Skip to main content

Acute Heart Failure Syndromes

  • Chapter
  • First Online:
  • 1780 Accesses

Abstract

As yet, no definition of heart failure is universally accepted, however, heart failure may be defined as “the inability of the heart to supply the bodies’ tissues sufficiently and suitably with blood meeting their metabolic demand or do so only at the cost of elevated filling pressures” [1–3].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Reactive oxygen species (ROS) are subsequently associated with “functional” NO deficiency: Due to a chemical reaction between NO and ROS in case of augmented levels of ROS, NO is utilized. Furthermore, peroxynitrate is formed, a toxic reactive molecule [200], which is also involved in cardiovascular pathology [201].

References

  1. Abudiab MM, Redfield MM, Melenovsky V, et al. Cardiac output response to exercise in relation to metabolic demand in heart failure with preserved ejection fraction. Eur J Heart Fail. 2013;15:776–85.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Adams KF, Lindenfeld JA, Arnold JM, et al. Executive summary: HFSA 2006 comprehensive heart failure practice guideline. J Card Fail. 2006;12:10–38.

    Article  Google Scholar 

  3. Fukuta H, Little WC. The cardiac cycle and the physiologic basis of left ventricular contraction, ejection, relaxation, and filling. Heart Fail Clin. 2008;4:1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nieminen MS, Boehm M, Cowie MR, et al. Executive summary of the guidelines on the diagnosis and treatment of acute heart failure: the Task Force on Acute Heart Failure of the European Society of Cardiology. Eur Heart J. 2005;26:384–416.

    Article  PubMed  Google Scholar 

  5. McMurray JJ, Adomopoulos S, Anker SD, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012;33:1787–847.

    Article  PubMed  Google Scholar 

  6. Dickstein K, Cohen-Solal A, Filippatos G, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur J Heart Fail. 2008;10:933–89.

    Article  PubMed  Google Scholar 

  7. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128:e240–327.

    Article  PubMed  Google Scholar 

  8. Chatterjee N, Lewis GD. What is the prognostic significance of pulmonary hypertension in heart failure? Circ Heart Fail. 2011;4:541–5.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Komjada M, Lam CSP. Heart failure with preserved ejection fraction: a clinical dilemma. Eur Heart J. 2014;35:1022–32.

    Article  CAS  Google Scholar 

  10. Kubo SH, Rector TS, Bank AJ, et al. Endothelium-dependent vasodilation is attenuated in patients with heart failure. Circulation. 1991;84:1589–96.

    Article  CAS  PubMed  Google Scholar 

  11. Forrester JS, Diamond GH, Swan HJ. Correlative classification of clinical and hemodynamic function after acute myocardial infarction. Am J Cardiol. 1977;77:137–45.

    Article  Google Scholar 

  12. Killip 3rd T, Kimball JT. Treatment of myocardial infarction in a coronary care unit. A two year experience with 250 patients. Am J Cardiol. 1967;20:457–64.

    Article  PubMed  Google Scholar 

  13. Cotter G, Moshkovitz Y, Kaluski E, et al. The role of cardiac power and systemic vascular resistance in the pathophysiology and diagnosis of patients with acute congestive heart failure. Eur J Heart Fail. 2003;5:443–51.

    Article  PubMed  Google Scholar 

  14. Adams Jr KF, Fonarow GC, Emerman CL, et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2005;149:209–16.

    Article  PubMed  Google Scholar 

  15. Gheorghiade M, Zannad F, Sopko G, et al. Acute heart failure syndromes: current state and framework for future research. Circulation. 2005;112:3958–68.

    Article  PubMed  Google Scholar 

  16. Joseph SM, Cedars AM, Ewald GA, et al. Acute decompensated heart failure: contemporary medical management. Tex Heart Inst J. 2009;36:510–20.

    PubMed  PubMed Central  Google Scholar 

  17. Ponikowski P, Jankowska EA. Pathogenesis and clinical presentation of acute heart failure. Rev Esp Cardiol (Engl Ed). 2015;68:331–7.

    Article  Google Scholar 

  18. Harinstein ME, Flaherty JD, Fonarow GC, et al. Clinical assessment of acute heart failure syndromes: emergency department through the early post-discharge period. Heart. 2011;97:1607–18.

    Article  PubMed  Google Scholar 

  19. Pang PS, Komajda M, Gheorghiade M, et al. The current and future management of acute heart failure syndromes. Eur Heart J. 2010;31:784–93.

    Article  PubMed  Google Scholar 

  20. Farmakis, D, Parissis, J, Filippatos, G. Acute heart failure: epidemiology, classification, and pathophysiology. In: Tubaro M, editor in-chief, et al. Intensive and acute cardiovascular care. 2nd ed. Oxford University Press; 2015, Chapter 51, p 459–469.

    Google Scholar 

  21. Mebazaa A, Gheorghiade M, Pina IL, et al. Practical recommendations for prehospital and early in-hospital management of patients presenting with acute heart failure syndromes. Crit Care Med. 2008;36(1 Suppl):S129–39.

    Article  PubMed  Google Scholar 

  22. O’Connor RE, Brady W, Brooks SC, et al. Part 10: acute coronary syndromes: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010;122(18 Suppl 3):S787–817.

    Article  PubMed  Google Scholar 

  23. Bahit MC, Lopes RD, Clare RM, et al. Heart failure complicating non-ST-segment elevation acute coronary syndrome: timing, predictors, and clinical outcomes. JACC Heart Fail. 2013;1:223–9.

    Article  PubMed  Google Scholar 

  24. Meier P, Landsky AJ, Baumbach A. Almanac 2013: acute coronary syndromes. Heart. 2013;99:1488–93.

    Article  PubMed  Google Scholar 

  25. O’Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;127:e362–425.

    Article  PubMed  Google Scholar 

  26. Flaherty JD, Bax JJ, De Luca L, et al. Acute heart failure syndromes in patients with coronary artery disease early assessment and treatment. J Am Coll Cardiol. 2009;53:254–63.

    Article  PubMed  Google Scholar 

  27. Killip T. Epidemiology of congestive heart failure. The American journal of cardiology. Am J Cardiol. 1985;56:2A–6A.

    Article  CAS  PubMed  Google Scholar 

  28. Cleland JGF, Swedberg K, Follath F, et al. The EuroHeart Failure survey programme—a survey on the quality of care among patients with heart failure in Europe. Part 1: patient characteristics and diagnosis. Eur Heart J. 2003;24:442–63.

    Article  CAS  PubMed  Google Scholar 

  29. Fox KF, Cowie MR, Wood DA, et al. Coronary artery disease as the cause of incident heart failure in the population. Eur Heart J. 2001;22:228–336.

    Article  CAS  PubMed  Google Scholar 

  30. Rudiger A, Harjola VP, Müller A, et al. Acute heart failure: clinical presentation, one-year mortality and prognostic factors. Eur J Heart Fail. 2005;7:662–70.

    Article  PubMed  Google Scholar 

  31. Heywood JT, Fonarow GC, Constanzo MR, et al. High prevalence of renal dysfunction and its impact on outcome in 118,465 patients hospitalized with acute decompensated heart failure: a report from the ADHERE database. J Card Fail. 2007;13:422–30.

    Article  PubMed  Google Scholar 

  32. Gheorghiade M, Sopko G, De Luca L, et al. Navigating the crossroads of coronary artery disease and heart failure. Circulation. 2006;114:1202–13.

    Article  PubMed  Google Scholar 

  33. Nieminen MS, Brutsaert D, Dickstein K, et al. EuroHeart Failure Survey II (EHFS II): a survey on hospitalized acute heart failure patients: description of population. Eur Heart J. 2006;27:2725–36.

    Article  PubMed  Google Scholar 

  34. Fonarow GC, Stough WG, Abraham WT, et al. Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF Registry. J Am Coll Cardiol. 2007;50:768–77.

    Article  PubMed  Google Scholar 

  35. Yancy CW, Lopatin M, Stevenson LW, et al. Clinical presentation, management, and in-hospital outcomes of patients admitted with acute decompensated heart failure with preserved systolic function: a report from the Acute Decompensated Heart Failure National Registry (ADHERE) Database. J Am Coll Cardiol. 2006;47:76–84.

    Article  PubMed  Google Scholar 

  36. Sweitzer NK, Lopatin M, Yancy CW, et al. Comparison of clinical features and outcomes of patients hospitalized with heart failure and normal ejection fraction (≥55%) –vs- those with mildly reduced (40–55%) and moderately to severely reduced (<40%) fractions. Am J Cardiol. 2008;101:1151–6.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Paulus WJ, Tschöpe C, Sanderson JE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J. 2007;28:2539–50.

    Article  PubMed  Google Scholar 

  38. Vasan RC, Levy D. Defining diastolic heart failure: a call for standardized diagnostic criteria. Circulation. 2000;101:2118–21.

    Article  CAS  PubMed  Google Scholar 

  39. Angeja BC, Grossman W. Evaluation and management of diastolic heart failure. Circulation. 2003;107:659–63.

    Article  PubMed  Google Scholar 

  40. Burkhoff D, Maurer MS, Packer M. Heart failure with a normal ejection fraction: is it really a disorder of diastolic function? Circulation. 2003;107:656–8.

    Article  PubMed  Google Scholar 

  41. Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure—abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med. 2004;350:1953–9.

    Article  CAS  PubMed  Google Scholar 

  42. Hogg K, Swedberg K, McMuarray JJ. Heart failure with preserved left ventricular systolic function. J Am Coll Cardiol. 2004;43:317–27.

    Article  PubMed  Google Scholar 

  43. Krumholz HM, Parent EM, Tu N, et al. Readmission after hospitalization for congestive heart failure among Medicare beneficiaries. Arch Intern Med. 1997;157:99–104.

    Article  CAS  PubMed  Google Scholar 

  44. Fonarow GC. The Acute Decompensated Heart Failure National Registry (ADHERE): opportunities to improve care of patients hospitalized with acute decompensated heart failure. Rev Cardiovasc Med. 2003;4(suppl 7):S21–30.

    PubMed  Google Scholar 

  45. Hummel SL, Pauli NP, Krumholz HM, et al. Thirty-day outcomes in medicare patients with heart failure at heart transplant centers. Circ Heart Fail. 2010;3:244–52.

    Article  PubMed  Google Scholar 

  46. Jong P, Vowinckel E, Liu P, et al. Prognosis and determinants of survival in patients newly hospitalized for heart failure (a population-based study). Arch Intern Med. 2002;62:1689–94.

    Article  Google Scholar 

  47. Owan TE, Hodge DO, Herges RM, et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355:251–9.

    Article  CAS  PubMed  Google Scholar 

  48. Askoxylakis V, Thieke C, Pleger ST, et al. Long-term survival of cancer patients compared to heart failure and stroke: a systematic review. BMC Cancer. 2010;10:105.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zannad F, Mebazaa A, Juilliere Y, et al. Clinical profile, contemporary management and one-year mortality in patients with severe acute heart failure syndromes: the EFICA study. Eur J Heart Fail. 2006;8:697–705.

    Article  PubMed  Google Scholar 

  50. Gheorghiade M, Pang PS. Acute heart failure syndromes. J Am Coll Cardiol. 2009;53:557–73.

    Article  PubMed  Google Scholar 

  51. Filippatos G, Zannad F. An introduction to acute heart failure syndromes: definition and classification. Heart Fail Rev. 2007;12:87–90.

    Article  PubMed  Google Scholar 

  52. Pauly DF. Managing acute decompensated heart failure. Cardiol Clin. 2014;32:145–9.

    Article  PubMed  Google Scholar 

  53. Mentz RJ, Felker GM. Noncardiac comorbidities and acute heart failure patients. Heart Fail Clin. 2013;9:359–67.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mentz RJ, O’Connor CM. Pathophysiology and clinical evaluation of acute heart failure. Nature Rev Cardiol. 2016;13:28–35.

    Article  CAS  Google Scholar 

  55. Fonarow GC, Abraham WT, Albert NM, et al. Factors identified as precipitating hospital admissions for heart failure and clinical outcomes. Findings from OPTIMIZE-HF. Arch Intern Med. 2008;168:847–54.

    Article  PubMed  Google Scholar 

  56. Chin MH, Goldman L. Factors contributing to the hospitalization of patients with congestive heart failure. Am J Public Health. 1997;87:643–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Opasich C, Febo O, Riccardi PG, et al. Concomitant factors of decompensation in chronic heart failure. Am J Cardiol. 1996;78:354–7.

    Article  CAS  PubMed  Google Scholar 

  58. Ghali JK, Kadakia S, Cooper R, et al. Precipitating factors leading to decompensation of heart failure. Traits among urban blacks. Arch Intern Med. 1988;148:2013–6.

    Article  CAS  PubMed  Google Scholar 

  59. Tsuyuki RT, McKelvie RS, Arnold JM, et al. Acute precipitants of congestive heart failure exacerbations. Arch Intern Med. 2001;161:2337–42.

    Article  CAS  PubMed  Google Scholar 

  60. Fallick C, Sobotka PA, Dunlop ME. Sympathetically mediated changes in capacitance redistribution of the venous reservoir as a cause of decompensation. Circ Heart Fail. 2011;4:669–75.

    Article  PubMed  Google Scholar 

  61. Grossman W. Diastolic dysfunction in congestive heart failure. N Engl J Med. 1991;325:1557–64.

    Article  CAS  PubMed  Google Scholar 

  62. Harizi RC, Bianco JA, Alpert JS. Diastolic function of the heart in clinical cardiology. Arch Intern Med. 1988;148:99–109.

    Article  CAS  PubMed  Google Scholar 

  63. Banka VS, Heifant RH. Temporal sequence of dynamic contractile characteristics in ischmic and nonischemic myocardium after acute coronary ligation. Am J Cardiol. 1974;34:158–63.

    Article  CAS  PubMed  Google Scholar 

  64. Parker JO. Hemodynamic and metabolic changes during myocardial ischemia. Arch Intern Med. 1972;129:947–61.

    Article  Google Scholar 

  65. Figueres J, Singh BN, Ganz W, et al. Mechanisms of rest and nocturnal angina: observations during continuous hemodynamic and electrocardiographic monitoring. Circulation. 1979;59:955–68.

    Article  Google Scholar 

  66. Hollenberg S, Kavinsky CJ, Parrillo JE. Cardiogenic shock. Ann Intern Med. 1999;131:47–59.

    Article  CAS  PubMed  Google Scholar 

  67. Ware LB, Matthay MA. Acute pulmonary edema. N Engl J Med. 2005;353:2788–96.

    Article  CAS  PubMed  Google Scholar 

  68. Califf RM, Bengtson JR. Cardiogenic shock. N Engl J Med. 1994;330:1724–30.

    Article  CAS  PubMed  Google Scholar 

  69. Gheorghiade M, Abraham WT, Albert NM, et al. Systolic blood pressure at admission, clinical characteristics, and outcomes in patients hospitalized with acute heart failure. JAMA. 2006;296:2217–26.

    Article  CAS  PubMed  Google Scholar 

  70. Kalogeropoulos A, Georgipoulou V, Psaty BM, et al. Inflammatory markers and incident heart failure risk in older adults: the health, aging, and body composition study. J Am Coll Cardiol. 2010;55:2129–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Westermann D, Lindner D, Kasner M, et al. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ Heart Fail. 2011;4:44–52.

    Article  PubMed  Google Scholar 

  72. Sciarretta S, Ferrucci A, Ciavarella GM, et al. Markers of inflammation and fibrosis are related to cardiovascular damage in hypertensive patients with metabolic syndrome. Am J Hypertens. 2007;20:784–91.

    Article  CAS  PubMed  Google Scholar 

  73. Russo C, Jin Z, Homma S, et al. Effect of obesity and overweight on left ventricular diastolic function: a community-based study in an elderly cohort. J Am Coll Cardiol. 2011;57:1368–74.

    Article  PubMed  PubMed Central  Google Scholar 

  74. De las Fuentes L, Brown AL, Mathews SJ, et al. Metabolic syndrome is associated with abnormal left ventricular diastolic function independent of left ventricular mass. Eur Heart J. 2007;28:553–9.

    Article  PubMed  Google Scholar 

  75. Dinh W, Lankisch M, Nickl W, et al. Insulin resistance and glycemic abnormalities are associated with deterioration of left ventricular diastolic function: a cross-sectional study. Cardiovasc Diabetol. 2010;9:63–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Van Heerebeek L, Borbely A, Niessen HW, et al. Myocardial structure and function differ in systolic and diastolic heart failure. Circulation. 2006;113:1966–73.

    Article  PubMed  Google Scholar 

  77. Melenovsly V, Borlaug BA, Rosen B, et al. Cardiovascular features of heart failure with preserved ejection fraction vs. nonfailing hypertensive left ventricular hypertrophy in the urban Baltimore community: the role of atrial remodeling/dysfunction. J Am Coll Cardiol. 2007;49:198–207.

    Article  Google Scholar 

  78. Borbely A, van der Velden J, Papp Z, et al. Cardiomyocyte stiffness in diastolic heart failure. Circulation. 2005;111:774–81.

    Article  PubMed  Google Scholar 

  79. Lam CS, Roger VL, Rodeheffer RJ, et al. Cardiac structure and ventricular-vascular function in persons with heart failure and preserved ejection fraction from Olmsted County, Minnesota. Circulation. 2007;115:1982–90.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Paulus WJ, Tschoepe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62:263–71.

    Article  PubMed  Google Scholar 

  81. From AM, Scott CG, Chen HH. The development of heart failure in patients with diabetes mellitus and pre-clinical diastolic dysfunction a population-based study. J Am Coll Cardiol. 2010;55:300–5.

    Article  PubMed  Google Scholar 

  82. Lam CS, Lyass A, Kraigher-Krainer E, et al. Cardiac dysfunction and noncardiac dysfunction as precursors of heart failure with reduced and preserved ejection fraction in the community. Circulation. 2011;124:24–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Teerlink JR, Cotter G, Davison BA, et al. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet. 2013;381:29–39.

    Article  CAS  PubMed  Google Scholar 

  84. O’Connor CM, Starling RC, Hernandez AF, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med. 2011;365:32–43.

    Article  PubMed  Google Scholar 

  85. Maggioni AP, Dahlstrom U, Filippatos G, Heart Failure Association of ESC (HFA), et al. EURObservational Research Programme: the Heart Failure Pilot Survey (ESC-HF Pilot). Eur J Heart Fail. 2010;12:1076–84.

    Article  PubMed  Google Scholar 

  86. Mountantonakis SE, Grau-Sepulveda MV, Bhatt DL, et al. Presence of atrial fibrillation is independently associated with adverse outcomes in patients hospitalized with heart failure: an analysis of get with the guidelines-heart failure. Circ Heart Fail. 2012;5:191–201.

    Article  PubMed  Google Scholar 

  87. Wang TJ, Larson MG, Levy D, et al. Temporal relations of atrial fibrillation and congestive heart failure and their joint influence on mortality: the Framingham Heart Study. Circulation. 2003;107:2920–5.

    Article  PubMed  Google Scholar 

  88. Tsang TSM, Gersh BJ, Appleton CP, et al. Left ventricular diastolic dysfunction as a predictor of the first diagnosed nonvalvular atrial fibrillation in 840 elderly men and women. J Am Coll Cardiol. 2002;40:1636–44.

    Article  PubMed  Google Scholar 

  89. Al-Habeeb W, Al-Admawi M. Managing patients with rapid atrial fibrillation and decompensated heart failure. Circ Heart Fail. 2009;2:71.

    Article  PubMed  Google Scholar 

  90. DiMarco JP. Atrial fibrillation and acute decompensated heart failure. Circ Heart Fail. 2009;2:72–3.

    Article  PubMed  Google Scholar 

  91. Clark DM, Plumb VJ, Epstein AE, et al. Hemodynamic effects of an irregular sequence of ventricular cycle lengths during atrial fibrillation. J Am Coll Cardiol. 1997;30:1039–45.

    Article  CAS  PubMed  Google Scholar 

  92. Mann DL. Braunwald’s heart disease. 10th ed. Philadelphia: Elsevier Saunders; 2015, p 565.

    Google Scholar 

  93. Schotten U, Ausma J, Stellbrink C, et al. Cellular mechanisms of depressed atrial contractility in patients with chronic atrial fibrillation. Circulation. 2001;103:691–8.

    Article  CAS  PubMed  Google Scholar 

  94. Anter E, Jessup M, Callans DJ. Atrial fibrillation and heart failure: treatment considerations for a dual epidemic. Circulation. 2009;119:2516–25.

    Article  PubMed  Google Scholar 

  95. Vardas PE, Mavrakis HE. Atrial fibrillation and heart failure. Hell J Cardiol. 2004;45:277–81.

    Google Scholar 

  96. Amann K, Wanner C, Ritz E. Cross-talk between the kidney and the cardiovascular system. J Am Soc Nephrol. 2006;17:2112–9.

    Article  CAS  PubMed  Google Scholar 

  97. Ronco C, Haapio M, House AA. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52:1527–39.

    Article  PubMed  Google Scholar 

  98. Virzi GM, Day S, de Cal M, et al. Heart–kidney crosstalk and role of humoral signaling in critical illness. Crit Care. 2014;18:201.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ronco C, Cicoira M, McCullough PA. Cardiorenal syndrome type 1: pathophysiological crosstalk leading to combined heart and kidney dysfunction in the setting of acutely decompensated heart failure. J Am Coll Cardiol. 2012;60:1031–42.

    Article  PubMed  Google Scholar 

  100. Damman K, van Deursen VM, Navis G, et al. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol. 2009;53:582–8.

    Article  PubMed  Google Scholar 

  101. Mullens W, Abrahams Z, Francis GS, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53:589–96.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Nohria A, Hasselblad V, Stebbins A, et al. Cardiorenal interactions: insights from the ESCAPE trial. J Am Coll Cardiol. 2008;51:1268–74.

    Article  PubMed  Google Scholar 

  103. Milnor WR. Arterial impedance as ventricular afterload. Circ Res. 1975;36:565–70.

    Article  CAS  PubMed  Google Scholar 

  104. Mann DL. Mechanisms and models in heart failure (a combinatorial approach). Circulation. 1999;100:999–1008.

    Article  CAS  PubMed  Google Scholar 

  105. Packer M. How should physicians view heart failure? Am J Cardiol. 1993;71:3C–11C.

    Article  CAS  PubMed  Google Scholar 

  106. Thohan V, Patel S. The challenges associated with current clinical trials for diastolic heart failure. Curr Opin Cardiol. 2009;24:230–8.

    Article  PubMed  Google Scholar 

  107. Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: part II. Circulation. 2002;105:1503–8.

    Article  PubMed  Google Scholar 

  108. Bhatia RS, Tu JV, Lee DS, et al. Outcome of heart failure with preserved ejection fraction in a population-based study. N Engl J Med. 2006;355:260–9.

    Article  CAS  PubMed  Google Scholar 

  109. Collaborative Group: Meta-analysis global group in chronic heart failure. The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: an individual patient data meta-analysis. Eur Heart J. 2012;33:1750–7.

    Article  Google Scholar 

  110. Iwanaga Y, Nishi I, Furuichi S, et al. B-type natriuretic peptide strongly reflects diastolic wall stress in patients with chronic heart failure. J Am Coll Cardiol. 2006;47:742–8.

    Article  CAS  PubMed  Google Scholar 

  111. McKelvie RS, Komajda M, McMurray JJ, et al. Baseline plasma NT-proBNP and clinical characteristics: results from the irbesartan in heart failure with preserved ejection fraction trial. J Card Fail. 2010;16:128–34.

    Article  CAS  PubMed  Google Scholar 

  112. Schwartzenberg S, Redfield MM, From AM, et al. Effects of vasodilation in heart failure with preserved or reduced ejection fraction. J Am Coll Cardiol. 2012;59:442–51.

    Article  PubMed  Google Scholar 

  113. Kawaguchi M, Hay I, Fetics B, et al. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction. Circulation. 2003;107:714–20.

    Article  PubMed  Google Scholar 

  114. Gheorghiade M, Vaduganathan M, Fonarow GC, et al. Rehospitalization for heart failure. J Am Coll Cardiol. 2013;61:391–403.

    Article  PubMed  Google Scholar 

  115. Fonarow GC, Abraham WT, Albert NM, et al. Organized program to initiate lifesaving treatment in hospitalized patients with heart failure (OPTIMIZE-HF): rationale and design. Am Heart J. 2004;148:43–51.

    Article  PubMed  Google Scholar 

  116. Burchell AE, Sobotka PA, Hart EC. Chemohypersensitivity and autonomic modulation of venous capacitance in the pathophysiology of acute decompensated heart failure. Curr Heart Fail Rep. 2013;10:139–46.

    Article  CAS  PubMed  Google Scholar 

  117. Cotter G, Metra M, Milo-Cotter O, et al. Fluid overload in acute heart failure—re-distribution and other mechanisms beyond fluid accumulation. Eur J Heart Fail. 2008;10:165–9.

    Article  PubMed  Google Scholar 

  118. Nohira A, Tsang SW, Fang JC, et al. Clinical assessment identifies hemodynamic profiles that predict outcomes in patients admitted with heart failure. J Am Coll Cardiol. 2003;41:1797–804.

    Article  Google Scholar 

  119. Chakko S, Woska D, Martinez H, et al. Clinical, radiographic, and hemodynamic correlations in chronic congestive heart failure: conflicting results may lead to inappropriate care. Am J Med. 1991;90:353–9.

    Article  CAS  PubMed  Google Scholar 

  120. Drazner MH, Hamilton MA, Fonarow GC, et al. Relationship between right and left-sided filling pressures in 1000 patients with advanced heart failure. J Heart Lung Transplant. 1999;18:1126–32.

    Article  CAS  PubMed  Google Scholar 

  121. Drazner MH, Prasad A, Avers C, et al. The relationship of right- and left-sided filling pressures in patients with heart failure and a preserved ejection fraction. Circ Heart Fail. 2010;3:202–6.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Lucas C, Johnson W, Hamilton MA, et al. Freedom from congestion predicts good survival despite previous class IV symptoms of heart failure. Am Heart J. 2000;140:840–7.

    Article  CAS  PubMed  Google Scholar 

  123. Zile MR, Bennett TD, St John Sutton M, et al. Transition from chronic compensated to acute decompensated heart failure: pathophysiological insights obtained from continuous monitoring of intracardiac pressures. Circulation. 2008;118:1433–41.

    Article  PubMed  Google Scholar 

  124. Schrier RW. Blood urea nitrogen and serum createnine: not married in heart failure. Circ Heart Fail. 2008;1:2–5.

    Article  CAS  PubMed  Google Scholar 

  125. Eichna LW. Circulatory congestion and heart failure. Circulation. 1960;22:864–86.

    Article  CAS  PubMed  Google Scholar 

  126. Dorhout Mees EJ. Diastolic heart failure: a confusing concept. Heart Fail Rev. 2013;18:503–9.

    Article  PubMed  Google Scholar 

  127. Gandhi SK, Powers JC, Nomeir AM, et al. The pathogenesis of acute pulmonary edema associated with hypertension. N Engl J Med. 2001;344:17–22.

    Article  CAS  PubMed  Google Scholar 

  128. Guglin M, Khan H. Pulmonary hypertension in heart failure. J Card Fail. 2010;16:461–74.

    Article  PubMed  Google Scholar 

  129. Guazzi M, Galie N. Pulmonary hypertension in left heart disease. Eur Respir Rev. 2012;21:338–46.

    Article  PubMed  Google Scholar 

  130. Borlaug BA. Discerning pulmonary venous from pulmonary arterial hypertension without the help of a catheter. Circ Heart Fail. 2011;4:235–7.

    Article  PubMed  Google Scholar 

  131. Atherton JJ, Moore TD, Lele SS, et al. Diastolic ventricular interaction in chronic heart failure. Lancet. 1997;349:1720–4.

    Article  CAS  PubMed  Google Scholar 

  132. Belenkie I, Smith ER, Tyberg JV. Ventricular interaction: from bench to bedside. Ann Med. 2001;33:236–41.

    Article  CAS  PubMed  Google Scholar 

  133. Yu CM, Wang L, Chau E, et al. Intrathoracic impedance monitoring in patients with heart failure: correlation with fluid status and feasibility of early warning preceding hospitalization. Circulation. 2005;112:841–8.

    Article  PubMed  Google Scholar 

  134. Chaudhry SI, Wang Y, Concato J, et al. Patterns of weight change preceding hospitalization for heart failure. Circulation. 2007;116:1549–54.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Rimoldi SF, Yusefpolskaya M, Allemann Y, et al. Flash pulmonary edema. Prog Cardiovasc Dis. 2009;52:249–59.

    Article  CAS  PubMed  Google Scholar 

  136. Grossman W, Barry WH. Diastolic pressure-volume relations in the diseased heart. Fed Proc. 1980;39:148–55.

    CAS  PubMed  Google Scholar 

  137. Cotter G, Moshkovitz Y, Milovanov O, et al. Acute heart failure: a novel approach to its pathogenesis and treatment. Eur J Heart Fail. 2002;4:227–34.

    Article  PubMed  Google Scholar 

  138. Kramer K, Kirkman P, Kitzman D, et al. Flash pulmonary edema: association with hypertension and reoccurrence despite coronary revascularization. Am Heart J. 2000;140:451–5.

    Article  CAS  PubMed  Google Scholar 

  139. Dodek A, Kassebaum D, Bristow J. Pulmonary edema in coronary artery disease without cardiomegaly. N Engl J Med. 1972;286:1347–50.

    Article  CAS  PubMed  Google Scholar 

  140. Serizawa T, Carabello BA, Grossman W. Effect of pacing-induced ischemia on left ventricular diastolic pressure-volume relations in dogs with coronary stenosis. Circ Res. 1980;46:430–9.

    Article  CAS  PubMed  Google Scholar 

  141. Hess OM, Osakada G, Lavelle JF, et al. Diastolic myocardial wall stiffness and ventricular relaxation during partial and complete coronary occlusion in the conscious dog. Circ Res. 1983;52:38–400.

    Article  Google Scholar 

  142. Carroll JD, Hess OM, Hirzel HO, et al. Left ventricular systolic and diastolic function in coronary artery disease: effects of revascularization on exercise-induced ischemia. Circulation. 1983;67:521–8.

    Article  CAS  PubMed  Google Scholar 

  143. Smith GL, Masoudi FA, Vaccarino V, et al. Outcomes in heart failure patients with preserved ejection fraction: mortality, readmission, and functional decline. J Am Coll Cardiol. 2003;41:1510–8.

    Article  PubMed  Google Scholar 

  144. Tavazzi L, Maggioni AP, Lucci D, et al. Nationwide survey on acute heart failure in cardiology ward services in Italy. Eur Heart J. 2006;27:1207–15.

    Article  PubMed  Google Scholar 

  145. Mehra MR. Optimizing outcomes in the patient with acute decompensated heart failure. Am Heart J. 2006;151:571–9.

    Article  PubMed  Google Scholar 

  146. Grossman W, McLaurin LP, Rolett EL. Alterations in left ventricular relaxation and diastolic compliance in congestive cardiomyopathy. Cardiovasc Res. 1979;13:514–22.

    Article  CAS  PubMed  Google Scholar 

  147. Borlaug BA, Kass DA. Ventricular-vascular interaction in heart failure. Heart Fail Clin. 2008;4:23–36.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Chen C-H, Nakayama M, Nevo E, et al. Coupled systolic-ventricular and vascular stiffening with age. Implications for pressure regulation and cardiac reserve in the elderly. J Am Coll Cardiol. 1998;32:1221–7.

    Article  CAS  PubMed  Google Scholar 

  149. Zampaglione B, Marchisio PC, Cavallo-Perin P. Hypertensive urgencies and emergencies. Prevalence and clinical presentation. Hypertension. 1996;27:144–7.

    Article  CAS  PubMed  Google Scholar 

  150. Tartiere-Kesri L, Tartiere JM, Logeart D, et al. Increased proximal arterial stiffness and cardiac response with moderate exercise in patients with heart failure and preserved ejection fraction. J Am Coll Cardiol. 2012;59:455–61.

    Article  PubMed  Google Scholar 

  151. Kass DA. Age-related changes in ventricular-arterial coupling: pathophysiologic implications. Heart Fail Rev. 2002;7:51–62.

    Article  PubMed  Google Scholar 

  152. Zile MR, Little WC. Chapter 27: Heart failure with preserved ejection fraction. In: Expert Consult, Mann, Zipp, Libby, Bonow, editors. Braunwald’s heart disease. 10th ed. Elsevier Saunders; 2015, p 557–574.

    Google Scholar 

  153. Gheorghiade M, Filippatos G, De Luca L, et al. Congestion in acute heart failure syndromes: an essential target of evaluation and treatment. Am J Med. 2006;119(12 suppl 1):S3–S10.

    Article  PubMed  Google Scholar 

  154. Gheorghiade M, De Luca L, Fonarow GC, et al. Pathophysiologic targets in the early phase of acute heart failure syndromes. Am J Cardiol. 2005;96:11G–7G.

    Article  PubMed  Google Scholar 

  155. Butman SM, Ewy GA, Standen JR, et al. Bedside cardiovascular examination in patients with severe chronic heart failure: importance of rest or inducible jugular venous distension. J Am Coll Cardiol. 1993;22:968–74.

    Article  CAS  PubMed  Google Scholar 

  156. Gheorghiade M, Follath F, Ponikowski P, et al. Assessing and grading congestion in acute heart failure: a scientific statement from the acute heart failure committee of the heart failure association of the European Society of Cardiology and endorsed by the European Society of Intensive Care Medicine. Eur J Heart Fail. 2010;12:423–33.

    Article  PubMed  Google Scholar 

  157. Fonarow GC. Pharmacologic therapies for acutely decompensated heart failure. Rev Cardiovasc Med. 2002;3(suppl 4):S18–27.

    PubMed  Google Scholar 

  158. Nohria A, Lewis E, Stevenson LW. Medical management of advanced heart failure. JAMA. 2002;287:628–40.

    Article  PubMed  Google Scholar 

  159. Horwich TB, Patel J, MacLellan WR, et al. Cardiac troponin I is associated with impaired hemodynamics, progressive left ventricular dysfunction, and increased mortality rates in advanced heart failure. Circulation. 2003;108:833–8.

    Article  CAS  PubMed  Google Scholar 

  160. Metra M, Dei Cas L, Bristow MR. The pathophysiology of acute heart failure—it is a lot about fluid accumulation. Am Heart J. 2008;155:1–5.

    Article  PubMed  Google Scholar 

  161. Packer M. The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol. 1992;20:248–54.

    Article  CAS  PubMed  Google Scholar 

  162. Braunwald E. Heart Failure. JACC Heart Fail. 2013;1:1–20.

    Article  PubMed  Google Scholar 

  163. Givertz MM. Manipulation of the renin–angiotensin system. Circulation. 2001;114:E14–8.

    Article  Google Scholar 

  164. Chen HH, Schrier RW. The pathophysiology of volume overload in acute heart failure syndromes. Am J Med. 2006;119(12 suppl 1):S11–6.

    Article  CAS  PubMed  Google Scholar 

  165. Milo O, Cotter G, Kaluski E. Comparison of inflammatory and neurohormonal activation in cardiogenic pulmonary edema secondary to ischemic versus nonischemic causes. Am J Cardiol. 2003;92:222–6.

    Article  CAS  PubMed  Google Scholar 

  166. Maisel A, Xue Y, Shah K, et al. Increased 90-day mortality in patients with acute heart failure with elevated copeptin: secondary results from the Biomarkers in Acute Heart Failure (BACH) study. Circ Heart Fail. 2011;4:613–20.

    Article  CAS  PubMed  Google Scholar 

  167. Santaguida PL, Don-Wauchope AC, Oremus M, et al. BNP and NT-proBNP as prognostic markers in persons with acute decompensated heart failure: a systematic review. Heart Fail Rev. 2014;19:453–70.

    Article  CAS  PubMed  Google Scholar 

  168. Rydlewska A, Jankowska EA, Ponikowska B, et al. Changes in autonomic balance in patients with decompensated chronic heart failure. Clin Auton Res. 2011;21:47–54.

    Article  PubMed  Google Scholar 

  169. Rehman SU, Mueller T, Januzzi Jr JL. Characteristics of the novel interleukin family biomarker ST 2 in patients with acute heart failure. J Am Coll Cardiol. 2008;52:1458–65.

    Google Scholar 

  170. Di Somma S, Pittoni V, Raffa S, et al. IL-18 stimulates B-type natriuretic peptide synthesis by cardiomyocytes in vitro and its plasma levels correlate with B-type natriuretic peptide in non-overloaded acute heart failure patients. Eur Heart J Cardiovasc Care. 2013; doi:10.1177/2048872613499282.

    Google Scholar 

  171. Chow SL, O’Barr SA, Peng J, et al. Modulation od novel cardiorenal and inflammatory biomarkers by intravenous nitroglycerin and nesiritide in acute decompensated heart failure: an exploratory study. Circ Heart Fail. 2011;1:450–5.

    Google Scholar 

  172. Felker GM, Cotter G. Unrevealing the pathophysiology of acute heart failure: an inflammatory proposal. Am Heart J. 2006;151:765–7.

    Article  PubMed  Google Scholar 

  173. Drexler H, Hayoz D, Munzel T. Endothelium function in chronic congestive heart failure. Am J Cardiol. 1992;69:1596–601.

    Article  CAS  PubMed  Google Scholar 

  174. Marti CN, Gheorghiade M, Kalogeropoulos AP, et al. Endothelial dysfunction, arterial stiffness, and heart failure. J Am Coll Cardiol. 2012;60:1455–69.

    Article  CAS  PubMed  Google Scholar 

  175. Tousoulis D, Charakida M, Stefanadis C. Inflammation and endothelial dysfunction as therapeutic targets in patients with heart failure. Int J Cardiol. 2005;100:347–53.

    Article  PubMed  Google Scholar 

  176. Aird WC. Endothelium in health and disease. Pharmacol Rep. 2008;60:139–43.

    PubMed  Google Scholar 

  177. Cines DB, Pollak ES, Buck CA, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91:3527–61.

    CAS  PubMed  Google Scholar 

  178. Nicholls SJ, Hazen SL. Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2005;25:1102–11.

    Article  CAS  PubMed  Google Scholar 

  179. Ramasubbu K, Deswal A, Chan W, et al. Echocardiographic changes during treatment of acute decompensated heart failure: insights from the ESCAPE trial. J Card Fail. 2012;18:792–8.

    Article  PubMed  Google Scholar 

  180. Bindels AJGH, van der Hoeven JG, Meinders AE. Pulmonary artery wedge pressure and extravascular lung water in patients with acute cardiogenic pulmonary edema requiring mechanical ventilation. Am J Cardiol. 1999;84:1158–63.

    Article  CAS  PubMed  Google Scholar 

  181. Rotherbaum DA, Linnemeier TJ, Landin RJ. Emergency percutaneous transluminal coronary angioplasty in acute myocardial infarction: a 3 year experience. J Am Coll Cardiol. 1987;10:264–72.

    Article  Google Scholar 

  182. Francis GS, Archer SL. Diagnosis and management of acute congestive heart failure in the intensive care unit. J Intensive Care Med. 1989;4:84–92.

    Article  Google Scholar 

  183. Braunwald E, Bristow MR. Congestive heart failure: fifty years of progress. Circulation. 2000;102(20 Suppl 4):IV14–23.

    CAS  PubMed  Google Scholar 

  184. Francis GS, Benedict C, Johnston DE, et al. Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the Studies of Left Ventricular Dysfunction (SOLVD). Circulation. 1990;82:1724–9.

    Article  CAS  PubMed  Google Scholar 

  185. Floras JS. Sympathetic nervous system activation in human heart failure. J Am Coll Cardiol. 2009;54:375–85.

    Article  CAS  PubMed  Google Scholar 

  186. Onwuanyi A, Taylor M. Acute decompensated heart failure: pathophysiology and treatment. Am J Cardiol. 2007;99(6B):25D–30D.

    Article  CAS  PubMed  Google Scholar 

  187. Stramba-Badiale M, Vanoli E, De Ferrari GM, et al. Sympathetic-parasympathetic interaction and accentuated antagonism in conscious dogs. Am J Phys. 1991;260:H335–40.

    CAS  Google Scholar 

  188. Stangl K, Dschietzig T, Richter C, et al. Pulmonary release and coronary and peripheral consumption of big endothelin and endothelin-1 in severe heart failure: acute effects of vasodilator therapy. Circulation. 2000;102:1132–8.

    Google Scholar 

  189. Hall C. Essential biochemistry and physiology of (NT-pro)BNP. Eur J Heart Fail. 2004;6:257–60.

    Article  CAS  PubMed  Google Scholar 

  190. de Lemos JA, McGuire DK, Drazner MH. B-type natriuretic peptide in cardiovascular disease. Lancet. 2003;362:316–22.

    Article  PubMed  CAS  Google Scholar 

  191. Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med. 1998;339:321–8.

    Article  CAS  PubMed  Google Scholar 

  192. Amsterdam EA, Tong KL, Summers R. Chapter 7. Pathophysiology of acute decompensated heart failure. In: Peacok WF, editor. Short stay management of acute heart failure, Contemporary cardiology. New York: Springer; 2012. p. 77–83. doi:10.1007/978-1-61779-627-2_7.

    Chapter  Google Scholar 

  193. Colucci WS, Elkayam U, Horton DP, et al. Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure. Nesiritide Study Group. N Engl J Med. 2000;343:246–53.

    Article  CAS  PubMed  Google Scholar 

  194. Maisel AS, McCord J, Nowak RM, et al. Bedside B-type natriuretic peptide in the emergency diagnosis of heart failure with reduced or preserved ejection fraction. J Am Coll Cardiol. 2003;41:2010–7.

    Article  PubMed  Google Scholar 

  195. Maisel AS, Peacock WF, McMullin N, et al. Timing of immunoreactive B-type natriuretic peptide levels and treatment delay in acute decompensated heart failure: an ADHERE (Acute Decompensated Heart Failure National Registry) analysis. J Am Coll Cardiol. 2008;52:534–40.

    Article  CAS  PubMed  Google Scholar 

  196. Unger T, Li J. The role of the renin-angiotensin-aldosterone system in heart failure. J Renin-Angiotensin-Aldosterone Syst. 2014;5(Suppl 1):S7–S10.

    Google Scholar 

  197. Hall JE, Guyton AC, Mizelle HL. Role of the renin-angiotensin system in control of sodium excretion and arterial pressure. Acta Physiol Scand Suppl. 1990;591:48–62.

    CAS  PubMed  Google Scholar 

  198. Lonn EM, Yusuf S, Jha P, et al. Emerging role of angiotensin-converting enzyme inhibitors in cardiac and vascular protection. Circulation. 1994;90:2056–69.

    Article  CAS  PubMed  Google Scholar 

  199. Weber KT. Aldosterone in congestive heart failure. N Engl J Med. 2001;345:1689–97.

    Article  CAS  PubMed  Google Scholar 

  200. Bercy CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol. 2004;555:589–606.

    Article  CAS  Google Scholar 

  201. Hsieh H-J, Liu C-H, Huang B, et al. Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J Biomed Sci. 2014;21:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol. 2007;292:C82–97.

    Article  CAS  PubMed  Google Scholar 

  203. Pacurari M, Kafoury R, Tchounwou PB, et al. The renin-angiotensin-aldosterone- system in vascular inflammation and remodeling. Int J Inflam. 2014;2014:689360. doi:10.1155/2014/689360.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Schiffrin EL. Effects of aldosterone on the vasculature. Hypertension. 2006;47:312–8.

    Article  CAS  PubMed  Google Scholar 

  205. Bauersachs J, Widder JD. Endothelial dysfunction in heart failure. Pharmacol Rep. 2008;60:119–26.

    CAS  PubMed  Google Scholar 

  206. Lam CS, Brutsaert DL. Endothelial dysfunction: a pathophysiologic factor in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2012;60:1787–9.

    Article  PubMed  Google Scholar 

  207. Stryer L. Biochemistry. 4th ed. New York: WH Freeman and Company; 1995. p. 732.

    Google Scholar 

  208. Kruger M, Kotter S, Grutzner A, et al. Protein kinase G modulates human myocardial passive stiffness by phosphorylation of the titin springs. Circ Res. 2009;104:87–94.

    Article  PubMed  CAS  Google Scholar 

  209. Higaldo C, Hudson B, Bogomolovas J, et al. PKC phosphorylation of titin’s PEVK element: a novel and conserved pathway for modulating myocardial stiffness. Circ Res. 2009;105:631–8.

    Article  CAS  Google Scholar 

  210. Borbely A, Falco-Pires I, van Heerebeek L. e al. Hypophosphorylation of the stiff N2B titin isoform raises cardiomyocyte resting tension in the failing human myocardium. Circ Res. 2009;104:780–6.

    Article  CAS  PubMed  Google Scholar 

  211. Warner TD, Mitchell JA, Sheng H, et al. Effects of cyclic GMP on smooth muscle relaxation. Adv Pharmacol. 1994;26:171–96.

    Article  CAS  PubMed  Google Scholar 

  212. Van Heerebeek L, Hamdani N, Handoko ML, et al. Diastolic stiffness of the failing diabetic heart. Circulation. 2008;117:43–51.

    Article  PubMed  Google Scholar 

  213. Nichols WW. Blood flow in arteries. Theoretical, experimental, and clinical principles. 6th ed. Boca Raton: CRC Press; 2011.

    Google Scholar 

  214. Borlaug BA, Kass DA. Mechanisms of diastolic dysfunction in heart failure. Trends Cardiovasc Med. 2006;16:273–9.

    Article  PubMed  Google Scholar 

  215. Mottram P, Haluska BA, Leano R, et al. Relation of arterial stiffness to diastolic dysfunction in hypertensive heart disease. Heart. 2005;91:1551–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Redfield MM, Jacobsen SJ, Borlaug BA, et al. Ageand gender-related ventricular-vascular stiffening: a community-based study. Circulation. 2005;112:2254–62.

    Article  PubMed  Google Scholar 

  217. Chantler PD, Lakatta EG. Ventriculo-arterial coupling with aging and disease. Front Physiol. 2012;3:1–10. doi:10.3389/fphys.2012.00090.

    Article  Google Scholar 

  218. Baig MK, Mahon N, McKenna WJ, et al. The pathophysiology of advanced heart failure. Am Heart J. 1998;135:S216–30.

    Article  CAS  PubMed  Google Scholar 

  219. Weber KT, O’Rourke MF, Ammer M, et al. Arterial stiffness and arterial wave reflections are associated with systolic and diastolic function in patients with normal ejection fraction. Am J Hypertens. 2008;21:1194–202.

    Article  PubMed  Google Scholar 

  220. Fukuta H, Ohte N, Wakami K, et al. Impact of arterial load on left ventricular diastolic function in patients undergoing cardiac catheterization for coronary artery disease. Circ J. 2010;74:1900–5.

    Article  PubMed  Google Scholar 

  221. Ikonomidis I, Tzortzis S, Papaioannou T, et al. Incremental value of arterial wave reflections in the determination of left ventricular diastolic dysfunction in untreated patients with essential hypertension. J Hum Hypertens. 2008;22:687–98.

    Article  CAS  PubMed  Google Scholar 

  222. Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109:III27–32.

    Article  PubMed  Google Scholar 

  223. Parodi O, De Maria R, Roubina E. Redox state, oxidative stress, and endothelial dysfunction in heart failure: the puzzle of nitrate-thiol interaction. J Cardiovasc Med (Hagerstown). 2007;8:765–74.

    Article  Google Scholar 

  224. Palazzuoli A, Nuti R. Heart failure: pathophysiology and clinical picture. In: Ronco C, Constanzo MR, Bellomo R, Maisel AS, editors. Fluid overload: diagnosis and management, Contributions to nephrology, vol. 164. Basel: Karger; 2010. p. 1–10.

    Chapter  Google Scholar 

  225. Bose EL, Hravnak M, Pinsky MR. The interface between monitoring and physiology at the bedside. Crit Care Clin. 2015;31:1–24.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Kumar R, Gandhi SK, Little W. Acute heart failure with preserved systolic function. Crit Care Med. 2008;36(1 Suppl):S52–6.

    Article  PubMed  Google Scholar 

  227. Triposkiadis F, Karayannis G, Giamouzis G, et al. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol. 2009;54:1747–62.

    Article  CAS  PubMed  Google Scholar 

  228. Colombo PC, Onat D, Sabbah HN. Acute heart failure as “acute endothelitis”—interaction of fluid overload and endothelial dysfunction. Eur J Heart Fail. 2008;10:170–5.

    Article  PubMed  Google Scholar 

  229. Ferreira-Martins J, Leite-Moreira AF. Physiologic basis and pathophysiologic implications of the diastolic properties of the cardiac muscle. J Biomed Biotechnol. 2010;2010:807084. doi:10.1155/2010/807084.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Klein RM, Breuer R, Mundhenke M, et al. Circulating adhesion molecules (cICAM-1, cVCAM-1) in patients with suspected inflammatory heart muscle disease. Z Kardiol. 1998;87:84–93.

    Article  CAS  PubMed  Google Scholar 

  231. Tsutamoto T, Hisanaga T, Fukai D, et al. Prognostic value of plasma soluble intercellular adhesion molecule-1 and endothelin-1 concentration in patients with chronic congestive heart failure. Am J Cardiol. 1995;76:803–8.

    Article  CAS  PubMed  Google Scholar 

  232. Andreassen AK, Nordoy I, Simonsen S, et al. Levels of circulating adhesion molecules in congestive heart failure and after heart transplantation. Am J Cardiol. 1998;81:604–8.

    Article  CAS  PubMed  Google Scholar 

  233. Munger MA, Johnson B, Amber IJ, et al. Circulating concentrations of proinflammatory cytokines in mild or moderate heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol. 1996;77:723–7.

    Article  CAS  PubMed  Google Scholar 

  234. Carlstedt F, Lind L, Lindahl B. Proinflammatory cytokines measured in a mixed population on arrival in the emergency department are related to mortality and severity of disease. J Intern Med. 1997;242:361–5.

    Article  CAS  PubMed  Google Scholar 

  235. Matsumoto M, Tsujino T, Lee-Kawabata M, et al. Serum interleukin-6 and C-reactive protein are markedly elevated in acute decompensated heart failure patients with left ventricular systolic dysfunction. Cytokine. 2010;49:264–8.

    Article  CAS  PubMed  Google Scholar 

  236. Sandoo A, Veldhuizden van Zanten JJSC, Metsios GS, et al. The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J. 2010;4:302–12.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: testing and clinical relevance. Circulation. 2007;115:1285–95.

    PubMed  Google Scholar 

  238. Widlansky ME, Gokce N, Keaney Jr JF, et al. The clinical implications of endothelial dysfunction. J Am Coll Cardiol. 2003;42:1149–60.

    Article  CAS  PubMed  Google Scholar 

  239. Vallet B. Bench-to-bedside review: endothelial cell dysfunction in severe sepsis: a role in organ dysfunction? Crit Care Med. 2003;7:130–8.

    Google Scholar 

  240. Duffy MJ, Mullan BA, Craig TR, et al. Impaired endothelium-dependent vasodilatation is a novel predictor of mortality in intensive care. Crit Care Med. 2011;39:629–35.

    Article  CAS  PubMed  Google Scholar 

  241. Deanfiled JE, Donald A, Ferri C, et al. Endothelial function and dysfunction. Part I: methodological issues for assessment in the different vascular beds: a statement by the Working Group on Endothelin and Endothelial Factors of the European Society of Hypertension. J Hypertens. 2005;23:7–17.

    Article  Google Scholar 

  242. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327:524–6.

    Article  CAS  PubMed  Google Scholar 

  243. Satori C, Allemann Y, Scherrer U. Pathogenesis of pulmonary edema: learinng from high—altitude pulmonary edema. Respir Physiol Neurobiol. 2007;159:338–49.

    Article  CAS  Google Scholar 

  244. Satori C, Lepori M, Scherrer U. Interaction between nitric oxide and the cholinergic and sympathetic system in cardiovascular control in humans. Pharmacol Ther. 2005;106:209–20.

    Article  CAS  Google Scholar 

  245. Blech JN, Nielsen CB, Ivarsen P, et al. Dietary sodium affects systemic and renal hemodynamic response to NO inhibition in healthy humans. Am J Phys. 1998;274:F914–23.

    Google Scholar 

  246. Ungvari Z, Gupte SA, Recchia FA, et al. Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. Curr Vasc Pharmacol. 2005;3:221–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Pascual-Figal DA, Hurtado-Martinez JA, Redondo B, et al. Hyperuricaemia and long-term outcome after hospital discharge in acute heart failure patients. Eur J Heart Fail. 2007;9:518–24.

    Article  CAS  PubMed  Google Scholar 

  248. Hare JM, Stamler JS. NO/redox disequilibrium in the failing heart and cardiovascular system. J Clin Invest. 2005;115:509–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Heitzer T, Baldus S, von Kodolitsch Y. Systemic endothelial dysfunction as an early predictor of adverse outcome in heart failure. Arterioscler Thromb Vasc Biol. 2005;25:1174–9.

    Article  CAS  PubMed  Google Scholar 

  250. Bank AJ, Lee PC, Kubo SH. Endothelial dysfunction in patients with heart failure: relationship to disease severity. J Card Fail. 2000;6:29–36.

    Article  PubMed  Google Scholar 

  251. Shechter M, Matetzky S, Arad M, et al. Vascular endothelial function predicts mortality risk in patients with advanced ischemic chronic heart failure. Eur J Heart Fail. 2009;11:588–93.

    Article  PubMed  Google Scholar 

  252. de Berrazueta JR, Guerra-Ruiz A, García-Unzueta MT, et al. Endothelial dysfunction, measured by reactive hyperaemia using strain-gauge plethysmography, is an independent predictor of adverse outcome in heart failure. Eur J Heart Fail. 2010;12:477–83.

    Article  PubMed  CAS  Google Scholar 

  253. Hambrecht R, Fiehn E, Weigl C, et al. Regular physical exercise corrects endothelial dysfunction and improves exerciece capacity in patients with chronic heart failure. Circulation. 1998;98:2709–15.

    Article  CAS  PubMed  Google Scholar 

  254. Poelzl G, Frick M, Huegel H, et al. Chronic heart failure is associated with vascular remodeling of the brachial artery. Eur J Heart Fail. 2005;7:43–8.

    Article  PubMed  Google Scholar 

  255. Meyer B, Mörtl D, Strecker K, et al. Flow-mediated vasodilation predicts outcome in patients with chronic heart failure. J Am Coll Cardiol. 2005;46:1011–8.

    Article  PubMed  Google Scholar 

  256. Katz SD, Hryniewicz K, Hriljac I, et al. Vascular endothelial dysfunction and mortality risk in patients with chronic heart failure. Circulation. 2005;111:310–4.

    Article  PubMed  Google Scholar 

  257. Arid WC. The role of the endothelium in severe sepsis and multi organ dysfunction syndrome. Blood. 2003;101:3765–7.

    Article  CAS  Google Scholar 

  258. Shapiro N, Schuetz P, Yano K, et al. The association of endothelial cell signaling, severity of illness, and organ dysfunction in sepsis. Crit Care. 2010;14:R182.

    Article  PubMed  PubMed Central  Google Scholar 

  259. Ganda A, Onat D, Demmer RT, et al. Venous congestion and endothelial cell activation in acute decompensated heart failure. Curr Heart Fail Rep. 2010;7:66–74. doi:10.1007/s11897-010-0009-5.

    Article  CAS  PubMed  Google Scholar 

  260. Gutierrrez E, Flammer AJ, Leman LO, et al. Endothelial dysfunction over the course of coronary artery disease. Eur Heart J. 2013;34:3175–81.

    Article  Google Scholar 

  261. Rajendran P, Rengarajan T, Thangavel J, et al. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9:1057–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Keane MP, Strieter RM. Chemokine signalling in inflammation. Crit Care Med. 2000;28:N13–26.

    Article  CAS  PubMed  Google Scholar 

  263. Biedermann BC. Vascular endothelium: checkpoint for inflammation and immunity. News Physiol Sci. 2001;16:84–8.

    CAS  PubMed  Google Scholar 

  264. Murphy H. Inflammation. In: Rubin’s pathology. 6th ed. Baltimore: Wolters Kluwer/Lippincott, Williams and Wilkins; 2012. p. 47–82.

    Google Scholar 

  265. Majno G. Chronic inflammation: links with angiogenesis and wound healing. Am J Pathol. 1998;153:1035–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Nicoletti A, Michel JB. Cardiac fibrosis and inflammation: interaction with hemodynamic and hormonal factors. Cardiovasc Res. 1999;41:532–43.

    Article  CAS  PubMed  Google Scholar 

  267. Vaziri ND. Causal link between oxidative stress, inflammation, and hypertension. Iran J Kidney Dis. 2008;2:1–10.

    PubMed  Google Scholar 

  268. Oghlakain GO, Sipahi I, Fang J. Treatment of heart failure with preserved ejection fraction: have we been pursuing the wrong paradigm? Mayo Clin Proc. 2011;86:531–9.

    Article  Google Scholar 

  269. Savoia C, Schiffrin EL. Inflammation in hypertension. Curr Opin Nephrol Hypertens. 2006;15:152–8.

    CAS  PubMed  Google Scholar 

  270. Schiffrin EL, Touyz RM. From bedside to bench to bedside: role of renin–angiotensin–aldosterone system in remodeling of resistance arteries in hypertension. Am J Physiol Heart Circ Physiol. 2004;287:H435–46.

    Article  CAS  PubMed  Google Scholar 

  271. Savoia C, Schiffrin EL. Inhibition of the renin angiotensin system: implications for the endothelium. Curr Diab Rep. 2006;6:274–8.

    Article  CAS  PubMed  Google Scholar 

  272. Hijmering ML, Stroes ES, Olijhoek J, et al. Sympathetic activation markedly reduces endothelium-dependent, flow-mediated vasodilation. J Am Coll Cardiol. 2002;39:683–8.

    Article  PubMed  Google Scholar 

  273. Yudkin JS, Stehouwer CD, Emeis JJ, et al. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol. 1999;19:972–8.

    Article  CAS  PubMed  Google Scholar 

  274. Brasier AR, Recinos III A, Eledrisi MS. Vascular inflammation and the renin-angiotensin system. Arterioscler Thromb Vasc Biol. 2002;22:1257–66.

    Article  CAS  PubMed  Google Scholar 

  275. Janeway C, Travers P, editors. Immunology. The immnue system in health and disease. 2nd ed. Current Biology Limited: Londres; 1996.

    Google Scholar 

  276. Chae CU, Lee RT, Rifai N. Blood pressure and inflammation in apparently healthy men. Hypertension. 2001;38:399–403.

    Article  CAS  PubMed  Google Scholar 

  277. Durier S, Fassot C, Laurent S, et al. Physiological genomics in human arteries. Quantitative relationship between gene expression and arterial stiffness. Circulation. 2003;108:1845–51.

    Article  PubMed  Google Scholar 

  278. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340:115–26.

    Article  CAS  PubMed  Google Scholar 

  279. Chrissobolis A, Faraci FM. The role of oxidative stress and NADPH oxidase in cerebrovascular disease. Trends Mol Med. 2008;14:495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Verma S, Wang CH, Lee SH, et al. A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation. 2002;106:913–9.

    Article  CAS  PubMed  Google Scholar 

  281. Yan G, You B, Chen S-P, et al. Tumor necrosis factor α downregulates endothelial nitric oxide synthase mRNA stability via translation elongation factor 1- α 1. Circ Res. 2008;103:591–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Vlachopoulos C, Dima I, Aznaouridis K, et al. Acute systemic inflammation increases arterial stiffness and decreases wave reflections in healthy individuals. Circulation. 2005;112:2193–200.

    Article  PubMed  Google Scholar 

  283. Bhagat K, Moss R, Collier J, et al. Endothelial “stunning” following a brief exposure to endotoxin: a mechanism to link infection and infarction? Cardiovasc Res. 1996;32:822–9.

    CAS  PubMed  Google Scholar 

  284. Kass DA. Ventricular arterial stiffening. Hypertension. 2005;46:185–93.

    Article  CAS  PubMed  Google Scholar 

  285. Nichols WW, Petersen JW, Denardo SJ, et al. Arterial stiffness, wave reflection amplitude and left ventricular afterload are increased in overweight individuals. Artery Res. 2013;7:222–9.

    Article  Google Scholar 

  286. Hunter JD, Doddi M. Sepsis and the heart. Br J Anaesth. 2010;104:3–11.

    Article  CAS  PubMed  Google Scholar 

  287. Amiya E, Watanabe M, Komuro I. The relationship between vascular function and the autonomic nervous system. Ann Vasc Dis. 2014;7:109–19.

    Article  PubMed  PubMed Central  Google Scholar 

  288. Louridas GE, Louridas KG. Systems biology and biomechanical model of heart failure. Curr Cardiol Rev. 2012;8:220–30.

    Article  PubMed  PubMed Central  Google Scholar 

  289. Amiya E, Watanabe M, Takeda N, et al. Angiotensin II impairs endothelial nitric-oxide synthase bioavailability under free cholesterol-enriched conditions via intracellular free cholesterol-rich membrane microdomains. J Biol Chem. 2013;288:14495–509.

    Article  CAS  Google Scholar 

  290. Padilla J, Young CN, Simmons GH, et al. Increased muscle sympathetic nerve activity acutely alters conduit artery shear rate patterns. Am J Physiol Heart Circ Physiol. 2010;298:H1128–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Whittle J, Nelson A, Otto JM, et al. Sympathetic autonomic dysfunction and impaired cardiovascular performance in higher risk surgical patients: implications for perioperative sympatholysis. Open Heart 2015; 2: doi:10.1136/openheart-2015-000268

  292. Newcomer SC, Thijssen DHJ, Green DJ. Effects of exercise on endothelium and endothelium/smooth muscle cross-talk: role of exercise-induced hemodynamics. J Appl Physiol. 2011;111:311–20.

    Article  CAS  PubMed  Google Scholar 

  293. Schreuder THA, Green DJ, Hopeman MTE, et al. Acute impact of retrograde shear rate on brachial and superficial femoral artery flow-mediated dilation in humans. Physiol Rep. 2014;2:e00193.

    Article  PubMed  PubMed Central  Google Scholar 

  294. Laughin MH, Newcomer SC, Bender SB. Importance of hemodynamic forces as signals for exercise-induced changes in endothelial cell phenotype. J Appl Physiol. 2008;104:588–600.

    Article  Google Scholar 

  295. Kishi T, Hirooka Y, Kimura Y, et al. Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats. Circulation. 2004;109:2357–62.

    Article  CAS  PubMed  Google Scholar 

  296. Zhow J, Li Y-S, Chien S. Shear stress–initiated signaling and its regulation of endothelial function. Arterioscler Thromb Vasc Biol. 2014;34:2191–8.

    Article  CAS  Google Scholar 

  297. Colombo PC, Doran AC, Onat D, et al. Venous congestion, endothelial and neurohormonal activation in acute decompensated heart failure: cause or effect? Curr Heart Fail Rep. 2015;12:215–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Zablocki D, Sadohima J. Angiotensin II and oxidative stress in the failing heart. Antioxid Redox Signal. 2013;19:1095–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Teerlink J. Has the death knell been sounded for oral & intravenous vasodilators in decompensated heart failure? In: Mehra M, Sica D, editors. Heart failure, clinical challenges. Oxford: Clinical Publishing; 2011. p. 95ff.

    Google Scholar 

  300. Fonarow GC. The treatment targets in acute decompensated heart failure. Rev Cardiovasc Med. 2001;2(suppl 2):S7–S12.

    PubMed  Google Scholar 

  301. Von Anrep G. On the part played by the suprarenals in the normal vascular reactions of the body. J Physiol. 1912;45:307–17.

    Article  Google Scholar 

  302. Monroe RG, Gamble WJ, Lafarge CG. The Anrep effect reconsidered. J Clin Invest. 1972;51:2573–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Ross Jr J. The concept of afterload mismatch and its implications in the clinical assessment of cardiac contractility. Jpn Circ J. 1976;40:865–75.

    Article  PubMed  Google Scholar 

  304. Ross Jr J. Afterload mismatch and preload reserve: a conceptual framework for the analysis of ventricular function. Prog Cardiovasc Dis. 1976;18:255–64.

    Article  PubMed  Google Scholar 

  305. Fonarow GC, Weber JE. Rapid clinical assessment of hemodynamic profiles and target treatment of patients with acutely decompensated heart failure. Clin Cardiol. 2004;27(Suppl V):V-1–9.

    Article  Google Scholar 

  306. Colombo PC, Onat D, Kebschull M, et al. Acute venous hypertension and congestion coupled with analysis of endothelial gene expression profiling and circulating neurohormons: a new model to characterize the endothelial and inflammatory response to acute mechanical stress in humans. J Am Coll Cardiol. 2009;53:1040–111.

    Article  Google Scholar 

  307. Hayashi Y, Onat D, Wong KY, et al. Acute venous congestion enhances vasoconstriction, inflammation oxidative stress and endothelial activation and in compensated ambulatory patients with systolic heart failure on stable medical regimen. Circulation. 2014;130:A14812.

    Google Scholar 

  308. Cotter G, Felker GM, Adams KF, et al. The pathophysiology of acute heart failure—is it all about fluid accumulation? Am Heart J. 2008;155:9–18.

    Article  PubMed  Google Scholar 

  309. Lee DS, Johansen H, Gong Y, et al. Regional outcomes of heart failure in Canada. Can J Cardiol. 2004;20:599–607.

    PubMed  Google Scholar 

  310. Letic M. Feeling wall tension in an interactive demonstration of Lapalce’s law. Adv Physiol Educ. 2012;36:176. doi:10.1152/advan.00034.2012.

    Article  PubMed  Google Scholar 

  311. Laplace PS. A short account of the history of mathematics by W. W. Rouse Ball. 4th ed. 1908. http://www.maths.tcd.ie/pub/HistMath/People/Laplace/RouseBall/RB_Laplace.html

  312. Sunagawa K, Maughan WL, Burkhoff D, et al. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol Heart Circ Physiol. 1983;245:H773–80.

    CAS  Google Scholar 

  313. Butler J, Fonarow GC, Zile MR, et al. Developing therapies for heart failure with preserved ejection fraction: current state and future directions. JACC Heart Fail. 2014;2:97–112.

    Article  PubMed  PubMed Central  Google Scholar 

  314. Beohar N, Erdogan AK, Lee DC, et al. Acute heart failure syndromes and coronary perfusion. J Am Coll Cardiol. 2008;52:13–6.

    Article  PubMed  Google Scholar 

  315. Metra M, Nodari S, Parrinello G, et al. The role of biomarkers in acute heart failure. Serial changes and independent prognostic value of NT- pro BNP and cardiac troponin T. Eur J Heart Fail. 2007;9:776–86.

    Article  CAS  PubMed  Google Scholar 

  316. Cohn JN, Franciosa JA, Francis GS, et al. Effect of short-term infusion of sodium nitroprusside on mortality rate in acute myocardial infarction complicated by left ventricular failure: results of a Veterans Administration cooperative study. N Engl J Med. 1982;306:1129–35.

    Article  CAS  PubMed  Google Scholar 

  317. Phan TT, Abozguia K, Shivu GN, et al. Heart failure with preserved ejection fraction is characterized by dynamic impairment of active relaxation and contraction of the left ventricle on exercise and associated with myocardial energy deficiency. J Am Coll Cardiol. 2009;54:402–9.

    Article  PubMed  Google Scholar 

  318. DeBacker D, Creteur J, Dubois MJ, et al. Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J. 2004;147:91–9.

    Article  Google Scholar 

  319. Metra M, Teerlink JR, Voors AA, et al. Vasodilators in the treatment of acute heart failure: what we know, what we don’t. Heart Fail Rev. 2009;14:299–307.

    Article  CAS  PubMed  Google Scholar 

  320. Ferrari R, Bohm M, Cleland JG, et al. Heart failure with preserved ejection fraction: uncertainties and dilemmas. Eur J Heart Fail. 2015;17:665–71.

    Article  CAS  PubMed  Google Scholar 

  321. Starling MR. Left ventricular-arterial coupling relations in the normal human heart. Am Heart J. 1993;125:1659–66.

    Article  CAS  PubMed  Google Scholar 

  322. Kass DA, Kelly RP. Ventriculo-arterial coupling: concepts, assumptions and applications. Ann Biomed Eng. 1992;20:41–62.

    Article  CAS  PubMed  Google Scholar 

  323. Van den Horn GJ, Westerhof N, Elzinga G. Optimal power generation by the left ventricle. A study in the anesthetized open thorax cat. Circ Res. 1985;56:252–61.

    Article  PubMed  Google Scholar 

  324. Elzinga H, Westerhof N. Pressure and flow generated by the left ventricle against different impedances. Circ Res. 1973;32:178–86.

    Article  CAS  PubMed  Google Scholar 

  325. Chantler PD, Lakatta EG, Najjar SS. Arterial-ventricular coupling: mechanistic insights into cardiovascular performance at rest and during exercise. J Appl Physiol. 2008;105:1342–51.

    Article  PubMed  PubMed Central  Google Scholar 

  326. Romandini A, Mattei S. Chapter 7. Acute heart failure and pulmonary edema. In: Capucci A, editor. Clinical cases in cardiology. Cham: Springer; 2015. p. 65–78.

    Chapter  Google Scholar 

  327. Gillebert TC, Leite-Moreira AF, De Hert SG. Load dependent diastolic dysfunction in heart failure. Heart Fail Rev. 2000;5:345–55.

    Article  CAS  PubMed  Google Scholar 

  328. Borlaug BA, Melenovsky V, Redfield MM, et al. Impact of arterial load and loading sequence on left ventricular tissue velocities in humans. J Am Coll Cardiol. 2007;50:1570–7.

    Article  PubMed  Google Scholar 

  329. Petrie MC, Caruana L, Berry C. “Diastolic heart failure” or heart failure caused by subtle left ventricular systolic dysfunction? Heart. 2002;87:29–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Sampson JJ. The lymphatic system in pulmonary disease. In: Mayerson HS, editor. Lymph and lymphatic system. Springfield: Charles C. Thomas; 1968. p. 200.

    Google Scholar 

  331. Metra M, Felker GM, Zaca V, et al. Acute heart failure: multiple clinical profiles and mechanisms require tailored therapy. Int J Cardiol. 2010;144:175–9.

    Article  PubMed  Google Scholar 

  332. Zile MR, Adamson PB, Cho YK, et al. Hemodynamic factors associated with acute decompensated heart failure: part 1–insights into pathophysiology. J Card Fail. 2011;17:282–91.

    Article  PubMed  Google Scholar 

  333. Chapleau MW. Arterial baroreflexes. In: Izzo JL, editor. Hypertension primer. Philadelphia: Lippincott, Williams and Wilkins; 2008. p. 120–3.

    Google Scholar 

  334. Dunlap ME. Cardiopulmonary baroreflexes. In: Izzo JL, editor. Hypertension primer. Philadelphia: Lippincott, Williams and Wilkins; 2008. p. 123–5.

    Google Scholar 

  335. Gelman S. Venous function and central venous pressure: a physiologic story. Anesthesiology. 2008;108:735–48.

    Article  PubMed  Google Scholar 

  336. Racchi H, Schliem AJ, Donso MV, et al. Neuropeptide Y Y1 receptors are involved in the vasoconstriction caused by human sympathetic nerve stimulation. Eur J Pharmacol. 1997;329:79–83.

    Article  CAS  PubMed  Google Scholar 

  337. Balmain S, Padmanabhan N, Ferrell WR, et al. Differences in arterial compliance, microvascular function and venous capacitance between patients with heart failure and either preserved or reduced left ventricular systolic function. Eur J Heart Fail. 2007;9:865–71.

    Article  PubMed  Google Scholar 

  338. Dibner-Dunlap ME, Thames MD. Baroreflex control of renal sympathetic nerve activity is preserved in heart failure despite reduced arterial baroreceptor sensitivity. Circ Res. 1989;65:1526–35.

    Article  CAS  PubMed  Google Scholar 

  339. Sopher SM, Smith ML, Eckberg DL, et al. Autonomic pathophysiology in heart failure: carotid baroreceptor-cardiac reflexes. Am J Physiol Heart Circ Physiol. 1990;259:H689–96.

    CAS  Google Scholar 

  340. Thames MD, Kinugawa T, Smith ML, et al. Abnormalities of baroreflex control in heart failure. J Am Coll Cardiol. 1993;22:56A–60A.

    Article  CAS  PubMed  Google Scholar 

  341. Kinugawa T, Dibner-Dunlap ME. Altered vagal and sympathetic control of heart rate in left ventricular dysfunction and heart failure. Am J Phys. 1995;268:R317–23.

    Google Scholar 

  342. Adamson PB, Smith AL, Abraham WT, et al. Continuous autonomic assessment in patients with symptomatic heart failure. Circulation. 2004;110:2389–94.

    Article  PubMed  Google Scholar 

  343. de Jager J, Dekker JM, Kooy A, et al. Endothelial dysfunction and low-grade inflammation explain much of the excess cardiovascular mortality in individuals with type 2 diabetes. Arterioscler Thromb Vasc Biol. 2006;26:1086–93.

    Article  PubMed  CAS  Google Scholar 

  344. Sandek A, Anker SD, von Haehling S. The gut and intestinal bacteria in chronic heart failure. Curr Drug Metab. 2009;10:22–8.

    Article  CAS  PubMed  Google Scholar 

  345. Cowie MR, Anker SD, Cleland JFG, et al. Improving care for patients with acute heart failure: before, during and after hospitalization. ESC Eur J Heart Fail. 2014;1:110–45.

    Article  Google Scholar 

  346. Fang J, Mensah GA, Croft JB, et al. Heart failure–related hospitalization in the U.S. 1979 to 2004. J Am Coll Cardiol. 2008;52:428–34.

    Article  PubMed  Google Scholar 

  347. Moore JP, Hainsworth R, Drinkhill MJ. Phasic negative intrathoracic pressures enhance the vascular response to stimulation of pulmonary arterial baroreceptors in anaesthetized dogs. J Physiol. 2004;555:815–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Bourge RC, Abraham WR, Adamson PB, et al. Randomized controlled trail of an implantable continuous hemodynamic monitor in patients with advanced heart failure: the COMPASS-HF study. J Am Coll Cardiol. 2008;51:1073–9.

    Article  PubMed  Google Scholar 

  349. Bagshaw S, Cruz DN. Fluid overload as a biomarker of heart failure and acute kidney injury. In: Ronco C, Constanzo MR, Bellomo R, Maisel AS, editors. Fluid overload: diagnosis and management, Contributions to nephrology, vol. 164. Basel: Karger; 2010. p. 54–68.

    Chapter  Google Scholar 

  350. Ishibe S, Peixoto AJ. Methods of assessment of volume status and intercompartmental fluid shifts in hemodialysis patients: implications in clinical practice. Semin Nephrol. 2004;17:37–43.

    Google Scholar 

  351. Rohde LE, Silva Neto LB, Goldraich L, et al. Reliability and prognostic value of traditional signs and symptoms in outpatients with congestive heart failure. Can J Cardiol. 2004;20:697–702.

    PubMed  Google Scholar 

  352. Fonseca C, Morais H, Motta T, et al. The diagnosis of heart failure in primary care: value of symptoms and signs. Eur J Heart Fail. 2004;6:795–800.

    Article  PubMed  Google Scholar 

  353. Lewin J, Ledwidge M, O’Loughlin C, et al. Clinical deterioration in established heart failure: what is the value of BNP and weight gain in aiding diagnosis? Eur J Heart Fail. 2005;7:953–7.

    Article  CAS  PubMed  Google Scholar 

  354. Little WC. Diastolic dysfunction beyond distensibility: adverse effects of ventricular dilatation. Circulation. 2005;112:2888–90.

    PubMed  Google Scholar 

  355. Damman K, Navis G, Smilde TD, et al. Decreased cardiac output, venous congestion and the association with renal impairment in patients with cardiac dysfunction. Eur J Heart Fail. 2007;96:872–8.

    Article  Google Scholar 

  356. Firth JD, Raine AE, Ledingham JG. Raised venous pressure: a direct cause of renal sodium retention in oedema? Lancet. 1988;1:1033–5.

    Article  CAS  PubMed  Google Scholar 

  357. Dunlap ME, Sobotka PA. Fluid re-distribution rather than accumulation causes most cases of decompensated heart failure. J Am Coll Cardiol. 2013;62:165–6.

    Article  PubMed  Google Scholar 

  358. Allen LA, Turer AT, DeWald T, et al. Continuous versus bolus dosing of furosemide for patients hospitalized for heart failure. Am J Cardiol. 2010;105:1794–7.

    Article  PubMed  PubMed Central  Google Scholar 

  359. Felker GM, Lee KL, Bull DA, et al. Diuretic strategies in acute decompensated heart failure. N Engl J Med. 2011;364:797–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Silva Androne S, Hryniewicz K, Hudaihed A, et al. Relation of unrecognized hypervolemia in chronic heart failure to clinical status, hemodynamics, and patient outcomes. Am J Cardiol. 2004;93:1254–9.

    Article  Google Scholar 

  361. Essig M, Escoubet B, de Zuttere D, et al. Cardiovascular remodelling and extracellular fluid excess in early stages of chronic kidney disease. Nephrol Dial Transplant. 2008;23:239–48.

    Article  CAS  PubMed  Google Scholar 

  362. Braam B, Cupples WA, Joles JA, et al. Systemic arterial and venous determinants of renal hemodynamics in congestive heart failure. Heart Fail Rev. 2012;17:161–75.

    Article  PubMed  Google Scholar 

  363. Katz AM. Cardiomyopathy of overload—a major determinant of prognosis in congestive heart failure. N Engl J Med. 1990;322:100–10.

    Article  CAS  PubMed  Google Scholar 

  364. Charloux A, Piquard F, Doutreleau S, et al. Mechanisms of renal hyporesponsiveness to ANP in heart failure. Eur J Clin Investig. 2003;33:769–78.

    Article  CAS  Google Scholar 

  365. Fink GD. Arthur C. Corcoran Memorial Lecture. Sympathetic activity, vascular capacitance, and long-term regulation of arterial pressure. Hypertension. 2009;53:307–12.

    Google Scholar 

  366. Guyton AC, Coleman TG, Cowley AW, et al. Systems analysis of arterial pressure regulation and hypertension. Ann Biomed Eng. 1972;1:254–81.

    Article  CAS  PubMed  Google Scholar 

  367. Lu G, Kassab GS. Role of shear stress and stretch in vascular mechanobiology. J R Soc Interface. 2011;8:1379–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Colombo PC, Banchs JE, Celaj S, et al. Endothelial cell activation in patients with decompensated heart failure. Circulation. 2005;111:58–62.

    Article  CAS  PubMed  Google Scholar 

  369. Gimbrone Jr MA, Topper JN, Nagel T, et al. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann N Y Acad Sci. 2000;902:230–9.

    Article  CAS  PubMed  Google Scholar 

  370. Sumpio BE, Riley JT, Dardik A. Cells in focus: endothelial cell. Int J Biochem Cell Biol. 2002;34:1508–12.

    Article  CAS  PubMed  Google Scholar 

  371. Starling RC. Inducible nitric oxide synthase in severe human heart failure. J Am Coll Cardiol. 2005;45:1425–7.

    Article  PubMed  Google Scholar 

  372. Delli Gatti C, Osto E, Kouroedov A, et al. Pulsatile stretch induces release of angiotensin II and oxidative stress in human endothelial cells: effects of ACE inhibition and AT1 receptor antagonism. Clin Exp Hypertens. 2008;30:616–27.

    Article  CAS  PubMed  Google Scholar 

  373. Testa A, Yeh M, Lee P, et al. Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J Am Coll Cardiol. 1996;28:964–71.

    Article  CAS  PubMed  Google Scholar 

  374. Colombo PC, Rastogi S, Onat D, et al. Activation of endothelial cells in conduit veins of dogs with heart failure and veins of normal dogs after vascular stretch by acute volume loading. J Card Fail. 2009;15:457–63.

    Article  CAS  PubMed  Google Scholar 

  375. Colombo PC, Onat D, Harxhi A, et al. Peripheral venous congestion causes inflammation, neurohormonal, and endothelial cell activation. Eur Heart J. 2014;35:448–54.

    Article  CAS  PubMed  Google Scholar 

  376. White M, Ducharme A, Ibrahim R, et al. Increased systemic inflammation and oxidative stress in patients with worsening congestive heart failure: improvement after short-term inotropic support. Clin Sci (Lond). 2006;110:483–9.

    Article  CAS  Google Scholar 

  377. Masoumi A, Ortiz F, Radhakrishnan J, et al. Mineralocorticoid receptor antagonists as diuretics: can congestive heart failure learn from liver failure? Heart Fail Rev. 2015;20:283–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Vachiery JL, Adir Y, Barberà JA, et al. Pulmonary hypertension due to left heart diseases. J Am Coll Cardiol. 2013;62(Suppl D):D100–8.

    Article  PubMed  Google Scholar 

  379. Calvin JE, Driedger AA, Sibbald WJ. Does the pulmonary capillary wedge pressure predict preload in critically ill patients. Crit Care Med. 1981;9:437–43.

    Article  CAS  PubMed  Google Scholar 

  380. Rosenkranz S, Gibbs JS, Wachter R, et al. Left ventricular heart failure and pulmonary hypertension. Eur Heart J. 2016;37:942–54.

    Article  PubMed  Google Scholar 

  381. Berlin DA, Bakker J. Starling curves and central venous pressure. Crit Care. 2015;19:55.

    Article  PubMed  PubMed Central  Google Scholar 

  382. Greyson CR. The right ventricle and pulmonary circulation: basic concepts. Rev Esp Cardiol. 2010;63:81–95.

    Article  PubMed  Google Scholar 

  383. Vieillard-Baron A, Prin S, Chergui K, et al. Echo-Doppler demonstration of acute cor pulmonale at the bedside in the medical intensive care unit. Am J Respir Crit Care Med. 2002;166:1310–9.

    Article  PubMed  Google Scholar 

  384. Jardin F. Ventricular interdependence: how does it impact on hemodynamic evaluation in clinical practice? Intensive Care Med. 2003;29:361–3.

    Article  PubMed  Google Scholar 

  385. Belenkie I, Dani R, Smith ER, et al. Effects of volume loading during experimental acute pulmonary embolism. Circulation. 1989;80:178–88.

    Article  CAS  PubMed  Google Scholar 

  386. Jardin F, Gueret P, Prost JF, et al. Two-dimensional echocardiographic assessment of left ventricular function in chronic obstructive pulmonary disease. Am Rev Respir Dis. 1984;129:135–42.

    CAS  PubMed  Google Scholar 

  387. Dupont M, Tang WHW. Right ventricular afterload and the role of nitric oxide metabolism in left-sided heart failure. J Card Fail. 2013;19:712–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Pinsky MR. Recent advances in the clinical application of heart-lung interactions. Curr Opin Crit Care. 2002;8:26–31.

    Article  PubMed  Google Scholar 

  389. Moore T, Frenneaux MP, Sas R, et al. Ventricular interaction and external constraint account for decreased stroke work during volume loading in CHF. Am J Physiol Heart Circ Physiol. 2001;281:H2385–91.

    CAS  PubMed  Google Scholar 

  390. Vonk-Noordegraaf A, Haddad F, Chin KM, et al. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol. 2013;62:D22–33.

    Article  PubMed  Google Scholar 

  391. Bleasdale RA, Frenneaux MP. Prognostic importance of right ventricular dysfunction. Heart. 2002;88:323–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  392. Louie EK, Lin S, Reynertson S, et al. Pressure and volume loading of the right ventricle have opposite effects on left ventricular ejection fraction. Circulation. 1995;92:819–24.

    Article  CAS  PubMed  Google Scholar 

  393. Dell’Italia LJ. Anatomy and physiology of the right ventricle. Cardiol Clin. 2012;30:167–87.

    Article  PubMed  Google Scholar 

  394. Haddad F, Doyle R, Murphy DJ, et al. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation. 2008;117:1717–31.

    Article  PubMed  Google Scholar 

  395. Tongers J, Schwerdtfeger B, Klein G, et al. Incidence and clinical relevance of supraventricular tachyarrhythmias in pulmonary hypertension. Am Heart J. 2007;153:127–32.

    Article  PubMed  Google Scholar 

  396. Voelkel NF, Quaife RA, Leinwand LA, et al. Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation. 2006;114:1883–91.

    Article  PubMed  Google Scholar 

  397. Schwarz K, Singh S, Dawson D, et al. Right ventricular function in left ventricular disease: pathophysiology and implications. Heart Lung Circ. 2013;22:507–13.

    Article  PubMed  Google Scholar 

  398. Bleasdale RA, Turner MS, Mumford CE, et al. Left ventricular pacing minimizes diastolic ventricular interaction, allowing improved preload-dependent systolic performance. Circulation. 2004;110:2395–400.

    Article  CAS  PubMed  Google Scholar 

  399. Dauterman K, Pak PH, Maughan WL, et al. Contribution of external forces to left ventricular diastolic pressure. Implications for the clinical use of the Starling law. Ann Intern Med. 1995;122:737–42.

    Article  CAS  PubMed  Google Scholar 

  400. Kazory A, Elkayam U. Cardiorenal interactions in acute decompensated heart failure: contemporary concepts facing emerging controversies. J Card Fail. 2014;20:1004–11.

    Article  PubMed  Google Scholar 

  401. Cohn JN. Unloading the failing heart. Previous experience and future directions. Am J Hypertens. 1989;2:736–9.

    Article  CAS  PubMed  Google Scholar 

  402. Cui J, Gao Z, Blaha C, et al. Distension of central great vein decreases sympathetic outflow in humans. Am J Physiol Heart Circ Physiol. 2013;305:H378–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  403. Chen X, Rahman MA, Floras JS. Effects of forearm venous occlusion on peroneal muscle sympathetic nerve activity in healthy subjects. Am J Cardiol. 1995;76:212–4.

    Article  CAS  PubMed  Google Scholar 

  404. King AJ, Osborn JW, Fink GD. Splanchnic circulation is a critical neural target in angiotensin II salt hypertension in rats. Hypertension. 2007;50:547–56.

    Article  CAS  PubMed  Google Scholar 

  405. Schrier RW, Abraham WT. Hormones and hemodynamics in heart failure. N Engl J Med. 1999;341:577–85.

    Article  CAS  PubMed  Google Scholar 

  406. Kono T, Sabbah HN, Rosman H, et al. Left ventricular shape is the primary determinant of functional mitral regurgitation in heart failure. J Am Coll Cardiol. 1992;20:1594–8.

    Article  CAS  PubMed  Google Scholar 

  407. Steimle AE, Stevenson LW, Chelimsky-Fallick C, et al. Sustained hemodynamic efficacy of therapy tailored to reduce filling pressures in survivors with advanced heart failure. Circulation. 1997;96:1165–72.

    Article  CAS  PubMed  Google Scholar 

  408. Grady KL, Dracup K, Kennedy G, et al. Team management of patients with heart failure: a statement for healthcare professionals from The Cardiovascular Nursing Council of the American Heart Association. Circulation. 2000;102:2443–56.

    Article  CAS  PubMed  Google Scholar 

  409. Summers RL, Amsterdam E. Pathophysiology of acute decompensated heart failure. Heart Fail Clin. 2009;5:9–17.

    Article  PubMed  Google Scholar 

  410. Gould LA, Reddy CVR. Vasodilator therapy for cardiac disorders. Mount Kisco: Futura; 1979. p. 1–6.

    Google Scholar 

  411. Guarracino F, Baldassarri R, Pinsky MR. Ventriculo-arterial decoupling in acutely altered hemodynamic states. Crit Care. 2013;17:213.

    Article  PubMed  PubMed Central  Google Scholar 

  412. Hofmann U, Frantz S. Immunity strikes: heart failure as a systemic disease. Eur Heart J. 2014;35:341–3.

    Article  PubMed  Google Scholar 

  413. Alsafwah S, Co Laguardia SP, Arroyo M, et al. Congestive heart failure is a systemic illness: a role for minerals and micronutrients. Clin Med Res. 2007;5:238–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  414. Yndestad A, Damås JK, Oie E, et al. Systemic inflammation in heart failure—the whys and wherefores. Heart Fail Rev. 2006;11:83–92.

    Article  CAS  PubMed  Google Scholar 

  415. McCullough P, Kellum JA, Haase M, et al. Pathophysiology of the cardiorenal syndromes: executive summary from the eleventh consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contrib Nephrol. 2013;182:82–98.

    Article  PubMed  Google Scholar 

  416. Milo-Cotter O, Cotter-Davison B, Lombardi C, et al. Neurohormonal activation in acute heart failure: results from VERITAS. Cardiology. 2011;119:96–105.

    Article  CAS  PubMed  Google Scholar 

  417. McCormack JP, Loewen P. Adding “value” to clinical practice guidelines. Can Fam Physician. 2007;53:1326–7.

    PubMed  PubMed Central  Google Scholar 

  418. Jessup M, Brozena S. Heart Failure. N Engl J Med. 2004;351:2007–18.

    Google Scholar 

  419. Hunt SA, Abraham WT, Chin MH, et al. 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation. 2009;119:e391–479.

    Article  PubMed  Google Scholar 

  420. Mant J, Doust J, Roalfe A, et al. Systematic review and individual patient data meta-analysis of diagnosis of heart failure, with modelling of implications of different diagnostic strategies in primary care. Health Technol Assess. 2009;13:1–207.

    Article  CAS  PubMed  Google Scholar 

  421. Gross CR, Kubo SH, et al. Pulmonary function after successful heart transplantation: one year follow up. Chest. 1993;103:54–8.

    Article  PubMed  Google Scholar 

  422. Dimopoulou J, Daganou M, Tsiutzas OK, et al. Effects of severity of long-standing congestive heart failure on pulmonary function. Respir Med. 1998;92:1321–5.

    Article  CAS  PubMed  Google Scholar 

  423. Agostini PG, Guazzi M, Bussotti M, et al. Lack of improvement of lung diffusing capacity following fluid withdrawl by ultrafiltration in chronic heart failure. J Am Coll Cardiol. 2000;36:1600–4.

    Article  Google Scholar 

  424. Mettauer B, Lampert EE, Charloux A, et al. Lung membrane diffusing capacity, heart failure, and heart transplantation. Am J Cardiol. 1999;83:62–7.

    Article  CAS  PubMed  Google Scholar 

  425. Fonarow GC, Adams Jr KF, Abraham WT, et al. Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis. JAMA. 2005;293:572–80.

    Article  CAS  PubMed  Google Scholar 

  426. Nohria A, Tsang SW, Fang JC, et al. Clinical assessment identifies hemodynamic profiles that predict outcomes in patients admitted with heart failure. J Am Coll Cardiol. 2003;41:1797–804.

    Article  PubMed  Google Scholar 

  427. Stevenson LW. Design of therapy for advanced heart failure. Eur J Heart Fail. 2005;7:323–31.

    Article  PubMed  Google Scholar 

  428. Fonarow GC, Stevenson LW, Steimle AE, et al. Persistently high left ventricular filling pressures predict mortality despite angiotensin converting enzyme inhibition in advanced heart failure. Circulation. 1994;90:I-488. Abstract 2624

    Google Scholar 

  429. Wang CS, FitzGerald JM, Schulzer M, et al. Does this dyspneic patient in the emergency department have congestive heart failure? JAMA. 2005;294:1944–56.

    Article  CAS  PubMed  Google Scholar 

  430. Shamra M, Teerlink JR. A rational approach for the treatment of acute heart failure: current strategies and future options. Curr Opin Cardiol. 2004;19:254–63.

    Article  Google Scholar 

  431. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur J Heart Fail. 2016;18:891–975.

    Article  PubMed  Google Scholar 

  432. Stevenson LW, Perloff JK. The limited reliability of physical signs for estimating hemodynamics in chronic heart failure. JAMA. 1989;261:884–8.

    Article  CAS  PubMed  Google Scholar 

  433. McKelvie RS, Moe GW, Ezekowitz JA, et al. The 2012 Canadian Cardiovascular Society heart failure management guidelines update: focus on acute and chronic heart failure. Can J Cardiol. 2013;29:168–81.

    Article  PubMed  Google Scholar 

  434. JCS Joint Working Group. Guidelines for treatment of acute heart failure (JCS 2011). Circ J. 2013;77:2157–201.

    Article  Google Scholar 

  435. Hillege HL, Girbes AR, de Kam PJ, et al. Renal function, neurohormonal activation, and survival in patients with chronic heart failure. Circulation. 2000;102:203–10.

    Article  CAS  PubMed  Google Scholar 

  436. Nohria A, Tsang S, Dries DL, et al. Bedside assessment of hemodynamic profiles identifies prognostic groups in patients admitted with heart failure. J Card Fail. 2000;6:64.

    Google Scholar 

  437. Hochman JS, Sleeper LA, Webb JG, et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock. N Engl J Med. 1999;341:625–34.

    Article  CAS  PubMed  Google Scholar 

  438. Menon V, White H, LeJemtel T, et al. The clinical profile of patients with suspected cardiogenic shock due to predominant left ventricular failure: a report from the SHOCK Trial Registry. SHould we emergently revascularize Occluded Coronaries in cardiogenic shocK? J Am Coll Cardiol. 2000;36(3 Suppl A):1071–6.

    Article  CAS  PubMed  Google Scholar 

  439. Cohn JN, Franciosa JA. Vasodilator therapy of cardiac failure: (first of two parts). N Engl J Med. 1977;297:27–31.

    Article  CAS  PubMed  Google Scholar 

  440. Thiele H, Allam B, Chatellier G, et al. Shock in acute myocardial infarction: the Cape Horn for trials? Eur Heart J. 2010;31:1828–35.

    Article  PubMed  Google Scholar 

  441. Hochman JS, Sleeper LA, Webb JG, et al. Early revascularization and long-term survival in cardiogenic shock complicating acute myocardial infarction. JAMA. 2006;295:2511–5.

    Article  PubMed  PubMed Central  Google Scholar 

  442. Devereaux RB, Liebson PR, Horan MJ. Recommendations concerning use of echocardiography in hypertension and general population research. Hypertension. 1987;9:II97–104.

    Google Scholar 

  443. Bristow RB, Lowes BD. Management of heart failure. In: Braunwald’s heart disease. A textbook of cardiovascular medicine. 7th ed. Philadelphia: WB Saunders; 2005. p. 603.

    Google Scholar 

  444. Mebazaa A, Yilmaz MB, Levy P, et al. Recommendations on pre-hospital & early hospital management of acute heart failure: a consensus paper. Eur J Heart Fail. 2015;17:544–58.

    Article  PubMed  Google Scholar 

  445. Cairo S, Rossignol P, Ambrosio G, et al. Prognostic value of residual pulmonary congestion at discharge assessed by lung ultrasound imaging in heart failure. Eur J Heart Fail. 2015;17:1172–81.

    Article  Google Scholar 

  446. Neskovic AN, Hagendorff A, Lancellotti P, et al. Emergency echocardiography: the European Association of Cardiovascular Imaging recommendations. Eur Heart J Cardiovasc Imaging. 2013;14:1–11.

    Article  PubMed  Google Scholar 

  447. Volpicelli G, Elbarbary M, Blaivas M, International Liaison Committee on Lung Ultrasound (ILC-LUS) for International Consensus Conference on Lung Ultrasound (ICC-LUS), et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2012;38:577–91.

    Article  PubMed  Google Scholar 

  448. Lichtenstein D, Mézière G, Biderman P, et al. The comet-tail artifact. An ultrasound sign of alveolar-interstitial syndrome. Am J Respir Crit Care Med. 1997;156:1640–6.

    Article  CAS  PubMed  Google Scholar 

  449. Picano E, Gargani L. Ultrasound of lungs comets: the shape of lung water. Eur J Heart Fail. 2012;14:1194–6.

    Article  PubMed  Google Scholar 

  450. Remes J, Miettinen H, Reunanen A, et al. Validity of clinical diagnosis of heart failure in primary health care. Eur Heart J. 1991;12:315–21.

    Article  CAS  PubMed  Google Scholar 

  451. Kelder JC, Cowie MR, McDonagh TA, et al. Quantifying the added value of BNP in suspected heart failure in general practice: an individual patient data meta-analysis. Heart. 2011;97:959–63.

    Article  PubMed  Google Scholar 

  452. Cowie MR, Struthers AD, Wood DA, et al. Value of natriuretic peptides in assessment of patients with possible new heart failure in primary care. Lancet. 1997;350:1349–53.

    Article  CAS  PubMed  Google Scholar 

  453. Krishnaswamy P, Lubien E, Clopton P, et al. Utility of B-natriuretic peptide levels in identifying patients with left ventricular systolic or diastolic dysfunction. Am J Med. 2001;111:274–9.

    Article  CAS  PubMed  Google Scholar 

  454. Dao Q, Krishnaswamy P, Kazanegra R, et al. Utility of B-type natriuretic peptide in the diagnosis of congestive heart failure in an urgent-care setting. J Am Coll Cardiol. 2001;37:379–85.

    Article  CAS  PubMed  Google Scholar 

  455. Gupta DK, Wang TJ. Natriuretic peptides and cardiometabolic health. Circ J. 2015;79:1647–55.

    Article  PubMed  PubMed Central  Google Scholar 

  456. Zois NE, Bartels ED, Hunter I, et al. Natriuretic peptides in cardiometabolic regulation and disease. Nat Rev Cardiol. 2014;11:403–12.

    Article  CAS  PubMed  Google Scholar 

  457. Nishikimi T, Kuwahara K. Current biochemistry, molecular biology, and clinical relevance of natriuretic peptides. J Cardiol. 2011;57:131–40.

    Article  PubMed  Google Scholar 

  458. Alpert JS, Thygesen K, Antman E, et al. Myocardial infarction redefined—a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol. 2000;36:959–69.

    Article  CAS  PubMed  Google Scholar 

  459. Jaffe AS, Ravkilde J, Roberts R, et al. It’s time for a change to a troponin standard. Circulation. 2000;102:1216–20.

    Article  CAS  PubMed  Google Scholar 

  460. Newby LK, Goldmann BU, Ohman EM. Troponin: an important prognostic marker and risk-stratification tool in non-ST-segment elevation acute coronary syndromes. J Am Coll Cardiol. 2003;41:31S–6S.

    Article  CAS  PubMed  Google Scholar 

  461. Heidenreich PA, Alloggiamento T, Melsop K, et al. The prognostic value of troponin in patients with non-ST elevation acute coronary syndromes: a meta-analysis. J Am Coll Cardiol. 2001;38:478–85.

    Article  CAS  PubMed  Google Scholar 

  462. Lüscher MS, Thygesen K, Ravkilde J, et al. Applicability of cardiac troponin T and I for early risk stratification in unstable coronary artery disease. TRIM Study Group. Thrombin inhibition in myocardial ischemia. Circulation. 1997;96:2578–85.

    Article  PubMed  Google Scholar 

  463. Sato Y, Yamada T, Taniguchi R, et al. Persistently increased serum concentrations of cardiac troponin t in patients with idiopathic dilated cardiomyopathy are predictive of adverse outcomes. Circulation. 2001;103:369–74.

    Article  CAS  PubMed  Google Scholar 

  464. Ishii J, Nomura M, Nakamura Y, et al. Risk stratification using a combination of cardiac troponin T and brain natriuretic peptide in patients hospitalized for worsening chronic heart failure. Am J Cardiol. 2002;89:691–5.

    Article  CAS  PubMed  Google Scholar 

  465. La Vecchia L, Mezzena G, Zanolla L, et al. Cardiac troponin I as diagnostic and prognostic marker in severe heart failure. J Heart Lung Transplant. 2000;19:644–52.

    Article  PubMed  Google Scholar 

  466. Missov E, Mair J. A novel biochemical approach to congestive heart failure: cardiac troponin T. Am Heart J. 1999;138:95–9.

    Article  CAS  PubMed  Google Scholar 

  467. Setsuta K, Seino Y, Takahashi N, et al. Clinical significance of elevated levels of cardiac troponin T in patients with chronic heart failure. Am J Cardiol. 1999;84:608–11.

    Article  CAS  PubMed  Google Scholar 

  468. You JJ, Austin PC, Alter DA, et al. Relation between cardiac troponin I and mortality in acute decompensated heart failure. Am Heart J. 2007;153:462–70.

    Article  CAS  PubMed  Google Scholar 

  469. Felker CM, O’Connor CM. Inotropic therapy for heart failure: an evidence-based approach. Am Heart J. 2001;142:393–401.

    Article  CAS  PubMed  Google Scholar 

  470. Leier CV, Binkley PF. Parenteral inotropic support for advanced congestive heart failure. Prog Cardiovasc Dis. 1998;41:207–24.

    Article  CAS  PubMed  Google Scholar 

  471. DiDomenico RJ, Park HY, Southworth MR, et al. Guidelines for acute decompensated heart failure treatment. Ann Pharmacother. 2004;38:649–60.

    Article  PubMed  Google Scholar 

  472. Abraham WT, Adams KF, Fonarow GC, et al. In-hospital mortality in patients with acute decompensated heart failure requiring intravenous vasoactive medications: an analysis from the Acute Decompensated Heart Failure National Registry (ADHERE). J Am Coll Cardiol. 2005;46:57–64.

    Article  PubMed  Google Scholar 

  473. Stevenson LW. Tailored therapy to hemodynamic goals for advanced heart failure. Eur J Heart Fail. 1999;1:251–7.

    Article  CAS  PubMed  Google Scholar 

  474. Greenberg B, Borghi C, Perrone S. Pharmacotherapeutic approaches for decompensated heart failure: a role for the calcium sensitiser, levosimendan? Eur J Heart Fail. 2003;5:13–21.

    Article  CAS  PubMed  Google Scholar 

  475. Stevenson LW, Tillisch JH, Hamilton M, et al. Importance of hemodynamic response to therapy in predicting survival with ejection fraction less than or equal to 20% secondary to ischemic or nonischemic dilated cardiomyopathy. Am J Cardiol. 1990;66:1348–554.

    Article  CAS  PubMed  Google Scholar 

  476. Kirk JD, Parissis JT, Filippatos G. Pharmacologic stabilization and management of acute heart failure syndromes in the emergency department. Heart Fail Clin. 2009;5:43–54.

    Article  PubMed  Google Scholar 

  477. Munoz D, Felker GM. Approaches to decongestion in patients with acute decompensated heart failure. Curr Cardiol Rep. 2013;15:335. doi:10.1007/s11886-012-0335-1.

    Article  PubMed  PubMed Central  Google Scholar 

  478. Gheorghiade M, Filippatos G. Reassessing treatment of acute heart failure syndromes: the ADHERE Registry. Eur Heart J. 2005;7:B13–9.

    Article  Google Scholar 

  479. Thomas SS, Nohria A. Hemodynamic classifications of acute heart failure and their clinical application:—an update—. Circ J. 2012;76:278–86.

    Article  PubMed  Google Scholar 

  480. Northbridge D. Frusemide or nitrates for acute heart failure? Lancet. 1996;47:667–8.

    Article  Google Scholar 

  481. Cotter G, Metzkor E, Kaluski E, et al. Randomised trial of high-dose isosorbide dinitrate plus low-dose furosemide versus high-dose furosemide plus low-dose isosorbide dinitrate in severe pulmonary oedema. Lancet. 1998;351:389–93.

    Article  CAS  PubMed  Google Scholar 

  482. Metha RL, Pascual MT, Soroko S, et al. Diuretics, mortality, and nonrecovery of renal function in acute renal failure. JAMA. 2002;288:2547–53.

    Article  Google Scholar 

  483. Francis GS, Siegel RM, Goldsmith SR, et al. Acute vasoconstrictor response to intravenous furosemide in patients with chronic congestive heart failure. Activation of the neurohumoral axis. Ann Intern Med. 1985;103:1–6.

    Article  CAS  PubMed  Google Scholar 

  484. Wilson JR, Reichek N, Dunkman WB, et al. Effect of diuresis on the performance of the failing left ventricle in man. Am J Med. 1981;70:234–9.

    Article  CAS  PubMed  Google Scholar 

  485. Forrester JS, Diamond G, Chatterjee K, et al. Medical therapy of acute myocardial infarction by application of hemodynamic subsets (first of two parts). N Engl J Med. 1976;295:1356–62.

    Article  CAS  PubMed  Google Scholar 

  486. Loiacono LA. Fluid resuscitation in the ICU. In: Higgins TL, Steingrub JS, Kacmarek RM, Stoller JK, editors. Cardiopulmonary critical care. Oxford: BIOS Scientific Publications; 2002. p. 99.

    Chapter  Google Scholar 

  487. Philbein EF, Cotto M, Rocco Jr TA, et al. Association between diuretic use, clinical response, and death in acute heart failure. Am J Cardiol. 1997;80:519–22.

    Article  Google Scholar 

  488. Cooper HA, Dries DL, Davis CE. Diuretics and risk of arrhythmic death in patients with left ventricular dysfunction. Circulation. 1999;100:1311–5.

    Article  CAS  PubMed  Google Scholar 

  489. Dikshit K, Vyden J, Forrester J, et al. Renal and extrarenal hemodynamic effects of furosemide in congestive heart failure after acute myocardial infarction. N Engl J Med. 1973;288:1087–90.

    Article  CAS  PubMed  Google Scholar 

  490. Brater DC. Diuretic therapy. N Engl J Med. 1998;339:387–95.

    Article  CAS  PubMed  Google Scholar 

  491. Berkowitz R, Alhaj E, Manchikalapudi RB, et al. Determinants of right ventricular failure in patients admitted with acute left heart failure. Congest Heart Fail. 2010;16:243–8.

    Article  PubMed  Google Scholar 

  492. Stevenson LW, Fonarow GC, Hamilton M, et al. Why cardiac output is not a target for therapy in advanced heart failure. Circulation. 1994;90:1–611.

    Article  Google Scholar 

  493. Stevenson LW, Bellil D, Grover-McKay M, et al. Effects of afterload reduction (diuretics and vasodilators) on left ventricular volume and mitral regurgitation in severe congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol. 1987;60:654–8.

    Article  CAS  PubMed  Google Scholar 

  494. Francis GS. Pathophysiology of the heart failure syndromes. In: Topol E, editor. Textbook of cardiovascular medicine. Philadelphia: Lippincott-Raven Publishers; 1998. p. 2179.

    Google Scholar 

  495. Boehmer RP, Popjes E. Cardiac failure: mechanical support strategies. Crit Care Med. 2006;34:S268–77.

    Article  PubMed  Google Scholar 

  496. Weiland DS, Konstam MA, Salem DN, et al. Contribution of reduced mitral regurgitant volume to vasodilator effect in severe left ventricular failure secondary to coronary artery disease or idiopathic dilated cardiomyopathy. Am J Cardiol. 1986;58:1046–50.

    Article  CAS  PubMed  Google Scholar 

  497. Guhia NH, Cohn JN, Mikulic E, et al. Treatment of refractory heart failure with infusion of nitroprusside. N Engl J Med. 1974;291:587–92.

    Article  Google Scholar 

  498. Stevenson LW. Clinical use of inotropic therapy for heart failure: looking backward or forward? Part I: inotropic infusions during hospitalization. Circulation. 2003;108:367–72.

    Article  PubMed  Google Scholar 

  499. Rosario LB, Stevenson LW, Solomon SD, et al. The mechanism of decrease in dynamic mitral regurgitation during heart failure treatment: importance of reduction in the regurgitant orifice size. J Am Coll Cardiol. 1998;32:1819–24.

    Article  CAS  PubMed  Google Scholar 

  500. Burton AC. The importance of the shape and size of the heart. Am Heart J. 1957;54:801–10.

    Article  CAS  PubMed  Google Scholar 

  501. Woods RH. A few applications of a physical theorem to membranes in the human body in a state of tension. J Anat Physiol. 1982;26:302.

    Google Scholar 

  502. Stevenson LW, Brunken RC, Belil D, et al. Afterload reduction with vasodilators and diuretics decreases mitral regurgitation during upright exercise in advanced heart failure. J Am Coll Cardiol. 1990;15:174–80.

    Article  CAS  PubMed  Google Scholar 

  503. Majid PA, Sharma B, Taylor SH. Phentolamine for vasodilator treatment of severe heart-failure. Lancet. 1971;2:719.

    Article  CAS  PubMed  Google Scholar 

  504. Young JB, Abraham WT, Stevenson LW, et al. Intravenous nesiritide vs nitroglycerin for treatment of decompensated congestive heart failure. JAMA. 2002;287:1531–40.

    Article  CAS  Google Scholar 

  505. Bellomo R, Kellum JA, Wisniewski SR, et al. Effects of norepinephrine on the renal vasculature in normal and endotoxemic dogs. Am J Respir Crit Care Med. 1999;159:1186–92.

    Article  CAS  PubMed  Google Scholar 

  506. Nelson GI, Silke B, Ahuja RC, et al. Haemodynamic advantages of isosorbide dinitrate over frusemide in acute heart-failure following myocardial infarction. Lancet. 1983;1(8327):730–3.

    Article  CAS  PubMed  Google Scholar 

  507. Beltrame JF, Zeitz CJ, Unger SA, et al. Nitrate therapy is an alternative to furosemide/morphine therapy in the management of acute cardiogenic pulmonary edema. J Card Fail. 1998;4:271–9.

    Article  CAS  PubMed  Google Scholar 

  508. Verma SP, Silke B, Hussain M, et al. First-line treatment of left ventricular failure complicating acute myocardial infarction: a randomised evaluation of immediate effects of diuretic, venodilator, arteriodilator, and positive inotropic drugs on left ventricular function. J Cardiovasc Pharmacol. 1987;10:38–46.

    Article  CAS  PubMed  Google Scholar 

  509. Wakai McCabe A, Kidney R, et al. Nitrates for acute heart failure syndromes. Cochrane Database Syst Rev. 2013;8:CD005151.

    Google Scholar 

  510. Harjola VP, Mebazaa A, Čelutkienė J, et al. Contemporary management of acute right ventricular failure: a statement from the Heart Failure Association and the Working Group on Pulmonary Circulation and Right Ventricular Function of the European Society of Cardiology. Eur J Heart Fail. 2016;18:226–41.

    Article  PubMed  Google Scholar 

  511. Steg PG, James SK, Atar D, et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2012;33:2569–619.

    Article  CAS  PubMed  Google Scholar 

  512. Roffi M, Patrono C, Collet J-P, Mueller C. Valgimigli; 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2016;37:267–315.

    Article  PubMed  Google Scholar 

  513. Sanborn TA. Correlates of one-year survival inpatients with cardiogenic shock complicating acute myocardial infarction: angiographic findings from the SHOCK trial. J Am Coll Cardiol. 2003;42:1373–9.

    Article  PubMed  Google Scholar 

  514. Thiele H, Zeymer U, Neumann F-J, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med. 2012;367:1287–96.

    Article  CAS  PubMed  Google Scholar 

  515. Webb JG, Lowe AM, Sanborn TA, et al. Percutaneous coronary intervention for cardiogenic shock in the SHOCK trial. J Am Coll Cardiol. 2003;42:1380–6.

    Article  PubMed  Google Scholar 

  516. Haque WA, Boehmer J, Clemson BS, et al. Hemodynamic effects of supplemental oxygen administration in congestive heart failure. J Am Coll Cardiol. 1996;27:353–7.

    Article  CAS  PubMed  Google Scholar 

  517. Rawles JM, Kenmure AC. Controlled trial of oxygen in uncomplicated myocardial infarction. Br Med J. 1976;1:1121–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  518. Park JH, Balmain S, Berry C, et al. Potentially detrimental cardiovascular effects of oxygen in patients with chronic left ventricular systolic dysfunction. Heart. 2010;96:533–8.

    Article  PubMed  Google Scholar 

  519. Gray A, Goodacre M, Seah S, et al. Diuretic, opiate and nitrate use in severe acidotic acute cardiogenic pulmonary oedema: analysis from the 3CPO trial. QJM. 2010;103:573–81.

    Article  CAS  PubMed  Google Scholar 

  520. Peacock WF. Morphine and outcomes in acute decompensated heart failure: an ADHERE analysis. Emerg Med J. 2008;25:205–9.

    Article  CAS  PubMed  Google Scholar 

  521. Lakobishvili Z, Cohen E, Garty M, et al. Use of intravenous morphine for acute decompensated heart failure in patients with and without acute coronary syndromes. Acute Card Care. 2011;13:76–80.

    Article  Google Scholar 

  522. Gottlieb SS, Brater DC, Thomas I, et al. BG9719 (CVT-124), an A1 adenosine receptor antagonist, protects against the decline in renal function observed with diuretic therapy. Circulation. 2002;105:1348–53.

    Article  CAS  PubMed  Google Scholar 

  523. Felker GM, Brater DC, Thomas I, et al. Loop diuretics in acute decompensated heart failure: necessary? Evil? A necessary evil? Circ Heart Fail. 2009;2:56–62.

    Article  PubMed  PubMed Central  Google Scholar 

  524. Schrier RW. Role of diminished renal function in cardiovascular mortality. marker or pathogenetic factor? J Am Coll Cardiol. 2006;47:1–8.

    Article  PubMed  Google Scholar 

  525. Ellison DH. Diuretic therapy and resistance in congestive heart failure. Cardiology. 2001;96:132–43.

    Article  CAS  PubMed  Google Scholar 

  526. Salvador DR, Rey NR, Ramos GC, et al. Continuous infusion versus bolus injection of loop diuretics in congestive heart failure. Cochrane Database Syst Rev. 2005;20:CD003178.

    Google Scholar 

  527. Paul S. Balancing diuretic therapy in heart failure: loop diuretics, thiazides, and aldosterone antagonists. Cong Heart Fail. 2002;8:307–12.

    Article  CAS  Google Scholar 

  528. Neuberg GW, Miller AB, O’Connor CM, et al. Diuretic resistance predicts mortality in patients with advanced heart failure. Am Heart J. 2002;144:31–8.

    Article  PubMed  Google Scholar 

  529. Rosenberg J, Gustafsson F, Galatius S. Combination therapy with metolazone and loop diuretics in outpatients with refractory heart failure: an observational study and review of the literature. Cardiovasc Drugs Ther. 2005;19:301–6.

    Article  CAS  PubMed  Google Scholar 

  530. Channer KS, McLean KA, Lawson-Matthew P, et al. Combination diuretic treatment in severe heart failure: a randomised controlled trial. Br Heart J. 1994;71:146–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  531. Vargo DL, Kramer WG, Black PK, et al. Bioavailability, pharmacokinetics, and pharmacodynamics of torsemide and furosemide in patients with congestive heart failure. Clin Pharmacol Ther. 1995;57:601–9.

    Article  CAS  PubMed  Google Scholar 

  532. Cody R. Clinical trials of diuretic therapy in heart failure: research directions and clinical considerations. J Am Coll Cardiol. 1993;22(4 Suppl A):165A–7A.

    Article  CAS  PubMed  Google Scholar 

  533. Krück F. Acute and long term effects of loop diuretics in heart failure. Drugs. 1991;41(Suppl):60–8.

    Article  PubMed  Google Scholar 

  534. Cosin J, Díez J, TORIC investigators. Torasemide in chronic heart failure: results of the TORIC study. Eur J Heart Fail. 2002;4:507–13.

    Article  CAS  PubMed  Google Scholar 

  535. Tsutamoto TJ, Sakai H, Wada A. Torasemide inhibits transcardiac extraction of aldosterone in patients with congestive heart failure. J Am Coll Cardiol. 2004;44:2252–3.

    Article  CAS  PubMed  Google Scholar 

  536. Nieminen MS. Key issues of European Society of Cardiology guidelines on acute heart failure. Eur Heart J. 2006;8(suppl E):E6.

    Article  Google Scholar 

  537. Constanzo MR, Saltzberg M, O’Sullivan J, et al. Early ultrafiltration in patients with decompensated heart failure and diuretic resistance. J Am Coll Cardiol. 2005;46:2047–51.

    Article  Google Scholar 

  538. Bart BA, Boyle A, Bank AJ, et al. Ultrafiltration versus usual care for hospitalized patients with heart failure: the Relief for Acutely Fluid-Overloaded Patients With Decompensated Congestive Heart Failure (RAPID-CHF) trial. J Am Coll Cardiol. 2005;46:2043–6.

    Article  PubMed  Google Scholar 

  539. Constanzo MR, Guglin ME, Saltzberg MT, et al. Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J Am Coll Cardiol. 2007;49:675–83.

    Article  CAS  Google Scholar 

  540. Ali SS, Olinger CC, Sobotka P. Enhanced sodium extraction with ultrafiltration compared to intravenous diuretics. Paper presented Heart Failure Society of America 2006 Scientific Meeting; September 11, 2006; Seattle.

    Google Scholar 

  541. Sharma A, Hermann DD, Mehta RL. Clinical benefit and approach of ultrafiltration in acute heart failure. Cardiology. 2001;96:144–54.

    Article  CAS  PubMed  Google Scholar 

  542. Bart BA, Goldsmith SR, Lee KL, et al. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N Engl J Med. 2012;367:2296–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  543. Rossi GP, Calo LA, Maiolino G, et al. Ultrafiltration for the treatment of congestion: a window into the lung for a better congestion: a window into the lung for a better. Nephrol Dial Transplant. 2014;29:1335–41.

    Article  PubMed  Google Scholar 

  544. Metra M, Davison B, Bettari L, et al. Is worsening renal function an ominous prognostic sign in patients with acute heart failure? The role of congestion and its interaction with renal function. Circ Heart Fail. 2012;5:54–62.

    Article  PubMed  Google Scholar 

  545. Costanzo MR, Saltzberg MT, Jessup M, Ultrafiltration Versus Intravenous Diuretics for Patients Hospitalized for Acute Decompensated Heart Failure (UNLOAD) Investigators, et al. Ultrafiltration is associated with fewer rehospitalizations than continuous diuretic infusion in patients with decompensated heart failure: results from UNLOAD. J Card Fail. 2010;16:277–84.

    Article  PubMed  Google Scholar 

  546. Felker GM, Teerlink JR. Diagnosis and management of acute heart failure. In: Mann DL, Zipes DP, Libby P, Bonow RO, editors. Braunwald’s heart disease. 10th ed. Philadelphia: Elsevier Saunders; 2015. p. 484.

    Google Scholar 

  547. Sharon A, Shpirer I, Kaluski E, et al. High-dose intravenous isosorbide-dinitrate is safer and better than Bi-PAP ventilation combined with conventional treatment for severe pulmonary edema. J Am Coll Cardiol. 2000;36:832–7.

    Article  CAS  PubMed  Google Scholar 

  548. Peacock 4th WF, Fonarow GC, Emerman CL, et al. Impact of early initiation of intravenous therapy for acute decompensated heart failure on outcomes in ADHERE. Cardiology. 2007;107:44–51.

    Article  CAS  PubMed  Google Scholar 

  549. Elkayam U, Akhter MW, Singh H, et al. Comparison of effects on left ventricular filling pressure of intravenous nesiritide and high-dose nitroglycerin in patients with decompensated heart failure. Am J Cardiol. 2004;93:237–40.

    Article  CAS  PubMed  Google Scholar 

  550. Kloner RA, Hutter AM, Emmick JT, et al. Time course of the interaction between tadalafil and nitrates. J Am Coll Cardiol. 2003;42:1855–60.

    Article  CAS  PubMed  Google Scholar 

  551. Kelly RP, Gibbs HH, O’Rourke MF, et al. Nitroglycerin has more favourable effects on left ventricular afterload than apparent from measurement of pressure in a peripheral artery. Eur Heart J. 1990;11:138–44.

    Article  CAS  PubMed  Google Scholar 

  552. Morrison RA, Wiegand UW, Jähnchen E, et al. Isosorbide dinitrate kinetics and dynamics after intravenous, sublingual, and percutaneous dosing in angina. Clin Pharmacol Ther. 1983;33:747–56.

    Article  CAS  PubMed  Google Scholar 

  553. Abrams J. Beneficial actions of nitrates in cardiovascular disease. Am J Cardiol. 1996;77:31C–7C.

    Article  CAS  PubMed  Google Scholar 

  554. Lefer AM. Properties of cardioinhibitory factors produced in shock. Fed Proc. 1978;37:2734–40.

    CAS  PubMed  Google Scholar 

  555. Cohn JN. Vasodilator therapy for heart failure: the influence of impedance on left ventricular performance. Circulation. 1973;48:5–8.

    Article  CAS  PubMed  Google Scholar 

  556. Pepine CJ, Nichols WW, Curry Jr RC, et al. Aortic input impedance during nitroprusside infusion. A reconsideration of afterload reduction and beneficial action. J Clin Invest. 1979;64:643–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  557. Franciosa JA, Limas CJ, Guiha NH, et al. Improved left ventricular function during nitroprusside infusion in acute myocardial infarction. Lancet. 1972;1:650–4.

    Article  CAS  PubMed  Google Scholar 

  558. Otto CM. Evaluation and management of chronic mitral regurgitation. N Engl J Med. 2001;345:740–6.

    Article  CAS  PubMed  Google Scholar 

  559. Asanoi H, Sasayama S, Kameyama T. Ventriculoarterial coupling in normal and failing heart in humans. Circ Res. 1989;65:483–93.

    Article  CAS  PubMed  Google Scholar 

  560. ECC Guidelines. Part 6: Advanced cardiovascular life support. Circulation. 2000;102(Suppl I):I-129–35.

    Google Scholar 

  561. Fries M, Tang W, Chang YT, et al. Microvascular blood flow during cardiopulmonary resuscitation is predictive of outcome. Resuscitation. 2006;71:248–53.

    Article  PubMed  Google Scholar 

  562. Vincent J-L, Ince C, Bakker J. Clinical review: circulatory shock—an update: a tribute to Professor Max Harry Weil. Crit Care. 2012;16:239.

    Article  PubMed  PubMed Central  Google Scholar 

  563. Vallet B. Endothelial cell dysfunction and abnormal tissue perfusion. Crit Care Med. 2002;30(Suppl 5):S229–34.

    Article  PubMed  Google Scholar 

  564. Piper S, McDonagh T. The role of intravenous vasodilators in acute. Eur J Heart Fail. 2014;16:827–34.

    Article  PubMed  Google Scholar 

  565. Feldstein C. Management of hypertensive crises. Am J Ther. 2007;14:135–9.

    Article  PubMed  Google Scholar 

  566. Johnson W, Omland T, Hall C, et al. Neurohormonal activation rapidly decreases after intravenous therapy with diuretics and vasodilators for class IV heart failure. J Am Coll Cardiol. 2002;39:1623–9.

    Article  CAS  PubMed  Google Scholar 

  567. Jain P, Massie BM, Gattis WA, et al. Current medical treatment for the exacerbation of chronic heart failure resulting in hospitalization. Am Heart J. 2003;145(2 Suppl):S3–S17.

    Article  PubMed  Google Scholar 

  568. Chiariello M, Gold HK, Leinbach RC, et al. Comparison between the effects of nitroprusside and nitroglycerin on ischemic injury during acute myocardial infarction. Circulation. 1976;54:766–73.

    Article  CAS  PubMed  Google Scholar 

  569. Zellner C, Protter AA, Ko E, et al. Coronary vasodilator effects of BNP: mechanisms of action in coronary conductance and resistance arteries. Am J Phys. 1999;276:H1049–57.

    CAS  Google Scholar 

  570. Protter AA, Wallace AM, Ferraris VA, et al. Relaxant effect of human brain natriuretic peptide on human artery and vein tissue. Am J Hypertens. 1996;9:432–6.

    Article  CAS  PubMed  Google Scholar 

  571. Abraham WT, Lowes BD, Ferguson DA, et al. Systemic hemodynamic, neurohormonal, and renal effects of a steady-state infusion of human brain natriuretic peptide in patients with hemodynamically decompensated heart failure. J Card Fail. 1998;4:37–44.

    Article  CAS  PubMed  Google Scholar 

  572. Marcus LS, Hart D, Packer M, et al. Hemodynamic and renal excretory effects of human brain natriuretic peptide infusion in patients with congestive heart failure. A double-blind, placebo-controlled, randomized crossover trial. Circulation. 1996;94:3184–9.

    Article  CAS  PubMed  Google Scholar 

  573. Sharma M, Teerlink JR. A rational approach for the treatment of acute heart failure: current strategies and future options. Curr Opin Cardiol. 2004;19:254–63.

    Article  PubMed  Google Scholar 

  574. Burger AJ, Horton DP, Elkayam U, et al. Nesiritide is not associated with the proarrhythmic effects of dobutamine in the treatment of decompensated CHF: the PRECEDENT study. J Card Fail. 1999;5:49.

    Article  Google Scholar 

  575. Burger AJ, Horton DP, LeJemtel T, et al. Effect of nesiritide (B-type natriuretic peptide) and dobutamine on ventricular arrhythmias in the treatment of patients with acutely decompensated congestive heart failure: the PRECEDENT study. Am Heart J. 2002;144:1102–8.

    Article  CAS  PubMed  Google Scholar 

  576. Burger AJ, Elkayam U, Neibaur MT, et al. Comparison of the occurrence of ventricular arrhythmias in patients with acutely decompensated congestive heart failure receiving dobutamine versus nesiritide therapy. Am J Cardiol. 2001;88:35–9.

    Article  CAS  PubMed  Google Scholar 

  577. Silver M, Horton DP, Ghali JK, et al. Effect of nesiritide versus dobutamine on short-term outcomes in the treatment of patients with acutely decompensated heart failure. J Am Coll Cardiol. 2002;39:798–803.

    Article  CAS  PubMed  Google Scholar 

  578. Sackner-Bernstein JD, Kowalski M, Fox M, et al. Short-term risk of death after treatment with nesiritide for decompensated heart failure. a pooled analysis of randomized controlled trials. JAMA. 2005;293:1900–5.

    Article  CAS  PubMed  Google Scholar 

  579. Cuffe LS, Califf RM, Adams Jr KF, et al. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. JAMA. 2002;287:1541–7.

    Article  CAS  PubMed  Google Scholar 

  580. Young JB. Evolving concepts in the treatment of heart failure: should new inotropic agents carry promise or paranoia? Pharmacotherapy. 1996;16:78S–84S.

    CAS  PubMed  Google Scholar 

  581. Adams KF, DeMarco T, Berkowitz R. Inotrope use and negative outcomes in treatment of acute heart failure in patients with preserved systolic function: data from the ADHERE database. Circulation. 2003;108(Suppl IV):695.

    Google Scholar 

  582. Ewy GA. Inotropic infusions for chronic congestive heart failure: medical miracles or misguided medicinals? J Am Coll Cardiol. 1999;33:572–5.

    Article  CAS  PubMed  Google Scholar 

  583. Connors Jr AF, Speroff T, Dawson NV, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA. 1996;276:889–97.

    Article  PubMed  Google Scholar 

  584. Sandham JD, Hull RD, Brant RF, et al. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med. 2003;348:5–14.

    Article  PubMed  Google Scholar 

  585. Abraham W, Adams KF, Fonarow GC, et al. Comparison of in-hospital mortality in patients treated with nesiritide vs. other parenteral vasoactive medications for acutely decompensated heart failure: an analysis from a large prospective registry database [abstract 298]. J Card Fail. 2003;9(Suppl 1):S81.

    Article  Google Scholar 

  586. Arnold JM, Howlett JG, Dorian P, et al. Canadian Cardiovascular Society Consensus Conference recommendations on heart failure update 2007: prevention, management during intercurrent illness or acute decompensation, and use of biomarkers. Can J Cardiol. 2007;23:21–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  587. Cleland JG, Freemantle N, Coletta AP, et al. Clinical trails update from the American Heart Association: REPAIR-AMI, ASTAMI, JELIS, MEGA, REVIVE II, SURVIVE, and PROACTIVE. Eur J Heart Fail. 2006;8:105–10.

    Article  CAS  PubMed  Google Scholar 

  588. Felker GM, Benza RL, Chandler AB, et al. Heart failure etiology and response to milrinone in decompensated heart failure: results from the OPTIME-CHF study. J Am Coll Cardiol. 2003;41:997–1003.

    Article  CAS  PubMed  Google Scholar 

  589. Katz AM. Potential deleterious effects of inotropic agents in the therapy of chronic heart failure. Circulation. 1986;73:III184–90.

    CAS  PubMed  Google Scholar 

  590. McGhie AL, Golstein RA. Pathogenesis and management of acute heart failure and cardiogenic shock: role of inotropic therapy. Chest. 1992;102(5 suppl 2):626S–32S.

    Article  CAS  PubMed  Google Scholar 

  591. Tuttle RR, Mills J. Dobutamine: development of a new catecholamine to selectively increase cardiac contractility. Circ Res. 1975;36:185–96.

    Article  CAS  PubMed  Google Scholar 

  592. Chatterjee K, Parmley WW, Hj S, et al. Beneficial effects of vasodilator agents in severe mitral regurgitation due to dysfunction of subvalvular apparatus. Circulation. 1973;48:684–90.

    Article  CAS  PubMed  Google Scholar 

  593. Jaski BE, Fifer MA, Wright RF, et al. Positive inotropic and vasodilator actions of milrinone in patients with severe congestive heart failure. Dose-response relationships and comparison to nitroprusside. J Clin Invest. 1985;75:643–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  594. Feldman MD, Copelas L, Gwathmey JK, et al. Deficient production of cyclic AMP: pharmacologic evidence of an important cause of contractile dysfunction in patients with end-stage heart failure. Circulation. 1987;75:331–9.

    Article  CAS  PubMed  Google Scholar 

  595. Fowler MB, Laser JA, Hopkins GL, et al. Assessment of the beta-adrenergic receptor pathway in the intact failing human heart: progressive receptor down-regulation and subsensitivity to agonist response. Circulation. 1986;74:1290–302.

    Article  CAS  PubMed  Google Scholar 

  596. Colucci WS, Denniss AR, Leatherman GF, et al. Intracoronary infusion of dobutamine to patients with and without severe congestive heart failure. Dose-response relationships, correlation with circulating catecholamines, and effect of phosphodiesterase inhibition. J Clin Invest. 1988;81:1103–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  597. Heino A, Hartikainen J, Merasto ME, et al. Effects of dobutamine on splanchnic tissue perfusion during partial superior mesenteric artery occlusion. Crit Care Med. 2000;28:3484.

    Article  CAS  PubMed  Google Scholar 

  598. Bradford KK, Deb B, Pearl RG. Combination therapy with inhaled nitric oxide and intravenous dobutamine during pulmonary hypertension in the rabbit. J Cardiovasc Pharmacol. 2000;36:146–51.

    Article  CAS  PubMed  Google Scholar 

  599. Lopez-Sendon J, Lopez de Sa E. Chapter 17. Acute heart failure in the setting of acute coronary syndromes. In: Mebazaa A, et al., editors. Acute heart failure. London: Springer; 2008. p. 175.

    Google Scholar 

  600. Colucci WS, Wright RF, Braunwald E. New positive inotropic agents in the treatment of congestive heart failure. Mechanisms of action and recent clinical developments 2. N Engl J Med. 1986;314:349–58.

    Article  CAS  PubMed  Google Scholar 

  601. Shipley JB, Tolman D, Hastillo A, et al. Milrinone: basic and clinical pharmacology and acute and chronic management. Am J Med Sci. 1996;311:286–91.

    Article  CAS  PubMed  Google Scholar 

  602. Lowes BD, Tsvetkova T, Eichhorn EJ, et al. Milrinone versus dobutamine in heart failure subjects treated chronically with carvedilol. Int J Cardiol. 2001;81:141–9.

    Article  CAS  PubMed  Google Scholar 

  603. Böhm M, Deutsch HJ, Hartmann D, et al. Improvement of postreceptor events by metoprolol treatment in patients with chronic heart failure. J Am Coll Cardiol. 1997;30:992–6.

    Article  PubMed  Google Scholar 

  604. Packer M, Carver JR, Rodeheffer RJ, et al. Effect of oral milrinone on mortality in severe chronic heart failure. N Engl J Med. 1991;325:1468–75.

    Article  CAS  PubMed  Google Scholar 

  605. Thackray S, Witte K, Clark AL, et al. Clinical trials update: OPTIME-CHF, PRAISE-2, ALL-HAT. Eur J Heart Fail. 2000;2:209–12.

    Article  CAS  PubMed  Google Scholar 

  606. Teerlink JR. The development of new medical treatments for acute decompensated heart failure. Heart Fail Monit. 2002;2:129–37.

    PubMed  Google Scholar 

  607. Haikala H, Linden IB. Mechanisms of action of calcium-sensitizing drugs. J Cardiovasc Pharmacol. 1995;26(Suppl 1):S10–9.

    Article  CAS  PubMed  Google Scholar 

  608. Edes I, Kiss E, Kitada Y, et al. Effects of Levosimendan, a cardiotonic agent targeted to troponin C, on cardiac function and on phosphorylation and Ca2+ sensitivity of cardiac myofibrils and sarcoplasmic reticulum in guinea pig heart. Circ Res. 1995;77:107–13.

    Article  CAS  PubMed  Google Scholar 

  609. Pataricza J, Hohn J, Petri A, et al. Comparison of the vasorelaxing effect of cromakalim and the new inodilator, levosimendan, in human isolated portal vein. J Pharm Pharmacol. 2000;52:213–7.

    Article  CAS  PubMed  Google Scholar 

  610. Sonntag S, Sundberg S, Lehtonen LA, et al. The calcium sensitizer levosimendan improves the function of stunned myocardium after percutaneous transluminal coronary angioplasty in acute myocardial ischemia. J Am Coll Cardiol. 2004;43:2177–82.

    Article  CAS  PubMed  Google Scholar 

  611. Haikala H, Pollesello P. Calcium sensitivity enhancers. Drugs. 2000;3:1199–205.

    CAS  Google Scholar 

  612. Haikala H, Nissinen E, Etemadzadeh E, et al. Troponin C-mediated calcium sensitization induced by levosimendan does not impair relaxation. J Cardiovasc Pharmacol. 1995;25:794–801.

    Article  CAS  PubMed  Google Scholar 

  613. Hasenfuss G, Pieske B, Castell M, et al. Influence of the novel inotropic agent levosimendan on isometric tension and calcium cycling in failing human myocardium. Circulation. 1998;98:2141–7.

    Article  CAS  PubMed  Google Scholar 

  614. Pagel PS, Harkin CP, Hettrick DA, et al. Levosimendan (OR-1259), a myofilament calcium sensitizer, enhances myocardial contractility but does not alter isovolumic relaxation in conscious and anesthetized dogs. Anesthesiology. 1994;81:974–87.

    Article  CAS  PubMed  Google Scholar 

  615. Jones C, JGF C. The LIDO, HOPE, MOXCON and WASH studies. Eur J Heart Fail. 1999;1:425–31.

    Article  Google Scholar 

  616. Gomes U, Cleland JGF. Heart failure update. Eur J Heart Fail. 1999;1:301–2.

    Article  CAS  PubMed  Google Scholar 

  617. Moiseyev VS, Põder P, Andrejevs N, et al. Safety and efficacy of a novel calcium sensitizer, levosimendan, in patients with left ventricular failure due to an acute myocardial infarction. A randomized, placebo-controlled, double-blind study (RUSSLAN). Eur Heart J. 2002;23:1422–32.

    Article  CAS  PubMed  Google Scholar 

  618. Follath F, Cleland JG, Just H, et al. Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): a randomised double-blind trial. Lancet. 2002;360:196–202.

    Article  CAS  PubMed  Google Scholar 

  619. Zaris MN, Apostolatos C, Anastassiadis F, et al. 273 Comparison of the effect of levosimendan, or dobutamin or placebo in chronic low output decompensated heart failure. CAlcium sensitizer or Inotrope or NOne in low output heart failure (CASINO) study. Eur J Heart Fail. 2004;3:66.

    Google Scholar 

  620. Packer M, Colucci W, Fisher L, et al. Effect of levosimendan on the short-term clinical course of patients with acutely decompensated heart failure. JACC Heart fail. 2013;1:103–11.

    Article  PubMed  Google Scholar 

  621. Mebazaa A, Nieminen MS, Packer M, et al. Levosimendan vs dobutamine for patients with acute decompensated heart failure: the SURVIVE Randomized Trial. JAMA. 2007;297:1883–91.

    Article  CAS  PubMed  Google Scholar 

  622. Mebazaa A, Nieminen MS, Filippatos GS. Levosimendan vs. dobutamine: outcomes for acute heart failure patients on beta-blockers in SURVIVE. Eur J Heart Fail. 2009;11:304–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  623. Delle Karth G, Buberl A, Geppert A, et al. Hemodynamic effects of a continuous infusion of levosimendan in critically ill patients with cardiogenic shock requiring catecholamines. Acta Anaesthesiol Scand. 2003;47:1251–6.

    Article  CAS  PubMed  Google Scholar 

  624. Hermann HP, Hasenfuß G. Therapie der Herzinsuffizienz. Intensivmedizin. 2004;41:451–64.

    Article  Google Scholar 

  625. Delle-Karth G, Heinz G. Levosimendan in Kardiologie und Intensivmedizin. Wien Klin Wochenschr. 2004;116:6–14.

    Article  CAS  PubMed  Google Scholar 

  626. Rabuel C, Mebazaa A. Septic shock: a heart story since the 1960s. Intensive Care Med. 2006;32:799–807.

    Article  CAS  PubMed  Google Scholar 

  627. Fuhrmann JT, Schmeisser A, Schulze MR, et al. Levosimendan is superior to enoximone in refractory cardiogenic shock complicating acute myocardial infarction. Crit Care Med. 2008;35:2257–66.

    Article  CAS  Google Scholar 

  628. Russ MA, Prondzinsky R, Christoph A, et al. Hemodynamic improvement following levosimendan treatment in patients with acute myocardial infarction and cardiogenic shock. Crit Care. 2007;35:2732–9.

    Article  CAS  Google Scholar 

  629. Slawsky MT, Colucci WS, Gottlieb SS, et al. Acute hemodynamic and clinical effects of levosimendan in patients with severe heart failure. Study Investigators. Circulation. 2000;102:2222–7.

    Article  CAS  PubMed  Google Scholar 

  630. Cleland JG, McGowan J. Levosimendan: a new era for inodilator therapy for heart failure? Curr Opin Cardiol. 2002;17:257–65.

    Article  PubMed  Google Scholar 

  631. Ezekowitz JA, Bakal JA, Kaul P, et al. Acute heart failure in the emergency department: short and long-term outcomes of elderly patients with heart failure. Eur J Heart Fail. 2008;10:308–14.

    Article  PubMed  Google Scholar 

  632. Jondeau G, Neuder Y, Eicher JC, et al. B-CONVINCED: beta-blocker CONtinuation Vs. INterruption in patients with Congestive heart failure hospitalizED for a decompensation episode. Eur Heart J. 2009;30:2186–92.

    Article  CAS  PubMed  Google Scholar 

  633. Holmes J, Kubo SH, Cody RJ, et al. Arrhythmias in ischemic and nonischemic dilated cardiomyopathy: prediction of mortality by ambulatory electrocardiography. Am J Cardiol. 1985;55:146–51.

    Article  CAS  PubMed  Google Scholar 

  634. Krahn AD, Manfreda J, Tate RB, et al. The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the Manitoba Follow-Up Study. Am J Med. 1995;98:476–84.

    Article  CAS  PubMed  Google Scholar 

  635. Doval HC, Nul DR, Grancelli HO, et al. Nonsustained ventricular tachycardia in severe heart failure. Independent marker of increased mortality due to sudden death. GESICA-GEMA Investigators. Circulation. 1996;94:3198–203.

    Article  CAS  PubMed  Google Scholar 

  636. Kannel WB, Plehn JF, Cupples LA. Cardiac failure and sudden death in the Framingham Study. Am Heart J. 1988;115:869–75.

    Article  CAS  PubMed  Google Scholar 

  637. Benza RL, Tallaj JA, Felker GM, et al. The impact of arrhythmias in acute heart failure. J Card Fail. 2004;10:279–84.

    Article  PubMed  Google Scholar 

  638. Pozzoli M, Cioffi G, Traversi E, et al. Predictors of primary atrial fibrillation and concomitant clinical and hemodynamic changes in patients with chronic heart failure: a prospective study in 344 patients with baseline sinus rhythm. J Am Coll Cardiol. 1998;32:197–204.

    Article  CAS  PubMed  Google Scholar 

  639. Unverferth DV, Magorien RD, Moeschberger ML, et al. Factors influencing the one-year mortality of dilated cardiomyopathy. Am J Cardiol. 1984;54:147–52.

    Article  CAS  PubMed  Google Scholar 

  640. Deedwania PC, Singh BN, Ellenbogen K, et al. Spontaneous conversion and maintenance of sinus rhythm by amiodarone in patients with heart failure and atrial fibrillation: observations from the veterans affairs congestive heart failure survival trial of antiarrhythmic therapy (CHF-STAT). The Department of Veterans Affairs CHF-STAT Investigators. Circulation. 1998;98:2574–9.

    Article  CAS  PubMed  Google Scholar 

  641. Doval HC, Nul DR, Grancelli HO, et al. Randomised trial of low-dose amiodarone in severe congestive heart failure. Grupo de Estudio de la Sobrevida en la Insuficiencia Cardiaca en Argentina (GESICA). Lancet. 1994;344:493–8.

    Article  CAS  PubMed  Google Scholar 

  642. Singh SN, Fletcher RD, Fisher SG, et al. Amiodarone in patients with congestive heart failure and asymptomatic ventricular arrhythmia. Survival Trial of Antiarrhythmic Therapy in Congestive Heart Failure. N Engl J Med. 1995;333:77–82.

    Article  CAS  PubMed  Google Scholar 

  643. Clemo H, Wood M, Gilligan D, et al. Intravenous amiodarone for acute heart rate control in the critically ill patient with atrial tachyarrhythmias. Am J Cardiol. 1998;81:594–8.

    Article  CAS  PubMed  Google Scholar 

  644. Masip J, Betbesé AJ, Páez J, et al. Non-invasive pressure support ventilation versus conventional oxygen therapy in acute cardiogenic pulmonary oedema: a randomised trial. Lancet. 2000;356:2126–32.

    Article  CAS  PubMed  Google Scholar 

  645. Peter JV, Moran JL, Phillips-Hughes J, et al. Effect of non-invasive positive pressure ventilation (NIPPV) on mortality in patients with acute cardiogenic pulmonary oedema: a meta-analysis. Lancet. 2006;367:1155–63.

    Article  PubMed  Google Scholar 

  646. Naughton MT, Rahman MA, Hara K, et al. Effect of continuous positive airway pressure on intrathoracic and left ventricular transmural pressures in patients with congestive heart failure. Circulation. 1995;91:1725–31.

    Article  CAS  PubMed  Google Scholar 

  647. Lenique F, Habis M, Lofaso F, et al. Ventilatory and hemodynamic effects of continuous positive airway pressure in left heart failure. Am J Respir Crit Care Med. 1997;155:500–5.

    Article  CAS  PubMed  Google Scholar 

  648. Bersten AD, Holt AW, Vedig AE, et al. Treatment of severe cardiogenic pulmonary edema with continuous positive airway pressure delivered by face mask. N Engl J Med. 1991;199(325):1825–30.

    Article  Google Scholar 

  649. Lin M, Yang YF, Chiang HT, et al. Reappraisal of continuous positive airway pressure therapy in acute cardiogenic pulmonary edema. Short-term results and long-term follow-up. Chest. 1995;107:1379–86.

    Article  CAS  PubMed  Google Scholar 

  650. Kelly CA, Newby DE, McDonagh TA, et al. Randomised controlled trial of continuous positive airway pressure and standard oxygen therapy in acute pulmonary oedema; effects on plasma brain natriuretic peptide concentrations. Eur Heart J. 2002;23:1379–86.

    Article  CAS  PubMed  Google Scholar 

  651. Pang D, Keenan SP, Cook DJ, et al. The effect of positive pressure airway support on mortality and the need for intubation in cardiogenic pulmonary edema: a systematic review. Chest. 1998;114:1185–92.

    Article  CAS  PubMed  Google Scholar 

  652. Bellone A, Vettorello M, Monari A, et al. Noninvasive pressure support ventilation vs. continuous positive airway pressure in acute hypercapnic pulmonary edema. Intensive Care Med. 2005;31:807–11.

    Article  PubMed  Google Scholar 

  653. Gray A, Goodacre S, Newby DE, et al. Noninvasive ventilation in acute cardiogenic pulmonary edema. N Engl J Med. 2008;359:142–51.

    Article  CAS  PubMed  Google Scholar 

  654. Guyatt GH, Akl EA, Crowther M, et al. Executive summary: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):7S–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  655. Alikhan R, Cohen AT, Combe S, et al. Prevention of venous thromboembolism in medical patients with enoxaparin: a subgroup analysis of the MEDENOX study. Blood Coagul Fibrinolysis. 2003;14:341–6.

    Article  CAS  PubMed  Google Scholar 

  656. Tebbe U, Schellong SM, Haas S, et al. Certoparin versus unfractionated heparin to prevent venous thromboembolic events in patients hospitalized because of heart failure: a subgroup analysis of the randomized, controlled CERTIFY study. Am Heart J. 2011;161:322–8.

    Article  CAS  PubMed  Google Scholar 

  657. Dentali F, Douketis JD, Gianni M, et al. Meta-analysis: anticoagulant prophylaxis to prevent symptomatic venous thromboembolism in hospitalized medical patients. Ann Intern Med. 2007;146:278–88.

    Article  PubMed  Google Scholar 

  658. Dentali F, Samama MM, Cohen AT, et al. Prophylaxis in Medical Patients with Enoxaparin Study Group A comparison of enoxaparin with placebo for the prevention of venous thromboembolism in acutely ill medical patients. N Engl J Med. 1999;341:793–800.

    Article  Google Scholar 

  659. Belch JJ, Lowe GD, Ward AG, et al. Prevention of deep vein thrombosis in medical patients by low-dose heparin. Scott Med J. 1981;26:115–7.

    Article  CAS  PubMed  Google Scholar 

  660. Kleber FX, Witt C, Vogel G, et al. Randomized comparison of enoxaparin with unfractionated heparin for the prevention of venous thromboembolism in medical patients with heart failure or severe respiratory disease. Am Heart J. 2003;145:614–21.

    Article  CAS  PubMed  Google Scholar 

  661. Boon NA, Bloomfield P. The medical management of valvar heart disease. Heart. 2002;87:395–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  662. Beling M, Stangl V, Klaus M, et al. Intensivmedizinisches Management der akuten valvulär bedingten Herzinsuffizienz. Intensivmedizin und Notfallmedizin. 2004;47:12–21.

    Google Scholar 

  663. Teerlink JR, Goldhaber SZ, Pfeffer MA. An overview of contemporary etiologies of congestive heart failure. Am Heart J. 1991;121:1852–3.

    Article  CAS  PubMed  Google Scholar 

  664. Rippe JM, Howe III JP. Acute mitral regurgitation. In: Rippe JM, Irwin RS, Alpert JS, Dalen JE, editors. Intensive care medicine. Boston: Little, Brown; 1985. p. 38.

    Google Scholar 

  665. Horstkotte D, Piper C. Akute Herzklappenfehler. In: Zerkowski HR, Baumann G, editors. HerzAkutMedizin. Darmstadt: Steinkopf; 1999. p. 609–19.

    Google Scholar 

  666. Levine HJ, Gaasch WH. Vasoactive drugs in chronic regurgitant lesions of the mitral and aortic valves. J Am Coll Cardiol. 1996;28:1083–91.

    Article  CAS  PubMed  Google Scholar 

  667. Grayburn PA. Vasodilator therapy for chronic aortic and mitral regurgitation. Am J Med Sci. 2000;320:202–8.

    Article  CAS  PubMed  Google Scholar 

  668. Hoit BD. Medical treatment of valvular heart disease. Curr Opin Cardiol. 1991;6:207–11.

    Article  CAS  PubMed  Google Scholar 

  669. Schön HR, Schröter G, Barthel P, et al. Quinapril therapy in patients with chronic mitral regurgitation. J Heart Valve Dis. 1994;3:303–12.

    PubMed  Google Scholar 

  670. Horstkotte D, Looogen F, Birks W. Erworbene Herzklappenfehler. München: Urban und Schwarzenberg; 1987.

    Google Scholar 

  671. Rahimtoola SH. Recognition and management of acute aortic regurgitation. Heart Dis Stroke. 1993;2:217–21.

    CAS  PubMed  Google Scholar 

  672. Bonow RO, Dodd JT, Maron BJ, et al. Long-term serial changes in left ventricular function and reversal of ventricular dilatation after valve replacement for chronic aortic regurgitation. Circulation. 1988;78:1108–20.

    Article  CAS  PubMed  Google Scholar 

  673. Greenberg BH, DeMots H, Murphy E, et al. Mechanism for improved cardiac performance with arteriolar dilators in aortic insufficiency. Circulation. 1981;63:263–8.

    Article  CAS  PubMed  Google Scholar 

  674. Scognamiglio R, Rahimtoola SH, Fasoli G, et al. Nifedipine in asymptomatic patients with severe aortic regurgitation and normal left ventricular function. N Engl J Med. 1994;331:689–94.

    Article  CAS  PubMed  Google Scholar 

  675. Greenberg B, Massie B, Bristow JD, et al. Long-term vasodilator therapy of chronic aortic insufficiency. A randomized double-blinded, placebo-controlled clinical trial. Circulation. 1988;78:92–103.

    Article  CAS  PubMed  Google Scholar 

  676. Holtz J. Physiologische Wirkprinzipien vasoaktiver Substanzen. Intensivmedizin und Notfallmedizin. 2000;37:644–50.

    Article  Google Scholar 

  677. Passik CS, Ackermann DM, Pluth JR, et al. Temporal changes in the causes of aortic stenosis: a surgical pathologic study of 646 cases. Mayo Clin Proc. 1987;62:119–23.

    Article  CAS  PubMed  Google Scholar 

  678. Khot UN, Novaro GM, Popović ZB, et al. Nitroprusside in critically ill patients with left ventricular dysfunction and aortic stenosis. N Engl J Med. 2003;348:1756–63.

    Article  CAS  PubMed  Google Scholar 

  679. Awan NA, DeMaria AN, Miller RR, et al. Beneficial effects of nitroprusside administration on left ventricular dysfunction and myocardial ischemia in severe aortic stenosis. Am Heart J. 1981;101:386–94.

    Article  CAS  PubMed  Google Scholar 

  680. Awan N, Vismara LA, Miller RR, et al. Effects of isometric exercise and increased arterial impedance on left ventricular function in severe aortic valvular stenosis. Br Heart J. 1977;39:651–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  681. Rahiamtola SH, Chandracatua P. Valvular heart disease. In: Spittel JA, editor. Clinical medicine, vol. 6. Philadelphia: Haper and Row Publishers; 1983. p. 1–51.

    Google Scholar 

  682. Germano T. Valvular Heart Disease. In: Aghabhian RV, editor. Emergency management in cardiovascular disease. Boston: Butterworth-Heinemann; 1994.

    Google Scholar 

  683. Vest AR, Heupler Jr F. Afterload (chapter 2). In: Anwaruddin S, et al., editors. Cardiovasc hemodynamics: an introduction guide, Contemporary cardiology. New York: Springer; 2013. doi:10.1007/978-1-60761-195-0_2.

    Google Scholar 

  684. Nichols WW, Pepine CJ. Left ventricular afterload and aortic input impedance: implications of pulsatile blood flow. Prog Cardiovasc Dis. 1982;24:293–386.

    Article  CAS  PubMed  Google Scholar 

  685. O’Rourke M. Arterial function in health and disease. New York: Churchill Livingston; 1982. p. 153–69.

    Google Scholar 

  686. Gutierrez C, Blanchard DG. Diastolic heart failure: challenges of diagnosis and treatment. Am Fam Physician. 2004;69:2609–17.

    PubMed  Google Scholar 

  687. Johnson AM, Brooksby P. 10 steps before you refer for heart failure. Br J Cardiol. 2009;16:30–5.

    Google Scholar 

  688. Ruokonen E, Takala J, Uusaro A. Effect of vasoactive treatment on the relationship between mixed venous and regional oxygen saturation. Crit Care Med. 1991;19:1365.

    Article  CAS  PubMed  Google Scholar 

  689. Capomolla C, Pozzoli M, Opasich C, et al. Dobutamine and nitroprusside infusion in patients with severe congestive heart failure: hemodynamic improvement by discordant effects on mitral regurgitation, left atrial function, and ventricular function. Am Heart J. 1997;134:1089–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Krüger, W. (2017). Acute Heart Failure Syndromes. In: Acute Heart Failure. Springer, Cham. https://doi.org/10.1007/978-3-319-54973-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54973-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54971-2

  • Online ISBN: 978-3-319-54973-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics