Skip to main content

Model of Cognitive Mobility for Visually Impaired and its Experimental Validation

  • Chapter
  • First Online:
Mobility of Visually Impaired People

Abstract

This paper reports the results of three experiments on tactile perception, spatial representation, and tactile display design for assistive mobility devices for blind, partially sighted, and deaf blind people. The results indicate the potentials of tactile displays for supporting environmental exploration and mobility. Voluntary test subjects showed reasonably good ability to determine the direction of motion of an arrow, with best recognition rates in the up and right directions. They showed reasonably good ability to use a tactile display to detect and avoid obstacles after a very short learning period and more limited ability to learn and remember an environmental representation using information from a tactile display and walking through the environment without specific instructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kant E (1771) Critique of pure reason. PUF, ‎Paris

    Google Scholar 

  2. Mûller GE (1896) Zur Psychophysik des Gesichtsempfindungen (Concerning the psychophysics of visual sensations). Zeitschrift für Psychologie 10:1–82

    Google Scholar 

  3. Poincaré H (1911) La valeur de la science. Flammarion, Paris

    Google Scholar 

  4. Piaget J (1937) La construction du réel chez l’enfant. Delachaux and Niestlé, France

    Google Scholar 

  5. Gibson JJ (2015) The ecological approach to visual perception. Taylor & Francis, UK

    Google Scholar 

  6. Bruce V (1993) La perception visuelle, physiologie, psychologie et écologie. P.U.G, France

    Google Scholar 

  7. Berthoz A (1997) Le sens du mouvement. Odile Jacob, Paris

    Google Scholar 

  8. Golledge RG (1999) Human wayfinding and cognitive maps. In: Golledge RG (ed) Way finding behaviour. John Hopkins University Press, USA, pp 5–45

    Google Scholar 

  9. O’Regan JK, Noë A (2001) A sensorimotor account of vision and visual consciousness. Behav Brain Sci 24(5):883–917

    Google Scholar 

  10. Philipona D, O’Regan JK, Nadal J-P (2003) Is there something out there? Inferring space from sensorimotor dependencies. Neural Comput 15(9):2029–2049

    Article  MATH  Google Scholar 

  11. Frolov AA (2011) Physiological basis of 3-D external space perception: approach of Henri Poincaré. In: History of the neurosciences in France and Russia. Hermann, Histoire des Sciences

    Google Scholar 

  12. Bach-y-Rita P, Collins C, Saunders FA, White B, Scanned L (1969) Vision substitution by tactile image projection. Nature 221(5184):963–964

    Article  Google Scholar 

  13. Held R, Hein A (1963) Movement-produced stimulation in the development of visually guided behaviour. J Comp Physiol Psychol 56(5):872–876

    Article  Google Scholar 

  14. Auvray M, O’Regan JK (2003) L’influence des facteurs sémantiques sur la cécité aux changements progressifs dans les scènes visuelles. L’année psychologique 103:9–32

    Article  Google Scholar 

  15. Velázquez R, Maingreaud F, Pissaloux EE (2003) The intelligent glasses concept: A new man-machine interface concept integrating computer vision and human tactile perception, Eurohaptics, Dublin, pp 456–460, 6–10 July 2003

    Google Scholar 

  16. Noë A, O’Regan JK (2000) Perception, attention and the grand illusion, Special issue on Inattentional Blindness. Psyche 6(15)

    Google Scholar 

  17. Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55(4):189–208

    Article  Google Scholar 

  18. O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Oxford University Press, UK

    Google Scholar 

  19. Tversky B (1993) Cognitive maps, cognitive collages, and spatial mental models. In: Frank AU, Campari I (eds) Spatial information theory: a theoretical basis for GIS. Proceedings of COSIT ’93. Lecture notes in computer science, vol 716. Springer, Berlin, pp 14–24

    Google Scholar 

  20. Tversky B (2005) Functional significance of visuospatial representations. In Shah P, Miyake A (eds) Handbook of higher-level visuospatial thinking. Cambridge University Press, UK, pp 1–34

    Google Scholar 

  21. Lynch K (1960) The image of the city. MIT Press, Cambridge, Mass

    Google Scholar 

  22. Appleyard DC (1970) Styles and methods of structuring a city. Environ Behav 2:100–116

    Article  Google Scholar 

  23. Loomis JM, Klatzky RL, Golledge RG, Cicinelli JG, Pellegrino JW, Fry PA (1993) Nonvisual navigation by blind and sighted: assessment of path integration ability. J Exp Psychol, Gen 122(1):73–91

    Google Scholar 

  24. Breuneval A (2016) Conception d’une aide à la mobilité d’un déficient visual, LITIS, University of Rouen, technical memorandum, 8 July 2016 (congenitally blind early researcher)

