 0; main[m(i,j)] = 1
i = Nx; main[m(i,j)] = 1 # Boundary

For the interior mesh points i D 1; : : : ; Nx � 1 on a mesh line y D const we can
start with the main diagonal. The entries to be filled go from i D 1 to i D Nx � 1
so the relevant slice in the main vector is m(1,j):m(Nx,j):

main[m(1,j):m(Nx,j)] = 1 + 2*theta*(Fx+Fy)

The upper array for the superdiagonal has its index 0 corresponding to row 0 in the
matrix, and the array entries to be set go from m.1; j / to m.Nx � 1; j /:

upper[m(1,j):m(Nx,j)] = - theta*Fx

The subdiagonal (lower array), however, has its index 0 corresponding to row 1, so
there is an offset of 1 in indices compared to the matrix. The first nonzero occurs
(interior point) at a mesh line j D const corresponding to matrix row m.1; j /, and
the corresponding array index in lower is then m.1; j /. To fill the entries from
m.1; j / to m.Nx � 1; j / we set the following slice in lower:

lower_offset = 1
lower[m(1,j)-lower_offset:m(Nx,j)-lower_offset] = - theta*Fx

For the upper diagonal, its index 0 corresponds to matrix row 0, so there is no
offset and we can set the entries correspondingly to upper:

upper2[m(1,j):m(Nx,j)] = - theta*Fy
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The lower2 diagonal, however, has its first index 0 corresponding to row Nx C 1,
so here we need to subtract the offset Nx C 1:

lower2_offset = Nx+1
lower2[m(1,j)-lower2_offset:m(Nx,j)-lower2_offset] = - theta*Fy

We can now summarize the above code lines for setting the entries in the sparse
matrix representation of the coefficient matrix:

lower_offset = 1
lower2_offset = Nx+1
m = lambda i, j: j*(Nx+1) + i

j = 0; main[m(0,j):m(Nx+1,j)] = 1 # j=0 boundary line
for j in Iy[1:-1]: # Interior mesh lines j=1,...,Ny-1

i = 0; main[m(i,j)] = 1 # Boundary
i = Nx; main[m(i,j)] = 1 # Boundary
# Interior i points: i=1,...,N_x-1
lower2[m(1,j)-lower2_offset:m(Nx,j)-lower2_offset] = - theta*Fy
lower[m(1,j)-lower_offset:m(Nx,j)-lower_offset] = - theta*Fx
main[m(1,j):m(Nx,j)] = 1 + 2*theta*(Fx+Fy)
upper[m(1,j):m(Nx,j)] = - theta*Fx
upper2[m(1,j):m(Nx,j)] = - theta*Fy

j = Ny; main[m(0,j):m(Nx+1,j)] = 1 # Boundary line

The next task is to create the sparse matrix from these diagonals:

import scipy.sparse

A = scipy.sparse.diags(
diagonals=[main, lower, upper, lower2, upper2],
offsets=[0, -lower_offset, lower_offset,

-lower2_offset, lower2_offset],
shape=(N, N), format=’csr’)

Filling the right-hand side; scalar version Setting the entries in the right-hand
side is easier, since there are no offsets in the array to take into account. The right-
hand side is in fact similar to the one previously shown, when we used a dense
matrix representation (the right-hand side vector is, of course, independent of what
type of representation we use for the coefficient matrix). The complete time loop
goes as follows.

import scipy.sparse.linalg

for n in It[0:-1]:
# Compute b
j = 0
for i in Ix:

p = m(i,j); b[p] = 0 # Boundary
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for j in Iy[1:-1]:
i = 0; p = m(i,j); b[p] = 0 # Boundary
for i in Ix[1:-1]:

p = m(i,j) # Interior
b[p] = u_n[i,j] + \

(1-theta)*(
Fx*(u_n[i+1,j] - 2*u_n[i,j] + u_n[i-1,j]) +\
Fy*(u_n[i,j+1] - 2*u_n[i,j] + u_n[i,j-1]))\

+ theta*dt*f(i*dx,j*dy,(n+1)*dt) + \
(1-theta)*dt*f(i*dx,j*dy,n*dt)

i = Nx; p = m(i,j); b[p] = 0 # Boundary
j = Ny
for i in Ix:

p = m(i,j); b[p] = 0 # Boundary

# Solve matrix system A*c = b
c = scipy.sparse.linalg.spsolve(A, b)

# Fill u with vector c
for i in Ix:

for j in Iy:
u[i,j] = c[m(i,j)]

# Update u_n before next step
u_n, u = u, u_n

Filling the right-hand side; vectorized version. Since we use a sparse matrix
and try to speed up the computations, we should examine the loops and see if some
can be easily removed by vectorization. In the filling of A we have already used
vectorized expressions at each j D const line of mesh points. We can very easily
do the same in the code above and remove the need for loops over the i index:

for n in It[0:-1]:
# Compute b, vectorized version

# Precompute f in array so we can make slices
f_a_np1 = f(xv, yv, t[n+1])
f_a_n = f(xv, yv, t[n])

j = 0; b[m(0,j):m(Nx+1,j)] = 0 # Boundary
for j in Iy[1:-1]:

i = 0; p = m(i,j); b[p] = 0 # Boundary
i = Nx; p = m(i,j); b[p] = 0 # Boundary
imin = Ix[1]
imax = Ix[-1] # for slice, max i index is Ix[-1]-1
b[m(imin,j):m(imax,j)] = u_n[imin:imax,j] + \

(1-theta)*(Fx*(
u_n[imin+1:imax+1,j] -

2*u_n[imin:imax,j] + \
u_n[imin-1:imax-1,j]) +

Fy*(
u_n[imin:imax,j+1] -

2*u_n[imin:imax,j] +
u_n[imin:imax,j-1])) + \

theta*dt*f_a_np1[imin:imax,j] + \
(1-theta)*dt*f_a_n[imin:imax,j]

j = Ny; b[m(0,j):m(Nx+1,j)] = 0 # Boundary
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# Solve matrix system A*c = b
c = scipy.sparse.linalg.spsolve(A, b)

# Fill u with vector c
u[:,:] = c.reshape(Ny+1,Nx+1).T

# Update u_n before next step
u_n, u = u, u_n

The most tricky part of this code snippet is the loading of values from the one-
dimensional array c into the two-dimensional array u. With our numbering of
unknowns from left to right along “horizontal” mesh lines, the correct reordering
of the one-dimensional array c as a two-dimensional array requires first a reshap-
ing to an (Ny+1,Nx+1) two-dimensional array and then taking the transpose. The
result is an (Nx+1,Ny+1) array compatible with u both in size and appearance of
the function values.

The spsolve function in scipy.sparse.linalg is an efficient version of
Gaussian elimination suited for matrices described by diagonals. The algorithm is
known as sparse Gaussian elimination, and spsolve calls up a well-tested C code
called SuperLU3.

The complete code utilizing spsolve is found in the solver_sparse function
in the file diffu2D_u0.py.

Verification We can easily extend the function quadratic from Sect. 3.6.5 to
include a test of the solver_sparse function as well.

def quadratic(theta, Nx, Ny):
...
t, cpu = solver_sparse(

I, a, f, Lx, Ly, Nx, Ny,
dt, T, theta, user_action=assert_no_error)

3.6.8 The Jacobi IterativeMethod

So far we have created a matrix and right-hand side of a linear system Ac D b and
solved the system for c by calling an exact algorithm based on Gaussian elimination.
A much simpler implementation, which requires no memory for the coefficient ma-
trix A, arises if we solve the system by iterative methods. These methods are only
approximate, and the core algorithm is repeated many times until the solution is
considered to be converged.

Numerical scheme and linear system To illustrate the idea of the Jacobi method,
we simplify the numerical scheme to the Backward Euler case, � D 1, so there are

3 http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
http://tinyurl.com/nu656p2/diffu/diffu2D_u0.py
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
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fewer terms to write:

unC1i;j �
�
Fx

�
unC1i�1;j � 2unC1i;j C unC1iC1;j

�
C Fy

�
unC1i;j�1 � 2unC1i;j C unC1i;jC1

��

D uni;j C�tf nC1i;j :

(3.97)
The idea of the Jacobi iterative method is to introduce an iteration, here with in-
dex r , where we in each iteration treat unC1i;j as unknown, but use values from the

previous iteration for the other unknowns unC1i˙1;j˙1.

Iterations Let unC1;ri;j be the approximation to unC1i;j in iteration r , for all relevant i

and j indices. We first solve with respect to unC1i;j to get the equation to solve:

unC1i;j D .1C 2Fx C 2Fy/
�1
�
Fx

�
unC1i�1;j C unC1iC1;j

�
C Fy

�
unC1i;j�1 C unC1i;jC1

��

C uni;j C�tf nC1i;j :

(3.98)
The iteration is introduced by using iteration index r , for computed values, on the
right-hand side and r C 1 (unknown in this iteration) on the left-hand side:

u
nC1;rC1
i;j D .1C 2Fx C 2Fy/

�1
�
Fx

�
u
nC1;r
i�1;j C u

nC1;r
iC1;j

�
C Fy

�
u
nC1;r
i;j�1 C u

nC1;r
i;jC1

��

C uni;j C�tf nC1i;j : (3.99)

Initial guess We start the iteration with the computed values at the previous time
level:

u
nC1;0
i;j D uni;j ; i D 0; : : : ; Nx; j D 0; : : : ; Ny : (3.100)

Relaxation A common technique in iterative methods is to introduce a relaxation,
which means that the new approximation is a weighted mean of the approximation
as suggested by the algorithm and the previous approximation. Naming the quantity
on the left-hand side of (3.99) as unC1;
i;j , a new approximation based on relaxation
reads

unC1;rC1 D !u
nC1;

i;j C .1 � !/unC1;ri;j : (3.101)

Under-relaxation means ! < 1, while over-relaxation has ! > 1.

Stopping criteria The iteration can be stopped when the change from one iteration
to the next is sufficiently small (� 
), using either an infinity norm,

max
i;j

ˇ̌̌
u
nC1;rC1
i;j � unC1;ri;j

ˇ̌̌
� 
; (3.102)

or an L2 norm, 0
@�x�yX

i;j

.u
nC1;rC1
i;j � unC1;ri;j /2

1
A

1
2

� 
 : (3.103)

Another widely used criterion measures how well the equations are solved by
looking at the residual (essentially b � AcrC1 if crC1 is the approximation to the
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solution in iteration r C 1). The residual, defined in terms of the finite difference
stencil, is

Ri;j D u
nC1;rC1
i;j �

 
Fx

�
u
nC1;rC1
i�1;j � 2unC1;rC1i;j C u

nC1;rC1
iC1;j

�

C Fy

�
unC1;rC1i;j�1 � 2unC1;rC1i;j C unC1;rC1i;jC1

�!

� uni;j ��tf nC1i;j : (3.104)

One can then iterate until the norm of the mesh function Ri;j is less than some
tolerance: 0

@�x�yX
i;j

R2i;j

1
A

1
2

� 
 : (3.105)

Code-friendly notation To make the mathematics as close as possible to what we
will write in a computer program, we may introduce some new notation: ui;j is

a short notation for unC1;rC1i;j , u�i;j is a short notation for unC1;ri;j , and u.s/i;j denotes

unC1�si;j . That is, ui;j is the unknown, u�i;j is its most recently computed approxima-
tion, and s counts time levels backwards in time. The Jacobi method (3.99) takes
the following form with the new notation:

u
i;j D .1C 2Fx C 2Fy/
�1
 �
Fx.u

�
i�1;j C u�iC1;j /C Fy.u

�
i;j�1 C u�i;jC1/

�

C u
.1/
i;j C�tf nC1i;j

!
:

(3.106)

Generalization of the scheme We can also quite easily introduce the � rule for
discretization in time and write up the Jacobi iteration in that case as well:

u
i;j D .1C 2�.Fx C Fy//
�1
 
�
�
Fx.u

�
i�1;j C u�iC1;j /C Fy.u

�
i;j�1 C u�i;jC1/

�

C u
.1/
i;j C ��tf nC1i;j C .1 � �/�tf ni;j

C .1 � �/
�
Fx
�
u
.1/
i�1;j � 2u.1/i;j C u

.1/
iC1;j

�

C Fy
�
u
.1/
i;j�1 � 2u.1/i;j C u

.1/
i;jC1

��!
:

(3.107)
The final update of u applies relaxation:

ui;j D !u
i;j C .1 � !/u�i;j :
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3.6.9 Implementation of the Jacobi Method

The Jacobi method needs no coefficient matrix and right-hand side vector, but it
needs an array for u in the previous iteration. We call this array u_, using the
notation at the end of the previous section (at the same time level). The unknown
itself is called u, while u_n is the computed solution one time level back in time.
With a � rule in time, the time loop can be coded like this:

for n in It[0:-1]:
# Solve linear system by Jacobi iteration at time level n+1
u_[:,:] = u_n # Start value
converged = False
r = 0
while not converged:

if version == ’scalar’:
j = 0
for i in Ix:

u[i,j] = U_0y(t[n+1]) # Boundary
for j in Iy[1:-1]:

i = 0; u[i,j] = U_0x(t[n+1]) # Boundary
i = Nx; u[i,j] = U_Lx(t[n+1]) # Boundary

# Interior points
for i in Ix[1:-1]:

u_new = 1.0/(1.0 + 2*theta*(Fx + Fy))*(theta*(
Fx*(u_[i+1,j] + u_[i-1,j]) +
Fy*(u_[i,j+1] + u_[i,j-1])) + \

u_n[i,j] + \
(1-theta)*(Fx*(
u_n[i+1,j] - 2*u_n[i,j] + u_n[i-1,j]) +

Fy*(
u_n[i,j+1] - 2*u_n[i,j] + u_n[i,j-1]))\

+ theta*dt*f(i*dx,j*dy,(n+1)*dt) + \
(1-theta)*dt*f(i*dx,j*dy,n*dt))
u[i,j] = omega*u_new + (1-omega)*u_[i,j]

j = Ny
for i in Ix:

u[i,j] = U_Ly(t[n+1]) # Boundary

elif version == ’vectorized’:
j = 0; u[:,j] = U_0y(t[n+1]) # Boundary
i = 0; u[i,:] = U_0x(t[n+1]) # Boundary
i = Nx; u[i,:] = U_Lx(t[n+1]) # Boundary
j = Ny; u[:,j] = U_Ly(t[n+1]) # Boundary

# Internal points
f_a_np1 = f(xv, yv, t[n+1])
f_a_n = f(xv, yv, t[n])
u_new = 1.0/(1.0 + 2*theta*(Fx + Fy))*(theta*(Fx*(

u_[2:,1:-1] + u_[:-2,1:-1]) +
Fy*(

u_[1:-1,2:] + u_[1:-1,:-2])) +\
u_n[1:-1,1:-1] + \

(1-theta)*(Fx*(
u_n[2:,1:-1] - 2*u_n[1:-1,1:-1] + u_n[:-2,1:-1]) +\

Fy*(
u_n[1:-1,2:] - 2*u_n[1:-1,1:-1] + u_n[1:-1,:-2]))\
+ theta*dt*f_a_np1[1:-1,1:-1] + \
(1-theta)*dt*f_a_n[1:-1,1:-1])
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u[1:-1,1:-1] = omega*u_new + (1-omega)*u_[1:-1,1:-1]
r += 1
converged = np.abs(u-u_).max() < tol or r >= max_iter
u_[:,:] = u

# Update u_n before next step
u_n, u = u, u_n

The vectorized version should be quite straightforward to understand once one has
an understanding of how a standard 2D finite stencil is vectorized.

The first natural verification is to use the test problem in the function quadratic
from Sect. 3.6.5. This problem is known to have no approximation error, but any
iterative method will produce an approximate solution with unknown error. For a
tolerance 10�k in the iterative method, we can, e.g., use a slightly larger tolerance
10�.k�1/ for the difference between the exact and the computed solution.

def quadratic(theta, Nx, Ny):
...
def assert_small_error(u, x, xv, y, yv, t, n):

"""Assert small error for iterative methods."""
u_e = u_exact(xv, yv, t[n])
diff = abs(u - u_e).max()
tol = 1E-4
msg = ’diff=%g, step %d, time=%g’ % (diff, n, t[n])
assert diff < tol, msg

for version in ’scalar’, ’vectorized’:
for theta in 1, 0.5:

print ’testing Jacobi, %s version, theta=%g’ % \
(version, theta)

t, cpu = solver_Jacobi(
I=I, a=a, f=f, Lx=Lx, Ly=Ly, Nx=Nx, Ny=Ny,
dt=dt, T=T, theta=theta,
U_0x=0, U_0y=0, U_Lx=0, U_Ly=0,
user_action=assert_small_error,
version=version, iteration=’Jacobi’,
omega=1.0, max_iter=100, tol=1E-5)

Even for a very coarse 4�4mesh, the Jacobi method requires 26 iterations to reach
a tolerance of 10�5, which is quite many iterations, given that there are only 25
unknowns.

3.6.10 Test Problem: Diffusion of a Sine Hill

It can be shown that

ue D Ae�˛�
2.L�2

x CL�2
y /t sin

�
�

Lx
x

�
sin
�
�

Ly
y

�
; (3.108)

is a solution of the 2D homogeneous diffusion equation ut D ˛.uxx C uyy/ in a
rectangle Œ0; Lx�� Œ0; Ly�, for any value of the amplitude A. This solution vanishes
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at the boundaries, and the initial condition is the product of two sines. We may
choose A D 1 for simplicity.

It is difficult to know if our solver based on the Jacobi method works properly
since we are faced with two sources of errors: one from the discretization, E�, and
one from the iterative Jacobi method, Ei . The total error in the computed u can be
represented as

Eu D E� CEi :

One error measure is to look at the maximum value, which is obtained for the mid-
point x D Lx=2 and y D Lx=2. This midpoint is represented in the discrete u if
Nx andNy are even numbers. We can then computeEu asEu D jmaxue�maxuj,
when we know an exact solution ue of the problem.

What aboutE�? If we use the maximum value as a measure of the error, we have
in fact analytical insight into the approximation error in this particular problem.
According to Sect. 3.3.9, the exact solution (3.108) of the PDE problem is also an
exact solution of the discrete equations, except that the damping factor in time is
different. More precisely, (3.66) and (3.67) are solutions of the discrete problem for
� D 1 (Backward Euler) and � D 1

2
(Crank-Nicolson), respectively. The factors

raised to the power n is the numerical amplitude, and the errors in these factors
become

E� D e�˛k
2t �

 
1 � 2.Fx sin2 px C Fx sin

2 py/

1C 2.Fx sin
2 px C Fx sin

2 py/

!n
; � D 1

2
;

E� D e�˛k
2t � .1C 4Fx sin

2 px C 4Fy sin
2 py/

�n; � D 1 :

We are now in a position to compute Ei numerically. That is, we can compute the
error due to iterative solution of the linear system and see if it corresponds to the
convergence tolerance used in the method. Note that the convergence is based on
measuring the difference in two consecutive approximations, which is not exactly
the error due to the iteration, but it is a kind of measure, and it should have about
the same size as Ei .

The function demo_classic_iterative in diffu2D_u0.py implements the
idea above (also for the methods in Sect. 3.6.12). The value of Ei is in particular
printed at each time level. By changing the tolerance in the convergence criterion
of the Jacobi method, we can see that Ei is of the same order of magnitude as the
prescribed tolerance in the Jacobi method. For example: E� � 10�2 with Nx D
Ny D 10 and � D 1

2
, as long as maxu has some significant size (maxu > 0:02).

An appropriate value of the tolerance is then 10�3, such that the error in the Jacobi
method does not become bigger than the discretization error. In that case, Ei is
around 5 � 10�3. The corresponding number of Jacobi iterations (with ! D 1)
varies from 31 to 12 during the time simulation (for maxu > 0:02). Changing
the tolerance to 10�5 causes many more iterations (61 to 42) without giving any
contribution to the overall accuracy, because the total error is dominated by E�.

Also, with an Nx D Ny D 20, the spatial accuracy increases and many more
iterations are needed (143 to 45), but the dominating error is from the time dis-
cretization. However, with such a finer spatial mesh, a higher tolerance in the
convergence criterion 10�4 is needed to keep Ei � 10�3. More experiments show

http://tinyurl.com/nu656p2/diffu/diffu2D_u0.py
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the disadvantage of the very simple Jacobi iteration method: the number of itera-
tions increases with the number of unknowns, keeping the tolerance fixed, but the
tolerance should also be lowered to avoid the iteration error to dominate the total er-
ror. A small adjustment of the Jacobi method, as described in Sect. 3.6.12, provides
a better method.

3.6.11 The Relaxed Jacobi Method and Its Relation to the Forward
Euler Method

We shall now show that solving the Poisson equation �˛r2u D f by the Jacobi
iterative method is in fact equivalent to using a Forward Euler scheme on ut D
˛r2uC f and letting t ! 1.

A Forward Euler discretization of the 2D diffusion equation,

ŒDC
t u D ˛.DxDxuCDyDyu/C f �ni;j ;

can be written out as

unC1i;j D uni;j C
�t

˛h2

�
uni�1;j C uniC1;j C uni;j�1 C uni;jC1 � 4uni;j C h2fi;j

�
;

where h D �x D �y has been introduced for simplicity. The scheme can be
reordered as

unC1i;j D .1 � !/uni;j C
1

4
!
�
uni�1;j C uniC1;j C uni;j�1 C uni;jC1 � 4uni;j C h2fi;j

�
;

with

! D 4
�t

˛h2
;

but this latter form is nothing but the relaxed Jacobi method applied to

ŒDxDxuCDyDyu D �f �ni;j :
From the equivalence above we know a couple of things about the Jacobi method

for solving �r2u D f :

1. The method is unstable if ! > 1 (since the Forward Euler method is then unsta-
ble).

2. The convergence is really slow as the iteration index increases (coming from the
fact that the Forward Euler scheme requires many small time steps to reach the
stationary solution).

These observations are quite disappointing: if we already have a time-dependent
diffusion problem and want to take larger time steps by an implicit time discretiza-
tion method, we will with the Jacobi method end up with something close to a slow
Forward Euler simulation of the original problem at each time level. Nevertheless,
the are two reasons for why the Jacobi method remains a fundamental building
block for solving linear systems arising from PDEs: 1) a couple of iterations re-
move large parts of the error and this is effectively used in the very efficient class
of multigrid methods; and 2) the idea of the Jacobi method can be developed into
more efficient methods, especially the SOR method, which is treated next.
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3.6.12 The Gauss-Seidel and SORMethods

If we update the mesh points according to the Jacobi method (3.98) for a Backward
Euler discretization with a loop over i D 1; : : : ; Nx � 1 and j D 1; : : : ; Ny � 1,
we realize that when unC1;rC1i;j is computed, unC1;rC1i�1;j and unC1;rC1i;j�1 are already com-

puted, so these new values can be used rather than unC1;ri�1;j and unC1;ri;j�1 (respectively)

in the formula for unC1;rC1i;j . This idea gives rise to the Gauss-Seidel iteration
method, which mathematically is just a small adjustment of (3.98):

unC1;rC1i;j D

.1C 2Fx C 2Fy/
�1
 �
Fx
�
u
nC1;rC1
i�1;j C u

nC1;r
iC1;j

�C Fy
�
u
nC1;rC1
i;j�1 C u

nC1;r
i;jC1

��

C uni;j C�tf nC1i;j

!
: (3.109)

Observe that the way we access the mesh points in the formula (3.109) is important:
points with i �1must be computed before points with i , and points with j �1must
be computed before points with j . Any sequence of mesh points can be used in
the Gauss-Seidel method, but the particular math formula must distinguish between
already visited points in the current iteration and the points not yet visited.

The idea of relaxation (3.101) can equally well be applied to the Gauss-Seidel
method. Actually, the Gauss-Seidel method with an arbitrary 0 < ! � 2 has its
own name: the Successive Over-Relaxation method, abbreviated as SOR.

The SOR method for a � rule discretization, with the shortened u and u� nota-
tion, can be written

u
i;j D .1C 2�.Fx C Fy//
�1
 
�.Fx.ui�1;j C u�iC1;j /C Fy.ui;j�1 C u�i;jC1//

C u
.1/
i;j C ��tf nC1i;j C .1 � �/�tf ni;j

C .1 � �/
�
Fx

�
u
.1/
i�1;j � 2u.1/i;j C u

.1/
iC1;j

�

C Fy

�
u
.1/

i;j�1 � 2u.1/i;j C u
.1/

i;jC1
��!

; (3.110)

ui;j D !u
i;j C .1 � !/u�i;j (3.111)

The sequence of mesh points in (3.110) is i D 1; : : : ; Nx � 1, j D 1; : : : ; Ny � 1
(but whether i runs faster or slower than j does not matter).

3.6.13 Scalar Implementation of the SORMethod

Since the Jacobi and Gauss-Seidel methods with relaxation are so similar, we can
easily make a common code for the two:
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for n in It[0:-1]:
# Solve linear system by Jacobi/SOR iteration at time level n+1
u_[:,:] = u_n # Start value
converged = False
r = 0
while not converged:

if version == ’scalar’:
if iteration == ’Jacobi’:

u__ = u_
elif iteration == ’SOR’:

u__ = u
j = 0
for i in Ix:

u[i,j] = U_0y(t[n+1]) # Boundary
for j in Iy[1:-1]:

i = 0; u[i,j] = U_0x(t[n+1]) # Boundary
i = Nx; u[i,j] = U_Lx(t[n+1]) # Boundary
for i in Ix[1:-1]:

u_new = 1.0/(1.0 + 2*theta*(Fx + Fy))*(theta*(
Fx*(u_[i+1,j] + u__[i-1,j]) +
Fy*(u_[i,j+1] + u__[i,j-1])) + \

u_n[i,j] + (1-theta)*(
Fx*(

u_n[i+1,j] - 2*u_n[i,j] + u_n[i-1,j]) +
Fy*(

u_n[i,j+1] - 2*u_n[i,j] + u_n[i,j-1]))\
+ theta*dt*f(i*dx,j*dy,(n+1)*dt) + \

(1-theta)*dt*f(i*dx,j*dy,n*dt))
u[i,j] = omega*u_new + (1-omega)*u_[i,j]

j = Ny
for i in Ix:

u[i,j] = U_Ly(t[n+1]) # boundary
r += 1
converged = np.abs(u-u_).max() < tol or r >= max_iter
u_[:,:] = u

u_n, u = u, u_n # Get ready for next iteration

The idea here is to introduce u__ to be used for already computed values (u) in the
Gauss-Seidel/SOR version of the implementation, or just values from the previous
iteration (u_) in case of the Jacobi method.

3.6.14 Vectorized Implementation of the SORMethod

Vectorizing the Gauss-Seidel iteration step turns out to be non-trivial. The prob-
lem is that vectorized operations typically imply operations on arrays where the
sequence in which we visit the elements does not matter. In particular, this prin-
ciple makes vectorized code trivial to parallelize. However, in the Gauss-Seidel
algorithm, the sequence in which we visit the elements in the arrays does matter,
and it is well known that the basic method as explained above cannot be parallelized.
Therefore, also vectorization will require new thinking.

The strategy for vectorizing (and parallelizing) the Gauss-Seidel method is to
use a special numbering of the mesh points called red-black numbering: every other
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point is red or black as in a checkerboard pattern. This numbering requires Nx and
Ny to be even numbers. Here is an example of a 6 � 6 mesh:

r b r b r b r
b r b r b r b
r b r b r b r
b r b r b r b
r b r b r b r
b r b r b r b
r b r b r b r

The idea now is to first update all the red points. Each formula for updating a red
point involves only the black neighbors. Thereafter, we update all the black points,
and at each black point, only the recently computed red points are involved.

The scalar implementation of the red-black numbered Gauss-Seidel method is
really compact, since we can update values directly in u (this guarantees that we
use the most recently computed values). Here is the relevant code for the Backward
Euler scheme in time and without a source term:

# Update internal points
for sweep in ’red’, ’black’:

for j in range(1, Ny, 1):
if sweep == ’red’:

start = 1 if j % 2 == 1 else 2
elif sweep == ’black’:

start = 2 if j % 2 == 1 else 1
for i in range(start, Nx, 2):
u[i,j] = 1.0/(1.0 + 2*(Fx + Fy))*(

Fx*(u[i+1,j] + u[i-1,j]) +
Fy*(u[i,j+1] + u[i,j-1]) + u_n[i,j])

The vectorized version must be based on slices. Looking at a typical red-black
pattern, e.g.,

r b r b r b r
b r b r b r b
r b r b r b r
b r b r b r b
r b r b r b r
b r b r b r b
r b r b r b r

we want to update the internal points (marking boundary points with x):

x x x x x x x
x r b r b r x
x b r b r b x
x r b r b r x
x b r b r b x
x r b r b r x
x x x x x x x
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It is impossible to make one slice that picks out all the internal red points. Instead,
we need two slices. The first involves points marked with R:

x x x x x x x
x R b R b R x
x b r b r b x
x R b R b R x
x b r b r b x
x R b R b R x
x x x x x x x

This slice is specified as 1::2 for i and 1::2 for j, or with slice objects:

i = slice(1, None, 2); j = slice(1, None, 2)

The second slice involves the red points with R:

x x x x x x x
x r b r b r x
x b R b R b x
x r b r b r x
x b R b R b x
x r b r b r x
x x x x x x x

The slices are

i = slice(2, None, 2); j = slice(2, None, 2)

For the black points, the first slice involves the B points:

x x x x x x x
x r B r B r x
x b r b r b x
x r B r B r x
x b r b r b x
x r B r B r x
x x x x x x x

with slice objects

i = slice(2, None, 2); j = slice(1, None, 2)
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The second set of black points is shown here:

x x x x x x x
x r b r b r x
x B r B r B x
x r b r b r x
x B r B r B x
x r b r b r x
x x x x x x x

with slice objects

i = slice(1, None, 2); j = slice(2, None, 2)

That is, we need four sets of slices. The simplest way of implementing the
algorithm is to make a function with variables for the slices representing i , i � 1,
i C 1, j , j � 1, and j C 1, here called ic (“i center”), im1 (“i minus 1”, ip1 (“i
plus 1”), jc, jm1, and jp1, respectively.

def update(u_, u_n, ic, im1, ip1, jc, jm1, jp1):
return \

1.0/(1.0 + 2*theta*(Fx + Fy))*(theta*(
Fx*(u_[ip1,jc] + u_[im1,jc]) +
Fy*(u_[ic,jp1] + u_[ic,jm1])) +\

u_n[ic,jc] + (1-theta)*(
Fx*(u_n[ip1,jc] - 2*u_n[ic,jc] + u_n[im1,jc]) +\
Fy*(u_n[ic,jp1] - 2*u_n[ic,jc] + u_n[ic,jm1]))+\
theta*dt*f_a_np1[ic,jc] + \
(1-theta)*dt*f_a_n[ic,jc])

The formula returned from update is to be compared with (3.110).
The relaxed Jacobi iteration can be implemented by

ic = jc = slice(1,-1)
im1 = jm1 = slice(0,-2)
ip1 = jp1 = slice(2,None)
u_new[ic,jc] = update(

u_, u_n, ic, im1, ip1, jc, jm1, jp1)
u[ic,jc] = omega*u_new[ic,jc] + (1-omega)*u_[ic,jc]

The Gauss-Seidel (or SOR) updates need four different steps. The ic and jc
slices are specified above. For each of these, we must specify the corresponding
im1, ip1, jm1, and jp1 slices. The code below contains the details.
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# Red points
ic = slice(1,-1,2)
im1 = slice(0,-2,2)
ip1 = slice(2,None,2)
jc = slice(1,-1,2)
jm1 = slice(0,-2,2)
jp1 = slice(2,None,2)
u_new[ic,jc] = update(

u_new, u_n, ic, im1, ip1, jc, jm1, jp1)

ic = slice(2,-1,2)
im1 = slice(1,-2,2)
ip1 = slice(3,None,2)
jc = slice(2,-1,2)
jm1 = slice(1,-2,2)
jp1 = slice(3,None,2)
u_new[ic,jc] = update(

u_new, u_n, ic, im1, ip1, jc, jm1, jp1)

# Black points
ic = slice(2,-1,2)
im1 = slice(1,-2,2)
ip1 = slice(3,None,2)
jc = slice(1,-1,2)
jm1 = slice(0,-2,2)
jp1 = slice(2,None,2)
u_new[ic,jc] = update(

u_new, u_n, ic, im1, ip1, jc, jm1, jp1)

ic = slice(1,-1,2)
im1 = slice(0,-2,2)
ip1 = slice(2,None,2)
jc = slice(2,-1,2)
jm1 = slice(1,-2,2)
jp1 = slice(3,None,2)
u_new[ic,jc] = update(

u_new, u_n, ic, im1, ip1, jc, jm1, jp1)

# Relax
c = slice(1,-1)
u[c,c] = omega*u_new[c,c] + (1-omega)*u_[c,c]

The function solver_classic_iterative in diffu2D_u0.py contains a uni-
fied implementation of the relaxed Jacobi and SORmethods in scalar and vectorized
versions using the techniques explained above.

3.6.15 Direct Versus IterativeMethods

Direct methods There are two classes of methods for solving linear systems: di-
rect methods and iterative methods. Direct methods are based on variants of the
Gaussian elimination procedure and will produce an exact solution (in exact arith-
metics) in an a priori known number of steps. Iterative methods, on the other hand,
produce an approximate solution, and the amount of work for reaching a given ac-
curacy is usually not known.

http://tinyurl.com/nu656p2/diffu/diffu2D_u0.py
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The most common direct method today is to use the LU factorization procedure
to factor the coefficient matrix A as the product of a lower-triangular matrixL (with
unit diagonal terms) and an upper-triangular matrix U : A D LU . As soon as we
have L and U , a system of equations LUc D b is easy to solve because of the
triangular nature of L and U . We first solve Ly D b for y (forward substitution),
and thereafter we find c from solving Uc D y (backward substitution). When A is
a dense N �N matrix, the LU factorization costs 1

3
N 3 arithmetic operations, while

the forward and backward substitution steps each require of the orderN2 arithmetic
operations. That is, factorization dominates the costs, while the substitution steps
are cheap.

Symmetric, positive definite coefficient matrices often arise when discretizing
PDEs. In this case, the LU factorization becomes A D LLT , and the associated
algorithm is known as Cholesky factorization. Most linear algebra software offers
highly optimized implementations of LU and Cholesky factorization as well as for-
ward and backward substitution (scipy.linalg is the relevant Python package).

Finite difference discretizations lead to sparse coefficient matrices. An extreme
case arose in Sect. 3.2.1 where A was tridiagonal. For a tridiagonal matrix, the
amount of arithmetic operations in the LU and Cholesky factorization algorithms
is just of the order N , not N3. Tridiagonal matrices are special cases of banded
matrices, where the matrices contain just a set of diagonal bands. Finite difference
methods on regularly numbered rectangular and box-shaped meshes give rise to
such banded matrices, with 5 bands in 2D and 7 in 3D for diffusion problems.
Gaussian elimination only needs to work within the bands, leading to much more
efficient algorithms.

If Ai;j D 0 for j > i C p and j < i � p, p is the half-bandwidth of the
matrix. We have in our 2D problem p D NxC2, while in 3D, p D .NxC1/.NyC
1/ C 2. The cost of Gaussian elimination is then O.Np2/, so with p 
 N , we
see that banded matrices are much more efficient to compute with. By reordering
the unknowns in clever ways, one can reduce the work of Gaussian elimination
further. Fortunately, the Python programmer has access to such algorithms through
the scipy.sparse.linalg package.

Although a direct method is an exact algorithm, rounding errors may in practice
accumulate and pollute the solution. The effect grows with the size of the linear
system, so both for accuracy and efficiency, iterative methods are better suited than
direct methods for solving really large linear systems.

Iterative methods The Jacobi and SOR iterative methods belong to a class of it-
erative methods where the idea is to solve Au D b by splitting A into two parts,
A D M � N , such that solving systems Mu D c is easy and efficient. With the
splitting, we get a system

Mu D NuC b;

which suggests an iterative method

MurC1 D Nur C b; r D 0; 1; 2; : : : ;

where urC1 is a new approximation to u in the r C 1-th iteration. To initiate the
iteration, we need a start vector u0.
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The Jacobi and SOR methods are based on splitting A into a lower tridiagonal
partL, the diagonalD, and an upper tridiagonal part U , such thatA D LCDCU .
The Jacobi method corresponds toM D D and N D �L � U . The Gauss-Seidel
method employsM D LCD and N D �U , while the SOR method corresponds
to

M D 1

!
D C L; N D 1 � !

!
D � U :

The relaxed Jacobi method has similar expressions:

M D 1

!
D; N D 1 � !

!
D � L � U :

With the matrix forms of the Jacobi and SORmethods as written above, we could
in an implementation alternatively fill the matrix A with entries and call general
implementations of the Jacobi or SOR methods that work on a system Au D b.
However, this is almost never done since forming the matrix A requires quite some
code and storing A in the computer’s memory is unnecessary. It is much easier to
just apply the Jacobi and SOR ideas to the finite difference stencils directly in an
implementation, as we have shown in detail.

Nevertheless, the matrix formulation of the Jacobi and SOR methods have been
important for analyzing their convergence behavior. One can show that the error
ur � u fulfills ur � u D Gr.u0 � u/, where G D M�1N and Gk is a matrix
exponential. For the method to converge, limr!1 jjGr jj D 0 is a necessary and
sufficient condition. This implies that the spectral radius of G must be less than
one. Since G is directly related to the finite difference scheme for the underlying
PDE problem, one can in principle compute the spectral radius. For a given PDE
problem, however, this is not a practical strategy, since it is very difficult to de-
velop useful formulas. Analysis of model problems, usually related to the Poisson
equation, reveals some trends of interest: the convergence rate of the Jacobi method
goes like h2, while that of SOR with an optimal ! goes like h, where h is the spa-
tial spacing: h D �x D �y. That is, the efficiency of the Jacobi method quickly
deteriorates with the increasing mesh resolution, and SOR is much to be preferred
(even if the optimal ! remains an open question). We refer to Chapter 4 of [16] for
more information on the convergence theory. One important result is that if A is
symmetric and positive definite, then SOR will converge for any 0 < ! < 2.

The optimal ! parameter can be theoretically established for a Poisson problem
as

!o D 2

1Cp
1 � %2 ; % D cos.�=Nx/C .�x=�y/2 cos.�=Ny/

1C .�x=�y/2
: (3.112)

This formula can be used as a guide also in other problems.
The Jacobi and the SOR methods have their great advantage of being trivial

to implement, so they are obviously popular of this reason. However, the slow
convergence of these methods limits the popularity to fairly small linear systems
(i.e., coarse meshes). As soon as the matrix size grows, one is better off with more
sophisticated iterative methods like the preconditioned Conjugate gradient method,
which we now turn to.
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Finally, we mention that there is a variant of the SORmethod, called the Symmet-
ric Successive Over-relaxationmethod, known as SSOR, where one runs a standard
SOR sweep through the mesh points and then a new sweep while visiting the points
in reverse order.

3.6.16 The Conjugate Gradient Method

There is no simple intuitive derivation of the Conjugate gradient method, so we refer
to the many excellent expositions in the literature for the idea of the method and
how the algorithm is derived. In particular, we recommend the books [1, 2, 5, 16].
A brief overview is provided in the Wikipedia article4. Here, we just state the pros
and cons of the method from a user’s perspective and how we utilize it in code.

The original Conjugate gradient method is limited to linear systems Au D b,
whereA is a symmetric and positive definite matrix. There are, however, extensions
of the method to non-symmetric matrices.

A major advantage of all conjugate gradient methods is that the matrix A is
only used in matrix-vector products, so we do not need form and store A if we can
provide code for computing a matrix-vector productAu. Another important feature
is that the algorithm is very easy to vectorize and parallelize. The primary downside
of the method is that it converges slowly unless one has an effective preconditioner
for the system. That is, instead of solving Au D b, we try to solve M�1Au D
M�1b in the hope that the method works better for this preconditioned system. The
matrixM is the preconditioner or preconditioning matrix. Now we need to perform
matrix-vector products y D M�1Au, which is done in two steps: first the matrix-
vector product v D Au is carried out and then the systemMy D v must be solved.
Therefore, M must be cheap to compute and systems My D v must be cheap to
solve.

A perfect preconditioner is M D A, but in each iteration in the Conjugate gra-
dient method one then has so solve a system with A as coefficient matrix! A key
idea is to letM be some kind of cheap approximation to A. The simplest precondi-
tioner is to setM D D, whereD is the diagonal of A. This choice means running
one Jacobi iteration as preconditioner. Exercise 3.8 shows that the Jacobi and SOR
methods can also be viewed as preconditioners.

Constructing good preconditioners is a scientific field on its own. Here we shall
treat the topic just very briefly. For a user having access to the scipy.sparse.
linalg library, there are Conjugate gradient methods and preconditioners readily
available:

� For positive definite, symmetric systems: cg (the Conjugate gradient method)
� For symmetric systems: minres (Minimum residual method)
� For non-symmetric systems:

– gmres (GMRES: Generalized minimum residual method)
– bicg (BiConjugate gradient method)
– bicgstab (Stabilized BiConjugate gradient method)

4 https://en.wikipedia.org/wiki/Conjugate_gradient_method

https://en.wikipedia.org/wiki/Conjugate_gradient_method
https://en.wikipedia.org/wiki/Conjugate_gradient_method
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– cgs (Conjugate gradient squared method)
– qmr (Quasi-minimal residual iteration)

� Preconditioner: spilu (Sparse, incomplete LU factorization)

The ILU preconditioner is an attractive all-round type of preconditioner that is suit-
able for most problems on serial computers. A more efficient preconditioner is
the multigrid method, and algebraic multigrid is also an all-round choice as pre-
conditioner. The Python package PyAMG5 offers efficient implementations of the
algebraic multigrid method, to be used both as a preconditioner and as a stand-alone
iterative method.

The matrix arising from implicit time discretization methods applied to the dif-
fusion equation is symmetric and positive definite. Thus, we can use the Conjugate
gradient method (cg), typically in combination with an ILU preconditioner. The
code is very similar to the one we created when solving the linear system by sparse
Gaussian elimination, the main difference is that we now allow for calling up the
Conjugate gradient function as an alternative solver.

def solver_sparse(
I, a, f, Lx, Ly, Nx, Ny, dt, T, theta=0.5,
U_0x=0, U_0y=0, U_Lx=0, U_Ly=0, user_action=None,
method=’direct’, CG_prec=’ILU’, CG_tol=1E-5):
"""
Full solver for the model problem using the theta-rule
difference approximation in time. Sparse matrix with
dedicated Gaussian elimination algorithm (method=’direct’)
or ILU preconditioned Conjugate Gradients (method=’CG’ with
tolerance CG_tol and preconditioner CG_prec (’ILU’ or None)).
"""
# Set up data structures as shown before

# Precompute sparse matrix
...

A = scipy.sparse.diags(
diagonals=[main, lower, upper, lower2, upper2],
offsets=[0, -lower_offset, lower_offset,

-lower2_offset, lower2_offset],
shape=(N, N), format=’csc’)

if method == ’CG’:
if CG_prec == ’ILU’:

# Find ILU preconditioner (constant in time)
A_ilu = scipy.sparse.linalg.spilu(A) # SuperLU defaults
M = scipy.sparse.linalg.LinearOperator(

shape=(N, N), matvec=A_ilu.solve)
else:

M = None
CG_iter = [] # No of CG iterations at time level n

# Time loop
for n in It[0:-1]:

# Compute b, vectorized version

5 https://github.com/pyamg/pyamg

https://github.com/pyamg/pyamg
https://github.com/pyamg/pyamg
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# Solve matrix system A*c = b
if method == ’direct’:

c = scipy.sparse.linalg.spsolve(A, b)
elif method == ’CG’:

x0 = u_n.T.reshape(N) # Start vector is u_n
CG_iter.append(0)

def CG_callback(c_k):
"""Trick to count the no of iterations in CG."""
CG_iter[-1] += 1

c, info = scipy.sparse.linalg.cg(
A, b, x0=x0, tol=CG_tol, maxiter=N, M=M,
callback=CG_callback)

# Fill u with vector c
# Update u_n before next step
u_n, u = u, u_n

The number of iterations in the Conjugate gradient method is of interest, but is
unfortunately not available from the cg function. Therefore, we perform a trick:
in each iteration a user function CG_callback is called where we accumulate the
number of iterations in a list CG_iter.

3.6.17 What Is the RecommendedMethod for Solving Linear
Systems?

There is no clear answer to this question. If you have enough memory and comput-
ing time available, direct methods such as spsolve are to be preferred since they
are easy to use and finds almost an exact solution. However, in larger 2D and in
3D problems, direct methods usually run too slowly or require too much memory,
so one is forced to use iterative methods. The fastest and most reliable methods are
in the Conjugate Gradient family, but these require suitable preconditioners. ILU is
an all-round preconditioner, but it is not suited for parallel computing. The Jacobi
and SOR iterative methods are easy to implement, and popular for that reason, but
run slowly. Jacobi iteration is not an option in real problems, but SOR may be.

3.7 RandomWalk

Models leading to diffusion equations, see Sect. 3.8, are usually based on reasoning
with averaged physical quantities such as concentration, temperature, and velocity.
The underlying physical processes involve complicated microscopic movement of
atoms and molecules, but an average of a large number of molecules is performed
in a small volume before the modeling starts, and the averaged quantity inside this
volume is assigned as a point value at the centroid of the volume. This means that
concentration, temperature, and velocity at a space-time point represent averages
around the point in a small time interval and small spatial volume.
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Random walk is a principally different kind of modeling procedure compared to
the reasoning behind partial differential equations. The idea in random walk is to
have a large number of “particles” that undergo random movements. Averaging can
then be used afterwards to compute macroscopic quantities like concentration. The
“particles” and their random movement represent a very simplified microscopic be-
havior of molecules, much simpler and computationally much more efficient than
direct molecular simulation6, yet the random walk model has been very powerful to
describe a wide range of phenomena, including heat conduction, quantum mechan-
ics, polymer chains, population genetics, neuroscience, hazard games, and pricing
of financial instruments.

It can be shown that random walk, when averaged, produces models that are
mathematically equivalent to diffusion equations. This is the primary reason why
we treat randomwalk in this chapter: two very different algorithms (finite difference
stencils and random walk) solve the same type of problems. The simplicity of
the random walk algorithm makes it particularly attractive for solving diffusion
equations on massively parallel computers. The exposition here is as simple as
possible, and good thorough derivation of the models is provided by Hjorth-Jensen
[7].

3.7.1 RandomWalk in 1D

Imagine that we have some particles that perform random moves, either to the right
or to the left. We may flip a coin to decide the movement of each particle, say head
implies movement to the right and tail means movement to the left. Each move is
one unit length. Physicists use the term random walk for this type of movement.
The movement is also known as drunkard’s walk7. You may try this yourself: flip
the coin and make one step to the left or right, and repeat the process.

We introduce the symbol N for the number of steps in a random walk. Fig-
ure 3.16 shows four different random walks with N D 200.

3.7.2 Statistical Considerations

Let Sk be the stochastic variable representing a step to the left or to the right in step
number k. We have that Sk D �1 with probability p and Sk D 1 with probability
q D 1 � p. The variable Sk is known as a Bernoulli variable8. The expectation of
Sk is

EŒSk� D p � .�1/C q � 1 D 1 � 2p;
and the variance is

Var.Sk/ D EŒS2k � � EŒSk�
2 D 1 � .1 � 2p/2 D 4p.1 � p/ :

6 https://en.wikipedia.org/wiki/Molecular_dynamics
7 https://en.wikipedia.org/wiki/The_Drunkard%27s_Walk
8 https://en.wikipedia.org/wiki/Bernoulli_distribution

https://en.wikipedia.org/wiki/Molecular_dynamics
https://en.wikipedia.org/wiki/The_Drunkard%27s_Walk
https://en.wikipedia.org/wiki/Bernoulli_distribution
https://en.wikipedia.org/wiki/Molecular_dynamics
https://en.wikipedia.org/wiki/The_Drunkard%27s_Walk
https://en.wikipedia.org/wiki/Bernoulli_distribution
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Fig. 3.16 Ensemble of 4 random walks, each with 200 steps

The position after k steps is another stochastic variable

NXk D
k�1X
iD0

Si :

The expected position is

EŒ NXk� D E

 
k�1X
iD0

Si

!
D

k�1X
iD0

EŒSi � D k.1 � 2p/ :

All the Sk variables are independent. The variance therefore becomes

Var. NXk/ D Var

 
k�1X
iD0

Si

!
D

k�1X
iD0

Var.Si / D k4p.1 � p/ :

We see that Var. NXk/ is proportional with the number of steps k. For the very im-
portant case p D q D 1

2
, EŒ NXk� D 0 and Var. NXk/ D k.

How can we estimate EŒ NXk� D 0 and Var. NXk/ D N ? We must have many
random walks of the type in Fig. 3.16. For a given k, say k D 100, we find all
the values of NXk , name them Nx0;k , Nx1;k , Nx2;k , and so on. The empirical estimate of
EŒ NXk� is the average,

EŒ NXk� � 1

W

W�1X
jD0

Nxj;k;
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while an empirical estimate of Var. NXk/ is

Var. NXk/ � 1

W

W�1X
jD0

. Nxj;k/2 �
0
@ 1

W

W�1X
jD0

Nxj;k
1
A
2

:

That is, we take the statistics for a given K across the ensemble of random walks
(“vertically” in Fig. 3.16). The key quantities to record are

P
i Nxi;k and

P
i Nx2i;k .

3.7.3 Playing Around with Some Code

Scalar code Python has a random module for drawing random numbers, and this
module has a function uniform(a, b) for drawing a uniformly distributed random
number in the interval Œa; b/. If an event happens with probability p, we can sim-
ulate this on the computer by drawing a random number r in Œ0; 1/, because then
r � p with probability p and r > p with probability 1 � p:

import random
r = random.uniform(0, 1)
if r <= p:

# Event happens
else:

# Event does not happen

A random walk with N steps, starting at x0, where we move to the left with proba-
bility p and to the right with probability 1 � p can now be implemented by

import random, numpy as np

def random_walk1D(x0, N, p):
"""1D random walk with 1 particle."""
# Store position in step k in position[k]
position = np.zeros(N)
position[0] = x0
current_pos = x0
for k in range(N-1):

r = random.uniform(0, 1)
if r <= p:

current_pos -= 1
else:

current_pos += 1
position[k+1] = current_pos

return position

Vectorized code SinceN is supposed to be large and we want to repeat the process
for many particles, we should speed up the code as much as possible. Vectorization
is the obvious technique here: we draw all the random numbers at once with aid
of numpy, and then we formulate vector operations to get rid of the loop over the
steps (k). The numpy.random module has vectorized versions of the functions in
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Python’s built-in random module. For example, numpy.random.uniform(a, b,
N) returns N random numbers uniformly distributed between a (included) and b (not
included).

We can then make an array of all the steps in a random walk: if the random
number is less than or equal to p, the step is �1, otherwise the step is 1:

r = np.random.uniform(0, 1, size=N)
steps = np.where(r <= p, -1, 1)

The value of position[k] is the sum of all steps up to step k. Such sums are
often needed in vectorized algorithms and therefore available by the numpy.cumsum
function:

>>> import numpy as np
>>> np.cumsum(np.array([1,3,4,6]))
array([ 1, 4, 8, 14])

The resulting array in this demo has elements 1, 1 C 3 D 4, 1 C 3 C 4 D 8, and
1C 3C 4C 6 D 14.

We can now vectorize the random_walk1D function:

def random_walk1D_vec(x0, N, p):
"""Vectorized version of random_walk1D."""
# Store position in step k in position[k]
position = np.zeros(N+1)
position[0] = x0
r = np.random.uniform(0, 1, size=N)
steps = np.where(r <= p, -1, 1)
position[1:] = x0 + np.cumsum(steps)
return position

This code runs about 10 times faster than the scalar version. With a parallel numpy
library, the code can also automatically take advantage of hardware for parallel
computing because each of the four array operations can be trivially parallelized.

Fixing the random sequence During software development with random numbers
it is advantageous to always generate the same sequence of random numbers, as this
may help debugging processes. To fix the sequence, we set a seed of the random
number generator to some chosen integer, e.g.,

np.random.seed(10)

Calls to random_walk1D_vecgive positions of the particle as depicted in Fig. 3.17.
The particle starts at the origin and moves with p D 1

2
. Since the seed is the same,

the plot to the left is just a magnification of the first 1000 steps in the plot to the
right.
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Fig. 3.17 1000 (left) and 50,000 (right) steps of a random walk

Verification When we have a scalar and a vectorized code, it is always a good idea
to develop a unit test for checking that they produce the same result. A problem
in the present context is that the two versions apply two different random number
generators. For a test to be meaningful, we need to fix the seed and use the same
generator. This means that the scalar version must either use np.random or have
this as an option. An option is the most flexible choice:

import random

def random_walk1D(x0, N, p, random=random):
...
r = random.uniform(0, 1)

Using random=np.random, the r variable gets computed by np.random.uniform,
and the sequence of random numbers will be the same as in the vectorized version
that employs the same generator (given that the seed is also the same). A proper test
function may be to check that the positions in the walk are the same in the scalar
and vectorized implementations:

def test_random_walk1D():
# For fixed seed, check that scalar and vectorized versions
# produce the same result
x0 = 2; N = 4; p = 0.6
np.random.seed(10)
scalar_computed = random_walk1D(x0, N, p, random=np.random)
np.random.seed(10)
vectorized_computed = random_walk1D_vec(x0, N, p)
assert (scalar_computed == vectorized_computed).all()

Note that we employ == for arrays with real numbers, which is normally an inad-
equate test due to rounding errors, but in the present case, all arithmetics consists
of adding or subtracting one, so these operations are expected to have no rounding
errors. Comparing two numpy arrays with == results in a boolean array, so we need
to call the all()method to ensure that all elements are True, i.e., that all elements
in the two arrays match each other pairwise.
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3.7.4 Equivalence with Diffusion

The original random walk algorithm can be said to work with dimensionless co-
ordinates Nxi D �N C i , i D 0; 1; : : : ; 2N C 1 (i 2 Œ�N;N �), and Ntn D n,
n D 0; 1; : : : ; N . A mesh with spacings �x and �t with dimensions can be intro-
duced by

xi D X0 C Nxi�x; tn D Ntn�t :
If we implement the algorithm with dimensionless coordinates, we can just use this
rescaling to obtain the movement in a coordinate system without unit spacings.

Let P nC1
i be the probability of finding the particle at mesh point Nxi at time NtnC1.

We can reach mesh point .i; n C 1/ in two ways: either coming in from the left
from .i � 1; n/ or from the right (i C 1; n/. Each has probability 1

2
(if we assume

p D q D 1
2
). The fundamental equation for PnC1

i is

P nC1
i D 1

2
P n
i�1 C

1

2
P n
iC1 : (3.113)

(This equation is easiest to understand if one looks at the random walk as a Markov
process and applies the transition probabilities, but this is beyond scope of the
present text.)

Subtracting P n
i from (3.113) results in

P nC1
i � P n

i D 1

2

�
P n
i�1 � 2P n

i C 1

2
P n
iC1

�
:

Readers who have seen the Forward Euler discretization of a 1D diffusion equation
recognize this scheme as very close to such a discretization. We have

@

@t
P.xi ; tn/ D P nC1

i � P n
i

�t
CO.�t/;

or in dimensionless coordinates

@

@Nt P. Nxi ; Ntn/ � P nC1
i � P n

i :

Similarly, we have

@2

@x2
P.xi ; tn/ D

P n
i�1 � 2P n

i C 1
2
P n
iC1

�x2
CO.�x2/;

@2

@x2
P. Nxi ; Ntn/ � P n

i�1 � 2P n
i C 1

2
P n
iC1 :

Equation (3.113) is therefore equivalent with the dimensionless diffusion equation

@P

@Nt D 1

2

@2P

@ Nx2 ; (3.114)

or the diffusion equation
@P

@t
D D

@2P

@x2
; (3.115)
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with diffusion coefficient

D D �x2

2�t
:

This derivation shows the tight link between random walk and diffusion. If we
keep track of where the particle is, and repeat the process many times, or run the
algorithms for lots of particles, the histogram of the positions will approximate the
solution of the diffusion equation for the local probability Pn

i .
Suppose all the random walks start at the origin. Then the initial condition for

the probability distribution is the Dirac delta function ı.x/. The solution of (3.114)
can be shown to be

NP . Nx; Nt/ D 1p
4�˛t

e�
x2

4˛t ; (3.116)

where ˛ D 1
2
.

3.7.5 Implementation ofMultiple Walks

Our next task is to implement an ensemble of walks (for statistics, see Sect. 3.7.2)
and also provide data from the walks such that we can compute the probabilities of
the positions as introduced in the previous section. An appropriate representation of
probabilities P n

i are histograms (with i along the x axis) for a few selected values
of n.

To estimate the expectation and variance of the random walks, Sect. 3.7.2 points
to recording

P
j xj;k and

P
j x

2
j;k, where xj;k is the position at time/step level k in

random walk number j . The histogram of positions needs the individual values xi;k
for all i values and some selected k values.

We introduce position[k] to hold
P
j xj;k, position2[k] to hold

P
j .xj;k/

2,
and pos_hist[i,k] to hold xi;k. A selection of k values can be specified by saying
how many, num_times, and let them be equally spaced through time:

pos_hist_times = [(N//num_times)*i for i in range(num_times)]

This is one of the few situations where we want integer division (//) or real division
rounded to an integer.

Scalar version Our scalar implementation of running num_walks random walks
may go like this:

def random_walks1D(x0, N, p, num_walks=1, num_times=1,
random=random):

"""Simulate num_walks random walks from x0 with N steps."""
position = np.zeros(N+1) # Accumulated positions
position[0] = x0*num_walks
position2 = np.zeros(N+1) # Accumulated positions**2
position2[0] = x0**2*num_walks
# Histogram at num_times selected time points
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N//num_times)*i for i in range(num_times)]
#print ’save hist:’, post_hist_times



3.7 RandomWalk 295

for n in range(num_walks):
num_times_counter = 0
current_pos = x0
for k in range(N):

if k in pos_hist_times:
#print ’save, k:’, k, num_times_counter, n
pos_hist[n,num_times_counter] = current_pos
num_times_counter += 1

# current_pos corresponds to step k+1
r = random.uniform(0, 1)
if r <= p:

current_pos -= 1
else:

current_pos += 1
position [k+1] += current_pos
position2[k+1] += current_pos**2

return position, position2, pos_hist, np.array(pos_hist_times)

Vectorized version We have already vectorized a single random walk. The
additional challenge here is to vectorize the computation of the data for the his-
togram, pos_hist, but given the selected steps in pos_hist_times, we can
find the corresponding positions by indexing with the list pos_hist_times:
position[post_hist_times], which are to be inserted in pos_hist[n,:].

def random_walks1D_vec1(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D."""
position = np.zeros(N+1) # Accumulated positions
position2 = np.zeros(N+1) # Accumulated positions**2
walk = np.zeros(N+1) # Positions of current walk
walk[0] = x0
# Histogram at num_times selected time points
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N//num_times)*i for i in range(num_times)]

for n in range(num_walks):
r = np.random.uniform(0, 1, size=N)
steps = np.where(r <= p, -1, 1)
walk[1:] = x0 + np.cumsum(steps) # Positions of this walk
position += walk
position2 += walk**2
pos_hist[n,:] = walk[pos_hist_times]

return position, position2, pos_hist, np.array(pos_hist_times)

Improved vectorized version Looking at the vectorized version above, we still
have one potentially long Python loop over n. Normally, num_walks will be much
larger than N. The vectorization of the loop over N certainly speeds up the program,
but if we think of vectorization as also a way to parallelize the code, all the in-
dependent walks (the n loop) can be executed in parallel. Therefore, we should
include this loop as well in the vectorized expressions, at the expense of using more
memory.

We introduce the array walks to hold the N C 1 steps of all the walks: each row
represents the steps in one walk.
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walks = np.zeros((num_walks, N+1)) # Positions of each walk
walks[:,0] = x0

Since all the steps are independent, we can just make one long vector of enough
random numbers (N*num_walks), translate these numbers to ˙1, then we reshape
the array such that the steps of each walk are stored in the rows.

r = np.random.uniform(0, 1, size=N*num_walks)
steps = np.where(r <= p, -1, 1).reshape(num_walks, N)

The next step is to sum up the steps in each walk. We need the np.cumsum func-
tion for this, with the argument axis=1 for indicating a sum across the columns:

>>> a = np.arange(6).reshape(2,3)
>>> a
array([[0, 1, 2],

[3, 4, 5]])
>>> np.cumsum(a, axis=1)
array([[ 0, 1, 3],

[ 3, 7, 12]])

Now walks can be computed by

walks[:,1:] = x0 + np.cumsum(steps, axis=1)

The position vector is the sum of all the walks. That is, we want to sum all the
rows, obtained by

position = np.sum(walks, axis=0)

A corresponding expression computes the squares of the positions. Finally, we need
to compute pos_hist, but that is a matter of grabbing some of the walks (according
to pos_hist_times):

pos_hist[:,:] = walks[:,pos_hist_times]

The complete vectorized algorithm without any loop can now be summarized:

def random_walks1D_vec2(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D; no loops."""
position = np.zeros(N+1) # Accumulated positions
position2 = np.zeros(N+1) # Accumulated positions**2
walks = np.zeros((num_walks, N+1)) # Positions of each walk
walks[:,0] = x0
# Histogram at num_times selected time points
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N//num_times)*i for i in range(num_times)]
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r = np.random.uniform(0, 1, size=N*num_walks)
steps = np.where(r <= p, -1, 1).reshape(num_walks, N)
walks[:,1:] = x0 + np.cumsum(steps, axis=1)
position = np.sum(walks, axis=0)
position2 = np.sum(walks**2, axis=0)
pos_hist[:,:] = walks[:,pos_hist_times]
return position, position2, pos_hist, np.array(pos_hist_times)

What is the gain of the vectorized implementations? One important gain is that
each vectorized operation can be automatically parallelized if one applies a parallel
numpy library like Numba9. On a single CPU, however, the speed up of the vec-
torized operations is also significant. With N D 1000 and 50,000 repeated walks,
the two vectorized versions run about 25 and 18 times faster than the scalar version,
with random_walks1D_vec1 being fastest.

Remark on vectorized code and parallelization Our first attempt on vectoriza-
tion removed the loop over the N steps in a single walk. However, the number of
walks is usually much larger than N , because of the need for accurate statistics.
Therefore, we should rather remove the loop over all walks. It turns out, from our
efficiency experiments, that the function random_walks1D_vec2 (with no loops) is
slower than random_walks1D_vec1. This is a bit surprising and may be explained
by less efficiency in the statements involving very large arrays, containing all steps
for all walks at once.

From a parallelization and improved vectorization point of view, it would be
more natural to switch the sequence of the loops in the serial code such that the
shortest loop is the outer loop:

def random_walks1D2(x0, N, p, num_walks=1, num_times=1, ...):
...
current_pos = x0 + np.zeros(num_walks)
num_times_counter = -1

for k in range(N):
if k in pos_hist_times:
num_times_counter += 1
store_hist = True

else:
store_hist = False

for n in range(num_walks):
# current_pos corresponds to step k+1
r = random.uniform(0, 1)

if r <= p:
current_pos[n] -= 1

else:
current_pos[n] += 1

position [k+1] += current_pos[n]
position2[k+1] += current_pos[n]**2
if store_hist:

pos_hist[n,num_times_counter] = current_pos[n]
return position, position2, pos_hist, np.array(pos_hist_times)

9 http://numba.pydata.org

http://numba.pydata.org
http://numba.pydata.org
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The vectorized version of this code, where we just vectorize the loop over n, be-
comes

def random_walks1D2_vec1(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D2."""
position = np.zeros(N+1) # Accumulated positions
position2 = np.zeros(N+1) # Accumulated positions**2
# Histogram at num_times selected time points
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N//num_times)*i for i in range(num_times)]

current_pos = np.zeros(num_walks)
current_pos[0] = x0
num_times_counter = -1

for k in range(N):
if k in pos_hist_times:
num_times_counter += 1
store_hist = True # Store histogram data for this k

else:
store_hist = False

# Move all walks one step
r = np.random.uniform(0, 1, size=num_walks)
steps = np.where(r <= p, -1, 1)
current_pos += steps
position[k+1] = np.sum(current_pos)
position2[k+1] = np.sum(current_pos**2)
if store_hist:

pos_hist[:,num_times_counter] = current_pos
return position, position2, pos_hist, np.array(pos_hist_times)

This function runs significantly faster than the random_walks1D_vec1 function
above, typically 1.7 times faster. The code is also more appropriate in a paral-
lel computing context since each vectorized statement can work with data of size
num_walks over the compute units, repeated N times (compared with data of size
N, repeated num_walks times, in random_walks1D_vec1).

The scalar code with switched loops, random_walks1D2 runs a bit slower than
the original code in random_walks1D, so with the longest loop as the inner loop,
the vectorized function random_walks1D2_vec1 is almost 60 times faster than the
scalar counterpart, while the code random_walks1D_vec2 without loops is only
around 18 times faster. Taking into account the very large arrays required by the
latter function, we end up with random_walks1D2_vec1 as the preferred imple-
mentation.

Test function During program development, it is highly recommended to carry out
computations by hand for, e.g., N=4 and num_walks=3. Normally, this is done by
executing the program with these parameters and checking with pen and paper that
the computations make sense. The next step is to use this test for correctness in a
formal test function.

First, we need to check that the simulation of multiple random walks reproduces
the results of random_walk1D,random_walk1D_vec1, and random_walk1D_vec2
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for the first walk, if the seed is the same. Second, we run three random walks (N=4)
with the scalar and the two vectorized versions and check that the returned arrays
are identical.

For this type of test to be successful, we must be sure that exactly the same set
of random numbers are used in the three versions, a fact that requires the same ran-
dom number generator and the same seed, of course, but also the same sequence of
computations. This is not obviously the case with the three random_walk1D* func-
tions we have presented. The critical issue in random_walk1D_vec1 is that the first
random numbers are used for the first walk, the second set of random numbers is
used for the second walk and so on, to be compatible with how the random numbers
are used in the function random_walk1D. For the function random_walk1D_vec2
the situation is a bit more complicated since we generate all the random numbers
at once. However, the critical step now is the reshaping of the array returned from
np.where: we must reshape as (num_walks, N) to ensure that the first N random
numbers are used for the first walk, the next N numbers are used for the second
walk, and so on.

We arrive at the test function below.

def test_random_walks1D():
# For fixed seed, check that scalar and vectorized versions
# produce the same result
x0 = 0; N = 4; p = 0.5

# First, check that random_walks1D for 1 walk reproduces
# the walk in random_walk1D
num_walks = 1
np.random.seed(10)
computed = random_walks1D(

x0, N, p, num_walks, random=np.random)
np.random.seed(10)
expected = random_walk1D(

x0, N, p, random=np.random)
assert (computed[0] == expected).all()

# Same for vectorized versions
np.random.seed(10)
computed = random_walks1D_vec1(x0, N, p, num_walks)
np.random.seed(10)
expected = random_walk1D_vec(x0, N, p)
assert (computed[0] == expected).all()
np.random.seed(10)
computed = random_walks1D_vec2(x0, N, p, num_walks)
np.random.seed(10)
expected = random_walk1D_vec(x0, N, p)
assert (computed[0] == expected).all()

# Second, check multiple walks: scalar == vectorized
num_walks = 3
num_times = N
np.random.seed(10)
serial_computed = random_walks1D(

x0, N, p, num_walks, num_times, random=np.random)
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np.random.seed(10)
vectorized1_computed = random_walks1D_vec1(

x0, N, p, num_walks, num_times)
np.random.seed(10)
vectorized2_computed = random_walks1D_vec2(

x0, N, p, num_walks, num_times)
# positions: [0, 1, 0, 1, 2]
# Can test without tolerance since everything is +/- 1
return_values = [’pos’, ’pos2’, ’pos_hist’, ’pos_hist_times’]
for s, v, r in zip(serial_computed,

vectorized1_computed,
return_values):

msg = ’%s: %s (serial) vs %s (vectorized)’ % (r, s, v)
assert (s == v).all(), msg

for s, v, r in zip(serial_computed,
vectorized2_computed,
return_values):

msg = ’%s: %s (serial) vs %s (vectorized)’ % (r, s, v)
assert (s == v).all(), msg

Such test functions are indispensable for further development of the code as we
can at any time test whether the basic computations remain correct or not. This
is particularly important in stochastic simulations since without test functions and
fixed seeds, we always experience variations from run to run, and it can be very
difficult to spot bugs through averaged statistical quantities.

3.7.6 Demonstration of Multiple Walks

Assuming now that the code works, we can just scale up the number of steps in each
walk and the number of walks. The latter influences the accuracy of the statistical
estimates. Figure 3.18 shows the impact of the number of walks on the expectation,
which should approach zero. Figure 3.19 displays the corresponding estimate of
the variance of the position, which should grow linearly with the number of steps.
It does, seemingly very accurately, but notice that the scale on the y axis is so much
larger than for the expectation, so irregularities due to the stochastic nature of the
process become so much less visible in the variance plots. The probability of find-
ing a particle at a certain position at time (or step) 800 is shown in Fig. 3.20. The
dashed red line is the theoretical distribution (3.116) arising from solving the dif-
fusion equation (3.114) instead. As always, we realize that one needs significantly
more statistical samples to estimate a histogram accurately than the expectation or
variance.

3.7.7 Ascii Visualization of 1D RandomWalk

If we want to study (very) long time series of random walks, it can be convenient
to plot the position in a terminal window with the time axis pointing downwards.
The module avplotter in SciTools has a class Plotter for plotting functions in
the terminal window with the aid of ascii symbols only. Below is the code required
to visualize a simple random walk, starting at the origin, and considered over when
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Fig. 3.18 Estimated expected value for 1000 steps, using 100 walks (upper left), 10,000 (upper
right), 100,000 (lower left), and 1,000,000 (lower right)

the point x D �1 is reached. We use a spacing�x D 0:05 (so x D �1 corresponds
to i D �20).

def run_random_walk():
from scitools.avplotter import Plotter
import time, numpy as np
p = Plotter(-1, 1, width=75) # Horizontal axis: 75 chars wide
dx = 0.05
np.random.seed(10)

x = 0
while True:

random_step = 1 if np.random.random() > 0.5 else -1
x = x + dx*random_step
if x < -1:

break # Destination reached!
print p.plot(0, x)

# Allow Ctrl+c to abort the simulation
try:

time.sleep(0.1) # Wait for interrupt
except KeyboardInterrupt:

print ’Interrupted by Ctrl+c’
break
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Fig. 3.19 Estimated variance over 1000 steps, using 100 walks (upper left), 10,000 (upper right),
100,000 (lower left), and 1,000,000 (lower right)

Observe that we implement an infinite loop, but allow a smooth interrupt of the
program by Ctrl+c through Python’s KeyboardInterrupt exception. This is a
useful recipe that can be used in many occasions!

The output looks typically like

* |
* |

* |
* |

* |
* |

* |
* |

* |
* |

* |
* |

* |
* |

* |
* |

* |
* |
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Fig. 3.20 Estimated probability distribution at step 800, using 100 walks (upper left), 10,000
(upper right), 100,000 (lower left), and 1,000,000 (lower right)

Positions beyond the limits of the x axis appear with a value. A long file10 contains
the complete ascii plot corresponding to the function run_random_walk above.

3.7.8 RandomWalk as a Stochastic Equation

The (dimensionless) position in a randomwalk, NXk , can be expressed as a stochastic
difference equation:

NXk D NXk�1 C s; x0 D 0; (3.117)

where s is a Bernoulli variable11, taking on the two values s D �1 and s D 1 with
equal probability:

P.s D 1/ D 1

2
; P.s D �1/ D 1

2
:

The s variable in a step is independent of the s variable in other steps.
The difference equation expresses essentially the sum of independent Bernoulli

variables. Because of the central limit theorem, Xk , will then be normally dis-
tributed with expectation kEŒs� and kVar.s/. The expectation and variance of a
Bernoulli variable with values r D 0 and r D 1 are p and p.1 � p/, respectively.
10 http://bit.ly/1UbULeH
11 https://en.wikipedia.org/wiki/Bernoulli_distribution

http://bit.ly/1UbULeH
https://en.wikipedia.org/wiki/Bernoulli_distribution
http://bit.ly/1UbULeH
https://en.wikipedia.org/wiki/Bernoulli_distribution
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The variable s D 2r � 1 then has expectation 2EŒr �� 1 D 2p� 1 D 0 and variance
22Var.r/ D 4p.1 � p/ D 1. The position Xk is normally distributed with zero
expectation and variance k, as we found in Sect. 3.7.2.

The central limit theorem tells that as long as k is not small, the distribution of
Xk remains the same if we replace the Bernoulli variable s by any other stochastic
variable with the same expectation and variance. In particular, we may let s be a
standardized Gaussian variable (zero mean, unit variance).

Dividing (3.117) by �t gives

NXk � NXk�1
�t

D 1

�t
s :

In the limit �t ! 0, s=�t approaches a white noise stochastic process. With NX.t/
as the continuous process in the limit �t ! 0 (Xk ! X.tk/), we formally get the
stochastic differential equation

d NX D dW; (3.118)

whereW.t/ is a Wiener process12. ThenX is also aWiener process. It follows from
the stochastic ODE dX D dW that the probability distribution ofX is given by the
Fokker-Planck equation13 (3.114). In other words, the key results for random walk
we found earlier can alternatively be derived via a stochastic ordinary differential
equation and its related Fokker-Planck equation.

3.7.9 RandomWalk in 2D

The most obvious generalization of 1D random walk to two spatial dimensions is
to allow movements to the north, east, south, and west, with equal probability 1

4
.

def random_walk2D(x0, N, p, random=random):
"""2D random walk with 1 particle and N moves: N, E, W, S."""
# Store position in step k in position[k]
d = len(x0)
position = np.zeros((N+1, d))
position[0,:] = x0
current_pos = np.array(x0, dtype=float)
for k in range(N):

r = random.uniform(0, 1)
if r <= 0.25:

current_pos += np.array([0, 1]) # Move north
elif 0.25 < r <= 0.5:

current_pos += np.array([1, 0]) # Move east
elif 0.5 < r <= 0.75:

current_pos += np.array([0, -1]) # Move south
else:

current_pos += np.array([-1, 0]) # Move west
position[k+1,:] = current_pos

return position

12 https://en.wikipedia.org/wiki/Wiener_process
13 https://en.wikipedia.org/wiki/Fokker-Planck_equation

https://en.wikipedia.org/wiki/Wiener_process
https://en.wikipedia.org/wiki/Fokker-Planck_equation
https://en.wikipedia.org/wiki/Wiener_process
https://en.wikipedia.org/wiki/Fokker-Planck_equation
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Fig. 3.21 Random walks in 2D with 200 steps: rectangular mesh (left) and diagonal mesh (right)

The left plot in Fig. 3.21 provides an example on 200 steps with this kind of walk.
We may refer to this walk as a walk on a rectangular mesh as we move from any
spatial mesh point .i; j / to one of its four neighbors in the rectangular directions:
.i C 1; j /, .i � 1; j /, .i; j C 1/, or .i; j � 1/.

3.7.10 RandomWalk in Any Number of Space Dimensions

From a programming point of view, especially when implementing a random walk
in any number of dimensions, it is more natural to consider a walk in the diagonal
directions NW, NE, SW, and SE. On a two-dimensional spatial mesh it means that
we go from .i; j / to either .iC1; jC1/, .i�1; jC1/, .iC1; j�1/, or .i�1; j�1/.
We can with such a diagonal mesh (see right plot in Fig. 3.21) draw a Bernoulli
variable for the step in each spatial direction and trivially write code that works in
any number of spatial directions:

def random_walkdD(x0, N, p, random=random):
"""Any-D (diagonal) random walk with 1 particle and N moves."""
# Store position in step k in position[k]
d = len(x0)
position = np.zeros((N+1, d))
position[0,:] = x0
current_pos = np.array(x0, dtype=float)
for k in range(N):

for i in range(d):
r = random.uniform(0, 1)
if r <= p:

current_pos[i] -= 1
else:

current_pos[i] += 1
position[k+1,:] = current_pos

return position

A vectorized version is desired. We follow the ideas from Sect. 3.7.3, but each
step is now a vector in d spatial dimensions. We therefore need to drawNd random
numbers in r, compute steps in the various directions through np.where(r <=p,
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Fig. 3.22 Four random walks with 5000 steps in 2D

-1, 1) (each step being �1 or 1), and then we can reshape this array to an N � d
array of step vectors. Doing an np.cumsum summation along axis 0 will add the
vectors, as this demo shows:

>>> a = np.arange(6).reshape(3,2)
>>> a
array([[0, 1],

[2, 3],
[4, 5]])

>>> np.cumsum(a, axis=0)
array([[ 0, 1],

[ 2, 4],
[ 6, 9]])

With such summation of step vectors, we get all the positions to be filled in the
position array:

def random_walkdD_vec(x0, N, p):
"""Vectorized version of random_walkdD."""
d = len(x0)
# Store position in step k in position[k]
position = np.zeros((N+1,d))
position[0] = np.array(x0, dtype=float)
r = np.random.uniform(0, 1, size=N*d)
steps = np.where(r <= p, -1, 1).reshape(N,d)
position[1:,:] = x0 + np.cumsum(steps, axis=0)
return position
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3.7.11 Multiple RandomWalks in Any Number of Space Dimensions

As we did in 1D, we extend one single walk to a number of walks (num_walks in
the code).

Scalar code As always, we start with implementing the scalar case:

def random_walksdD(x0, N, p, num_walks=1, num_times=1,
random=random):

"""Simulate num_walks random walks from x0 with N steps."""
d = len(x0)
position = np.zeros((N+1, d)) # Accumulated positions
position2 = np.zeros((N+1, d)) # Accumulated positions**2
# Histogram at num_times selected time points
pos_hist = np.zeros((num_walks, num_times, d))
pos_hist_times = [(N//num_times)*i for i in range(num_times)]

for n in range(num_walks):
num_times_counter = 0
current_pos = np.array(x0, dtype=float)
for k in range(N):

if k in pos_hist_times:
pos_hist[n,num_times_counter,:] = current_pos
num_times_counter += 1

# current_pos corresponds to step k+1
for i in range(d):

r = random.uniform(0, 1)
if r <= p:

current_pos[i] -= 1
else:

current_pos[i] += 1
position [k+1,:] += current_pos
position2[k+1,:] += current_pos**2

return position, position2, pos_hist, np.array(pos_hist_times)

Vectorized code Significant speed-ups can be obtained by vectorization. We get
rid of the loops in the previous function and arrive at the following vectorized code.

def random_walksdD_vec(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D; no loops."""
d = len(x0)
position = np.zeros((N+1, d)) # Accumulated positions
position2 = np.zeros((N+1, d)) # Accumulated positions**2
walks = np.zeros((num_walks, N+1, d)) # Positions of each walk
walks[:,0,:] = x0
# Histogram at num_times selected time points
pos_hist = np.zeros((num_walks, num_times, d))
pos_hist_times = [(N//num_times)*i for i in range(num_times)]

r = np.random.uniform(0, 1, size=N*num_walks*d)
steps = np.where(r <= p, -1, 1).reshape(num_walks, N, d)
walks[:,1:,:] = x0 + np.cumsum(steps, axis=1)
position = np.sum(walks, axis=0)
position2 = np.sum(walks**2, axis=0)
pos_hist[:,:,:] = walks[:,pos_hist_times,:]
return position, position2, pos_hist, np.array(pos_hist_times)
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3.8 Applications

3.8.1 Diffusion of a Substance

The first process to be considered is a substance that gets transported through a
fluid at rest by pure diffusion. We consider an arbitrary volume V of this fluid,
containing the substance with concentration function c.x; t/. Physically, we can
think of a very small volume with centroid x at time t and assign the ratio of the
volume of the substance and the total volume to c.x; t/. This means that the mass
of the substance in a small volume �V is approximately %c�V , where % is the
density of the substance. Consequently, the total mass of the substance inside the
volume V is the sum of all %c�V , which becomes the volume integral

R
V
%cdV .

Let us reason how the mass of the substance changes and thereby derive a PDE
governing the concentration c. Suppose the substance flows out of V with a flux q.
If�S is a small part of the boundary @V of V , the volume of the substance flowing
out through dS in a small time interval �t is %q � n�t�S , where n is an outward
unit normal to the boundary @V , see Fig. 3.23. We realize that only the normal
component of q is able to transport mass in and out of V . The total outflow of the
mass of the substance in a small time interval �t becomes the surface integralZ

@V

%q � n�t dS :

Assuming conservation of mass, this outflow of mass must be balanced by a loss
of mass inside the volume. The increase of mass inside the volume, during a small
time interval�t , is Z

V

%.c.x; t C�t/ � c.x; t//dV;

assuming % is constant, which is reasonable. The outflow of mass balances the loss
of mass in V , which is the increase with a minus sign. Setting the two contributions
equal to each other ensures balance of mass inside V . Dividing by �t givesZ

V

%
c.x; t C�t/ � c.x; t/

�t
dV D �

Z
@V

%q � n dS :

Note the minus sign on the right-hand side: the left-hand side expresses loss of
mass, while the integral on the right-hand side is the gain of mass.

Fig. 3.23 An arbitrary vol-
ume of a fluid

q

V

n
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Now, letting �t ! 0, we have

c.x; t C�t/ � c.x; t/
�t

! @c

@t
;

so Z
V

%
@c

@t
dV C

Z
@V

%q � ndS D 0 : (3.119)

To arrive at a PDE, we express the surface integral as a volume integral using Gauss’
divergence theorem: Z

V

�
%
@c

@t
Cr � .%q/

�
dV D 0 :

Since % is constant, we can divide by this quantity. If the integral is to vanish for an
arbitrary volume V , the integrandmust vanish too, and we get the mass conservation
PDE for the substance:

@c

@t
Cr � q D 0 : (3.120)

A fundamental problem is that this is a scalar PDE for four unknowns: c and
the three components of q. We therefore need additional equations. Here, Fick’s
law comes at rescue: it models how the flux q of the substance is related to the
concentration c. Diffusion is recognized by mass flowing from regions with high
concentration to regions of low concentration. This principle suggests that q is
proportional to the negative gradient of c:

q D �˛rc; (3.121)

where ˛ is an empirically determined constant. The relation (3.121) is known as
Fick’s law. Inserting (3.121) in (3.120) gives a scalar PDE for the concentration c:

@c

@t
D ˛r2c : (3.122)

3.8.2 Heat Conduction

Heat conduction is a well-known diffusion process. The governing PDE is in this
case based on the first law of thermodynamics: the increase in energy of a system
is equal to the work done on the system, plus the supplied heat. Here, we shall
consider media at rest and neglect work done on the system. The principle then
reduces to a balance between increase in internal energy and supplied heat flow by
conduction.

Let e.x; t/ be the internal energy per unit mass. The increase of the internal
energy in a small volume �V in a small time interval �t is then

%.e.x; t C�t/ � e.x; t//�V;
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where % is the density of the material subject to heat conduction. In an arbitrary
volume V , as depicted in Fig. 3.23, the corresponding increase in internal energy
becomes the volume integral

Z
V

%.e.x; t C�t/� e.x; t//dV :

This increase in internal energy is balanced by heat supplied by conduction. Let q

be the heat flow per time unit. Through the surface @V of V the following amount
of heat flows out of V during a time interval�t :

Z
@V

q � n�t dS :

The simplified version of the first law of thermodynamics then states that

Z
V

%.e.x; t C�t/ � e.x; t//dV D �
Z
@V

q � n�t dS :

The minus sign on the right-hand side ensures that the integral there models net
inflow of heat (since n is an outward unit normal, q � n models outflow). Dividing
by �t and notifying that

lim
�t!0

e.x; t C�t/ � e.x; t/
�t

D @e

@t
;

we get (in the limit �t ! 0)

Z
V

%
@e

@t
dV C

Z
@V

q � n�t dS D 0 :

This is the integral equation for heat conduction, but we aim at a PDE. The next
step is therefore to transform the surface integral to a volume integral via Gauss’
divergence theorem. The result is

Z
V

�
%
@e

@t
Cr � q

�
dV D 0 :

If this equality is to hold for all volumes V , the integrand must vanish, and we have
the PDE

%
@e

@t
D �r � q : (3.123)

Sometimes the supplied heat can come from the medium itself. This is the case,
for instance, when radioactive rock generates heat. Let us add this effect. If f .x; t/
is the supplied heat per unit volume per unit time, the heat supplied in a small
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volume is f�t�V , and inside an arbitrary volume V the supplied generated heat
becomes Z

V

f�tdV :

Adding this to the integral statement of the (simplified) first law of thermodynamics,
and continuing the derivation, leads to the PDE

%
@e

@t
D �r � q C f : (3.124)

There are four unknown scalar fields: e and q. Moreover, the temperature T ,
which is our primary quantity to compute, does not enter the model yet. We need
an additional equation, called the equation of state, relating e, V D 1=% D, and T :
e D e.V; T /. By the chain rule we have

@e

@t
D @e

@T

ˇ̌̌
ˇ
V

@T

@t
C @e

@V

ˇ̌̌
ˇ
T

@V

@t
:

The first coefficient @e=@T is called specific heat capacity at constant volume, de-
noted by cv :

cv D @e

@T

ˇ̌̌
ˇ
V

:

The specific heat capacity will in general vary with T , but taking it as a constant is
a good approximation in many applications.

The term @e=@V models effects due to compressibility and volume expansion.
These effects are often small and can be neglected. We shall do so here. Using
@e=@t D cv@T=@t in the PDE gives

%cv
@T

@t
D �r � q C f :

We still have four unknown scalar fields (T and q). To close the system, we need a
relation between the heat flux q and the temperature T called Fourier’s law:

q D �krT;

which simply states that heat flows from hot to cold areas, along the path of greatest
variation. In a solid medium, k depends on the material of the medium, and in multi-
material media one must regard k as spatially dependent. In a fluid, it is common
to assume that k is constant. The value of k reflects how easy heat is conducted
through the medium, and k is named the coefficient of heat conduction.

We now have one scalar PDE for the unknown temperature field T .x; t/:

%cv
@T

@t
D r � .krT /C f : (3.125)
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3.8.3 Porous Media Flow

The requirement of mass balance for flow of a single, incompressible fluid through
a deformable (elastic) porous medium leads to the equation

S
@p

@t
Cr �

�
q � ˛ @u

@t

�
D 0;

where p is the fluid pressure, q is the fluid velocity, u is the displacement (defor-
mation) of the medium, S is the storage coefficient of the medium (related to the
compressibility of the fluid and the material in the medium), and ˛ is another coeffi-
cient. In many circumstances, the last term with u can be neglected, an assumption
that decouples the equation above from a model for the deformation of the medium.
The famous Darcy’s law relates q to p:

q D �K
�
.rp � %g/;

whereK is the permeability of the medium, � is the dynamic viscosity of the fluid,
% is the density of the fluid, and g is the acceleration of gravity, here taken as
g D �gk. Combining the two equations results in the diffusion model

S
@p

@t
D ��1r.Krp/C %g

�

@K

@z
: (3.126)

Boundary conditions consist of specifying p or q � n (i.e., normal velocity) at each
point of the boundary.

3.8.4 Potential Fluid Flow

Let v be the velocity of a fluid. The condition r�v D 0 is relevant for many flows,
especially in geophysics when viscous effects are negligible. From vector calculus
it is known that r�v D 0 implies that v can be derived from a scalar potential field
�: v D r�. If the fluid is incompressible, r � v D 0, it follows that r � r� D 0, or

r2� D 0 : (3.127)

This Laplace equation is sufficient for determining � and thereby describe the fluid
motion. This type of flow is known as potential flow14. One very important appli-
cation where potential flow is a good model is water waves. As boundary condition
we must prescribe v � n D @�=@n. This gives rise to what is known as a pure
Neumann problem and will cause numerical difficulties because � and � plus any
constant are two solutions of the problem. The simplest remedy is to fix the value
of � at a point.

14 https://en.wikipedia.org/wiki/Potential_flow

https://en.wikipedia.org/wiki/Potential_flow
https://en.wikipedia.org/wiki/Potential_flow
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3.8.5 Streamlines for 2D Fluid Flow

The streamlines in a two-dimensional stationary fluid flow are lines tangential to
the flow. The stream function15  is often introduced in two-dimensional flow such
that its contour lines,  D const, gives the streamlines. The relation between  
and the velocity field v D .u; v/ is

u D @ 

@y
; v D �@ 

@x
:

It follows that rv D  yx �  xy D 0, so the stream function can only be used for
incompressible flows. Since

r � v D
�
@v

@y
� @u

@x

�
k � !k;

we can derive the relation
r2 D �!; (3.128)

which is a governing equation for the stream function  .x; y/ if the vorticity ! is
known.

3.8.6 The Potential of an Electric Field

Under the assumption of time independence, Maxwell’s equations for the electric
field E become

r � E D �


0
;

r � E D 0;

where � is the electric charge density and 
0 is the electric permittivity of free space
(i.e., vacuum). Since r � E D 0, E can be derived from a potential ', E D �r'.
The electric field potential is therefore governed by the Poisson equation

r2' D � �

0
: (3.129)

If the medium is heterogeneous, � will depend on the spatial location r . Also,

0 must be exchanged with an electric permittivity function 
.r/.

Each point of the boundary must be accompanied by, either a Dirichlet condition
'.r/ D 'D.r/, or a Neumann condition @'.r/

@n
D 'N .r/.

3.8.7 Development of Flow Between Two Flat Plates

Diffusion equations may also arise as simplified versions of other mathematical
models, especially in fluid flow. Consider a fluid flowing between two flat, parallel

15 https://en.wikipedia.org/wiki/Stream_function

https://en.wikipedia.org/wiki/Stream_function
https://en.wikipedia.org/wiki/Stream_function
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plates. The velocity is uni-directional, say along the z axis, and depends only on
the distance x from the plates; u D u.x; t/k. The flow is governed by the Navier-
Stokes equations,

%
@u

@t
C %u � ru D �rp C �r2u C %f ;

r � u D 0;

where p is the pressure field, unknown along with the velocity u, % is the fluid
density, � the dynamic viscosity, and f is some external body force. The geo-
metric restrictions of flow between two flat plates puts restrictions on the velocity,
u D u.x; t/i , and the z component of the Navier-Stokes equations collapses to a
diffusion equation:

%
@u

@t
D �@p

@z
C �

@2u

@z2
C %fz;

if fz is the component of f in the z direction.
The boundary conditions are derived from the fact that the fluid sticks to the

plates, which means u D 0 at the plates. Say the location of the plates are z D 0

and z D L. We then have

u.0; t/ D u.L; t/ D 0 :

One can easily show that @p=@z must be a constant or just a function of time
t . We set @p=@z D �ˇ.t/. The body force could be a component of gravity, if
desired, set as fz D 
g. Switching from z to x as independent variable gives a very
standard one-dimensional diffusion equation:

%
@u

@t
D �

@2u

@x2
C ˇ.t/C %
g; x 2 Œ0; L�; t 2 .0; T � :

The boundary conditions are

u.0; t/ D u.L; t/ D 0;

while some initial condition
u.x; 0/ D I.x/

must also be prescribed.
The flow is driven by either the pressure gradient ˇ or gravity, or a combination

of both. One may also consider one moving plate that drives the fluid. If the plate
at x D L moves with velocity UL.t/, we have the adjusted boundary condition

u.L; t/ D UL.t/ :

3.8.8 Flow in a Straight Tube

Now we consider viscous fluid flow in a straight tube with radiusR and rigid walls.
The governing equations are the Navier-Stokes equations, but as in Sect. 3.8.7, it
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is natural to assume that the velocity is directed along the tube, and that it is axi-
symmetric. These assumptions reduced the velocity field to u D u.r; x; t/i , if the
x axis is directed along the tube. From the equation of continuity, r � u D 0, we
see that u must be independent of x. Inserting u D u.r; t/i in the Navier-Stokes
equations, expressed in axi-symmetric cylindrical coordinates, results in

%
@u

@t
D �

1

r

@

@r

�
r
@u

@r

�
C ˇ.t/C %
g; r 2 Œ0; R�; t 2 .0; T � : (3.130)

Here, ˇ.t/ D �@p=@x is the pressure gradient along the tube. The associated
boundary condition is u.R; t/ D 0.

3.8.9 Tribology: Thin Film Fluid Flow

Thin fluid films are extremely important inside machinery to reduce friction be-
tween gliding surfaces. The mathematical model for the fluid motion takes the
form of a diffusion problem and is quickly derived here. We consider two solid
surfaces whose distance is described by a gap function h.x; y/. The space between
these surfaces is filled with a fluid with dynamic viscosity �. The fluid may move
partially because of pressure gradients and partially because the surfaces move. Let
U i C V j be the relative velocity of the two surfaces and p the pressure in the
fluid. The mathematical model builds on two principles: 1) conservation of mass,
2) assumption of locally quasi-static flow between flat plates.

The conservation of mass equation readsr �u, where u is the local fluid velocity.
For thin films the detailed variation between the surfaces is not of interest, sor�u D
0 is integrated (average) in the direction perpendicular to the surfaces. This gives
rise to the alternative mass conservation equation

r � q D 0; q D
h.x;y/Z
0

udz;

where z is the coordinate perpendicular to the surfaces, and q is then the volume
flux in the fluid gap.

Locally, we may assume that we have steady flow between two flat surfaces, with
a pressure gradient and where the lower surface is at rest and the upper moves with
velocity U i C V j . The corresponding mathematical problem is actually the limit
problem in Sect. 3.8.7 as t ! 1. The limit problem can be solved analytically, and
the local volume flux becomes

q.x; y; z/ D
hZ
0

u.x; y; z/dz D � h3

12�
rp C 1

2
Uhi C 1

2
V hj :

The idea is to use this expression locally also when the surfaces are not flat, but
slowly varying, and if U , V , or p varies in time, provided the time variation is
sufficiently slow. This is a common quasi-static approximation, much used in math-
ematical modeling.
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Inserting the expression for q via p, U , and V in the equation rq D 0 gives a
diffusion PDE for p:

r �
�
h3

12�
rp

�
D 1

2

@

@x
.hU /C 1

2

@

@x
.hV / : (3.131)

The boundary conditions must involve p or q at the boundary.

3.8.10 Propagation of Electrical Signals in the Brain

One can make a model of how electrical signals are propagated along the neu-
ronal fibers that receive synaptic inputs in the brain. The signal propagation is
one-dimensional and can, in the simplest cases, be governed by the Cable equa-
tion16:

cm
@V

@t
D 1

rl

@2V

@x2
� 1

rm
V (3.132)

where V.x; t/ is the voltage to be determined, cm is capacitance of the neuronal
fiber, while rl and rm are measures of the resistance. The boundary conditions are
often taken as V D 0 at a short circuit or open end, @V=@x D 0 at a sealed end, or
@V=@x / V where there is an injection of current.

3.9 Exercises

Exercise 3.6: Stabilizing the Crank-Nicolson method by Rannacher time
stepping
It is well known that the Crank-Nicolson method may give rise to non-physical
oscillations in the solution of diffusion equations if the initial data exhibit jumps
(see Sect. 3.3.6). Rannacher [15] suggested a stabilizing technique consisting of
using the Backward Euler scheme for the first two time steps with step length 1

2
�t .

One can generalize this idea to taking 2m time steps of size 1
2
�t with the Backward

Euler method and then continuing with the Crank-Nicolson method, which is of
second-order in time. The idea is that the high frequencies of the initial solution are
quickly damped out, and the Backward Euler scheme treats these high frequencies
correctly. Thereafter, the high frequency content of the solution is gone and the
Crank-Nicolson method will do well.

Test this idea for m D 1; 2; 3 on a diffusion problem with a discontinuous initial
condition. Measure the convergence rate using the solution (3.45) with the bound-
ary conditions (3.46)–(3.47) for t values such that the conditions are in the vicinity
of ˙1. For example, t < 5a1:6 � 10�2 makes the solution diffusion from a step to
almost a straight line. The program diffu_erf_sol.py shows how to compute
the analytical solution.

Project 3.7: Energy estimates for diffusion problems
This project concerns so-called energy estimates for diffusion problems that can be
used for qualitative analytical insight and for verification of implementations.

16 http://en.wikipedia.org/wiki/Cable_equation

http://en.wikipedia.org/wiki/Cable_equation
http://en.wikipedia.org/wiki/Cable_equation
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a) We start with a 1D homogeneous diffusion equation with zero Dirichlet condi-
tions:

ut D ˛uxx; x 2 ˝ D .0; L/; t 2 .0; T �; (3.133)

u.0; t/ D u.L; t/ D 0; t 2 .0; T �; (3.134)

u.x; 0/ D I.x/; x 2 Œ0; L� : (3.135)

The energy estimate for this problem reads

jjujjL2 � jjI jjL2; (3.136)

where the jj � jjL2 norm is defined by

jjgjjL2 D

vuuut
LZ
0

g2dx : (3.137)

The quantify jjujjL2 or 12 jjujjL2 is known as the energy of the solution, although
it is not the physical energy of the system. A mathematical tradition has intro-
duced the notion energy in this context.
The estimate (3.136) says that the “size of u” never exceeds that of the initial
condition, or more precisely, it says that the area under the u curve decreases
with time.
To show (3.136), multiply the PDE by u and integrate from 0 to L. Use that uut
can be expressed as the time derivative of u2 and that uxxu can integrated by
parts to form an integrand u2x . Show that the time derivative of jjujj2

L2
must be

less than or equal to zero. Integrate this expression and derive (3.136).
b) Now we address a slightly different problem,

ut D ˛uxx C f .x; t/; x 2 ˝ D .0; L/; t 2 .0; T �; (3.138)

u.0; t/ D u.L; t/ D 0; t 2 .0; T �; (3.139)

u.x; 0/ D 0; x 2 Œ0; L� : (3.140)

The associated energy estimate is

jjujjL2 � jjf jjL2 : (3.141)

(This result is more difficult to derive.)
Now consider the compound problem with an initial condition I.x/ and a right-
hand side f .x; t/:

ut D ˛uxx C f .x; t/; x 2 ˝ D .0; L/; t 2 .0; T �; (3.142)

u.0; t/ D u.L; t/ D 0; t 2 .0; T �; (3.143)

u.x; 0/ D I.x/; x 2 Œ0; L� : (3.144)

Show that if w1 fulfills (3.133)–(3.135) and w2 fulfills (3.138)–(3.140), then
u D w1 C w2 is the solution of (3.142)–(3.144). Using the triangle inequality
for norms,

jjaC bjj � jjajj C jjbjj;
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show that the energy estimate for (3.142)–(3.144) becomes

jjujjL2 � jjI jjL2 C jjf jjL2 : (3.145)

c) One application of (3.145) is to prove uniqueness of the solution. Suppose u1
and u2 both fulfill (3.142)–(3.144). Show that u D u1�u2 then fulfills (3.142)–
(3.144) with f D 0 and I D 0. Use (3.145) to deduce that the energy must be
zero for all times and therefore that u1 D u2, which proves that the solution is
unique.

d) Generalize (3.145) to a 2D/3D diffusion equation ut D r � .˛ru/ for x 2 ˝.

Hint Use integration by parts in multi dimensions:

Z
˝

ur � .˛ru/ dx D �
Z
˝

˛ru � ru dx C
Z
@˝

u˛
@u

@n
;

where @u
@n

D n � ru, n being the outward unit normal to the boundary @˝ of the
domain˝.

e) Now we also consider the multi-dimensional PDE ut D r � .˛ru/. Integrate
both sides over˝ and use Gauss’ divergence theorem,

R
˝
r�q dx D R

@˝
q �n ds

for a vector field q. Show that if we have homogeneous Neumann conditions
on the boundary, @u=@n D 0, area under the u surface remains constant in time
and Z

˝

u dx D
Z
˝

I dx : (3.146)

f) Establish a code in 1D, 2D, or 3D that can solve a diffusion equation with a
source term f , initial condition I , and zero Dirichlet or Neumann conditions on
the whole boundary.
We can use (3.145) and (3.146) as a partial verification of the code. Choose
some functions f and I and check that (3.145) is obeyed at any time when zero
Dirichlet conditions are used. Iterate over the same I functions and check that
(3.146) is fulfilled when using zero Neumann conditions.

g) Make a list of some possible bugs in the code, such as indexing errors in ar-
rays, failure to set the correct boundary conditions, evaluation of a term at a
wrong time level, and similar. For each of the bugs, see if the verification tests
from the previous subexercise pass or fail. This investigation shows how strong
the energy estimates and the estimate (3.146) are for pointing out errors in the
implementation.

Filename: diffu_energy.

Exercise 3.8: Splitting methods and preconditioning
In Sect. 3.6.15, we outlined a class of iterative methods for Au D b based on
splitting A into A DM �N and introducing the iteration

Muk D Nuk C b :
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The very simplest splitting is M D I , where I is the identity matrix. Show that
this choice corresponds to the iteration

uk D uk�1 C rk�1; rk�1 D b � Auk�1; (3.147)

where rk�1 is the residual in the linear system in iteration k � 1. The formula
(3.147) is known as Richardson’s iteration. Show that if we apply the simple iter-
ation method (3.147) to the preconditioned systemM�1Au D M�1b, we arrive at
the Jacobi method by choosingM D D (the diagonal of A) as preconditioner and
the SOR method by choosingM D !�1D C L (L being the lower triangular part
of A). This equivalence shows that we can apply one iteration of the Jacobi or SOR
method as preconditioner.

Problem 3.9: Oscillating surface temperature of the earth
Consider a day-and-night or seasonal variation in temperature at the surface of the
earth. How deep down in the ground will the surface oscillations reach? For sim-
plicity, we model only the vertical variation along a coordinate x, where x D 0

at the surface, and x increases as we go down in the ground. The temperature is
governed by the heat equation

%cv
@T

@t
D r � .krT /;

in some spatial domain x 2 Œ0; L�, whereL is chosen large enough such that we can
assume that T is approximately constant, independent of the surface oscillations, for
x > L. The parameters %, cv , and k are the density, the specific heat capacity at
constant volume, and the heat conduction coefficient, respectively.

a) Derive the mathematical model for computing T .x; t/. Assume the surface os-
cillations to be sinusoidal around some mean temperature Tm. Let T D Tm
initially. At x D L, assume T � Tm.

b) Scale the model in a) assuming k is constant. Use a time scale tc D !�1 and a
length scale xc D

p
2˛=!, where ˛ D k=.%cv/. The primary unknown can be

scaled as T�Tm
2A

.
Show that the scaled PDE is

@u

@Nt D 1

2

@2u

@x2
;

with initial condition u. Nx; 0/ D 0, left boundary condition u.0; Nt/ D sin.Nt /,
and right boundary condition u. NL; Nt / D 0. The bar indicates a dimensionless
quantity.
Show that u. Nx; Nt / D e�Nx sin. Nx � Nt / is a solution that fulfills the PDE and the
boundary condition at Nx D 0 (this is the solution we will experience as Nt ! 1
and L! 1). Conclude that an appropriate domain for x is Œ0; 4� if a damping
e�4 � 0:18 is appropriate for implementing Nu � const; increasing to Œ0; 6�
damps Nu to 0.0025.

c) Compute the scaled temperature and make animations comparing two solutions
with NL D 4 and NL D 8, respectively (keep �x the same).
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Problem 3.10: Oscillating and pulsating flow in tubes
We consider flow in a straight tube with radius R and straight walls. The flow is
driven by a pressure gradient ˇ.t/. The effect of gravity can be neglected. The
mathematical problem reads

%
@u

@t
D �

1

r

@

@r

�
r
@u

@r

�
C ˇ.t/; r 2 Œ0; R�; t 2 .0; T �; (3.148)

u.r; 0/ D I.r/; r 2 Œ0; R�; (3.149)

u.R; t/ D 0; t 2 .0; T �; (3.150)

@u

@r
.0; t/ D 0; t 2 .0; T �: (3.151)

We consider two models for ˇ.t/. One plain, sinusoidal oscillation:

ˇ D A sin.!t/; (3.152)

and one with periodic pulses,

ˇ D A sin16.!t/ : (3.153)

Note that both models can be written as ˇ D A sinm.!t/, with m D 1 and m D 16,
respectively.

a) Scale the mathematical model, using the viscous time scale %R2=�.
b) Implement the scaled model from a), using the unifying � scheme in time and

centered differences in space.
c) Verify the implementation in b) using a manufactured solution that is quadratic

in r and linear in t . Make a corresponding test function.

Hint You need to include an extra source term in the equation to allow for such
tests. Let the spatial variation be 1�r2 such that the boundary condition is fulfilled.

d) Make animations form D 1; 16 and ˛ D 1; 0:1. Choose T such that the motion
has reached a steady state (non-visible changes from period to period in u).

e) For ˛ � 1, the scaling in a) is not good, because the characteristic time for
changes (due to the pressure) is much smaller than the viscous diffusion time
scale (˛ becomes large). We should in this case base the short time scale on
1=!. Scale the model again, and make an animation form D 1; 16 and ˛ D 10.

Filename: axisymm_flow.

Problem 3.11: Scaling a welding problem
Welding equipment makes a very localized heat source that moves in time. We
shall investigate the heating due to welding and choose, for maximum simplicity, a
one-dimensional heat equation with a fixed temperature at the ends, and we neglect
melting. We shall scale the problem, and besides solving such a problem numeri-
cally, the aim is to investigate the appropriateness of alternative scalings.
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The governing PDE problem reads

%c
@u

@t
D k

@2u

@x2
C f; x 2 .0; L/; t 2 .0; T /;

u.x; 0/ D Us; x 2 Œ0; L�;
u.0; t/ D u.L; t/ D 0; t 2 .0; T �:

Here, u is the temperature, % the density of the material, c a heat capacity, k the
heat conduction coefficient, f is the heat source from the welding equipment, and
Us is the initial constant (room) temperature in the material.

A possible model for the heat source is a moving Gaussian function:

f D A exp

 
�1
2

�
x � vt
�

�2!
;

where A is the strength, � is a parameter governing how peak-shaped (or localized
in space) the heat source is, and v is the velocity (in positive x direction) of the
source.

a) Let xc , tc , uc , and fc be scales, i.e., characteristic sizes, of x, t , u, and f ,
respectively. The natural choice of xc and fc is L and A, since these make the
scaled x and f in the interval Œ0; 1�. If each of the three terms in the PDE are
equally important, we can find tc and uc by demanding that the coefficients in
the scaled PDE are all equal to unity. Perform this scaling. Use scaled quantities
in the arguments for the exponential function in f too and show that

Nf D e�
1
2 ˇ

2. Nx�
 Nt /2 ;

where ˇ and 
 are dimensionless numbers. Give an interpretation of ˇ and 
 .
b) Argue that for large 
 we should base the time scale on the movement of the

heat source. Show that this gives rise to the scaled PDE

@ Nu
@Nt D 
�1

@2 Nu
@ Nx2 C

Nf ;

and
Nf D exp

�
�1
2
ˇ2. Nx � Nt /2

�
:

Discuss when the scalings in a) and b) are appropriate.
c) One aim with scaling is to get a solution that lies in the interval Œ�1; 1�. This is

not always the case when uc is based on a scale involving a source term, as we
do in a) and b). However, from the scaled PDE we realize that if we replace Nf
with ı Nf , where ı is a dimensionless factor, this corresponds to replacing uc by
uc=ı. So, if we observe that Nu � 1=ı in simulations, we can just replace Nf by
ı Nf in the scaled PDE.
Use this trick and implement the two scaled models. Reuse software for the
diffusion equation (e.g., the solver function in diffu1D_vc.py). Make a func-
tion run(gamma, beta=10, delta=40, scaling=1, animate=False)
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that runs the model with the given 
 , ˇ, and ı parameters as well as an indicator
scaling that is 1 for the scaling in a) and 2 for the scaling in b). The last
argument can be used to turn screen animations on or off.
Experiments show that with 
 D 1 and ˇ D 10, ı D 20 is appropriate. Then
max j Nuj will be larger than 4 for 
 D 40, but that is acceptable.
Equip the run function with visualization, both animation of Nu and Nf , and plots
with Nu and Nf for t D 0:2 and t D 0:5.

Hint Since the amplitudes of Nu and Nf differs by a factor ı, it is attractive to plot
Nf =ı together with Nu.

d) Use the software in c) to investigate 
 D 0:2; 1; 5; 40 for the two scalings.
Discuss the results.

Filename: welding.

Exercise 3.12: Implement a Forward Euler scheme for axi-symmetric
diffusion
Based on the discussion in Sect. 3.5.6, derive in detail the discrete equations for a
Forward Euler in time, centered in space, finite differencemethod for axi-symmetric
diffusion. The diffusion coefficient may be a function of the radial coordinate. At
the outer boundary r D R, we may have either a Dirichlet or Robin condition.
Implement this scheme. Construct appropriate test problems.
Filename: FE_axisym.
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