    Google Scholar 

  25. Millar S (1994) Understanding and representing space: theory and evidence from studies with blind and sighted children. Clarendon Press/Oxford University Press, Oxford

    Book  Google Scholar 

  26. Tversky B (2001) Spatial schemas in depictions. In: M Gattis (ed) Spatial schemas and abstract thought. MIT Press, USA

    Google Scholar 

  27. Brambring M (1985) Mobility and orientation processes of the blind. In: Warren DH, Strelow ER (eds) Electronic spatial sensing for the blind, vol. 99, NATO ASI series. Springer, NL, pp 493–508

    Google Scholar 

  28. Hersh MA (2016) Travel and information processing by blind people: a new three-component model. Glasgow University, UK, http://web.eng.gla.ac.uk/assistive/media/publications/travel_model.pdf

  29. Harper S, Green P (2000) A travel flow and mobility for visually impaired travellers. In: Proceedings of ICCHP, pp 289–296

    Google Scholar 

  30. Maingreaud F, Pissaloux E, Gelin R, Leroux Ch (2004) «Autour de la notion d’obstacles pour les déficients visuels: définition d’une interface visuo-tactile». In: Proceedings of handicap, Paris, France, 17–18 juin 2004

    Google Scholar 

  31. Thinus-Blanc C, Gaunet F (1997) Representation of space in blind persons: vision as a spatial sense? Psychol Bull 121:20–42

    Article  Google Scholar 

  32. Hersh M, Johnson M (eds) (2008) Assistive technology for visually impaired and blind people. Springer, Berlin

    Google Scholar 

  33. Schinazi VR, Thrash Tyler, Chebat DR (2016) Spatial navigation by congenitally blind individuals. Cogn Sci 7(1):37–58

    Google Scholar 

  34. Pissaloux EE (2013) Visually impaired mobility and ICT supports. In: IEEE signal processing: algorithms, architectures, arrangements, and applications (SPA). ISSN: 2326–0262

    Google Scholar 

  35. Dakopoulos D, Bourbakis NG (2010) Wearable obstacle avoidance electronic travel aids for blind: a survey. IEEE Trans SMC, part C 40(1):25–35

    Google Scholar 

  36. Terlau T et al (2008) ‘K’ sonar curriculum handbook. American Printing House for the Blind, Inc., USA

    Google Scholar 

  37. Borenstein J, Ulrich I (2001) The GuideCane—applying mobile robot technologies to assist the visually impaired. IEEE Trans SMC, Part A: Syst Humans 31(2):131–136

    Google Scholar 

  38. Hoyle B, Dodds S (2006) The UltraCane® mobility aid at work training programmes to case studies. CVHI, Kufstein, Austria

    Google Scholar 

  39. Farcy R (2006) Electronic travel aids and electronic orientation aids for blind people: technical, rehabilitation and everyday life points of vie. In: CVHI 2006, Kufstein, Austria 2006

    Google Scholar 

  40. Velázquez R, Pissaloux EE, Hafez M, Szewczyk J (2008) Tactile Rendering with shape memory alloy pin-matrix. IEEE Trans Instrum Measur 57(5):1051–1057

    Article  Google Scholar 

  41. Brabyn JA (1982) New developments in mobility and orientation aids for the blind. IEEE Trans Biomed Eng, BME-29, N° 4:285–289

    Google Scholar 

  42. Brabyn J, Crandall W, Gerrey W (1993) Talking signs: a remote signage, solution for the blind, visually impaired and reading disabled. In: Proceedings of the 15th annual international conference of the IEEE EMBS, pp 1309–1310

    Google Scholar 

  43. Yusro M, Hou KM, Pissaloux E, Shi HL, Ramli K, Sudiana D (2013) SEES: concept and design of a smart environment explorer stick. In: IEEE HSI 2013

    Google Scholar 

  44. Grallet G, La canne blanche connectée qui veut changer la vie de malvoyants. http://www.lepoint.fr/technologie/la-canne-blanche-connectee-qui-veut-changer-la-vie-des-malvoyants-07–02-2015-1903108_58.php

  45. Koch O, Teller S (2008) A vision-based navigation assistant. In: ECCV workshop on computer vision applications for the visually impaired, Marseille, France

    Google Scholar 

  46. Kammoun S, Dramas F, Oriolaand B, Jouffrais C (2010) Route selection algorithm for Blind pedestrian. In: International conference on control automation and systems (ICCAS), pp 2223–2228

    Google Scholar 

  47. Zeil J, Hoffman MI, Chahl JS (2003) Catchment areas of panoramic snapshots in outdoor scenes. J Opt Soc Am A: Opt Image Sci Vision 20:450–469

    Google Scholar 

  48. Banhamou S, Poucet B (1998) Landmark use by navigating rats (Rattus norvegicus): contrasting geometric and featural information. J Comp Psychol 112:317–322

    Article  Google Scholar 

  49. Wystrach A et al (2012) Landmarks or panorama: what do navigation ants attend to for guidance? Front Zool 8(21)

    Google Scholar 

  50. Oliva A (2005) Gist of the scene. In: Itti L, Rees G, Tsotsos JK (eds) Encyclopedia of neurobiology of attention. Elsevier, The Netherlands, pp 251–256

    Google Scholar 

  51. Friedman A (1979) Framing pictures: the role of knowledge in automatized encoding and memory for gist. J Exp Psychol: Gen 108(3):316–355

    Article  Google Scholar 

  52. Potter MC (1976) Short-term conceptual memory for pictures. J Exp Psychol: Human Learn Mem 2(5):509–522

    MathSciNet  Google Scholar 

  53. O’Modhrain S, Giudice NA, Gardner JA, Legge GE (2015) Designing media for visually-impaired users of refreshable touch displays: possibilities and pitfalls. IEEE Trans Haptics 8(3):248–257

    Google Scholar 

  54. Pissaloux E, Velazquez R, Maingreaud F (2009) Intelligent glasses: a multimodal interface for data communication to the visually impaired. In:  Lee S, Ko H, Hahn H (eds) Multisensor fusion and integration for intelligent systems, Lecture notes in electrical engineering, vol 35, Springer, Berlin, pp 349–357.

    Google Scholar 

  55. Uzan G et al (2008) Besoins en sécurité, localisation et orientation des déficients visuels en milieu urbain: analyse de la situation et pistes d’évolution. In: Proceedings of handicap, Paris, pp 37–42 (late blind researcher)

    Google Scholar 

  56. Pissaloux E, Velázquez R, Hersh M, Uzan G (2016) Towards a cognitive model of Huan mobility: an investigation of tactile perception for use in mobility devices, J Navig, 1–17. doi:10.1017/SO373463316000461

  57. Bicchi A, Dente D, Scilingo EP (2003) Haptic illusions induces by tactile flow. In: Proceedings Eurohaptics, pp 2412–2417

    Google Scholar 

  58. Hartleya T, Trinklera I, Burgess N (2004) Geometric determinants of human spatial memory. Cognition 94:39–75

    Article  Google Scholar 

  59. Millar S (1988) Models of sensory deprivation: the nature nurture dichotomy and spatial representation in the blind. Int J Behav Dev 11(1):69–87

    Article  Google Scholar 

  60. Palani H, Giudice U, Giudice NA (2016) Evaluation of non-visual zooming operations on touchscreen devices. In: Antona M, Stephanidis C (eds) Proceedings of the 10th international conference of universal access in human-computer interaction (UAHCI), part of HCI international 2016. Toronto, CA. Springer International Publishing, Switzerland, pp 162–174, 17–22 July 2016

    Google Scholar 

  61. Helal AS, Moore SE, Ramachandran B (2001) Drishti: an integrated navigation system for visually impaired and disabled. In: 5th international symposium on wearable computers (ISWC 2001), 8–9 Oct 2001, Zurich, Switzerland. doi:10.1109/ISWC.2001.962119

  62. Harper S, Green P (2000) A travel flow and mobility framework for visually impaired travellers. In: International conference on computers helping people with special needs, Germany, pp 289–296

    Google Scholar 

  63. Velázquez R, Pissaloux E, Lay-Ekuakille A, Tactile-foot stimulation can assist the navigation of people with visual impairment. Appl Bionics Biomech 2015(2015), Article ID 798748. http://dx.doi.org/10.1155/2015/798748

  64. Auvray M, Hanneton S, Lenay C, O’Regan JK (2005) There is something out there; distal attribution in sensory substitution, twenty years later. J Integr Neurosci 4(4):505–521

    Article  Google Scholar 

Download references

Acknowledgements

This research has been financially supported by several institutions: the CNRS (ROBEA program), the French Ministry of Education and the Mexican CONACYT Research Agency, the CEA (Commissariat à l’Energy Atomique et aux energies renouvellables), and the European Commission (AsTERICS FP7 project). We thank all of them for their support.

We would like to thank our undergraduate and master students and the MIT students (trainees in our research group) who participated in implementation of the experiments presented in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwige Pissaloux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Pissaloux, E., Velázquez, R. (2018). Model of Cognitive Mobility for Visually Impaired and its Experimental Validation. In: Pissaloux, E., Velazquez, R. (eds) Mobility of Visually Impaired People. Springer, Cham. https://doi.org/10.1007/978-3-319-54446-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54446-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54444-1

  • Online ISBN: 978-3-319-54446-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics