Skip to main content

Effect of Mechanical Loading on Cells: An Update

  • Chapter
  • First Online:
Non-Pharmacological Management of Osteoporosis

Abstract

The focus of this chapter is the mechanisms by which mechanical loading affects bone cells. The chapter will briefly review mechanical loads borne by different skeletal anatomical sites and summarize current knowledge regarding bone cell sensors, signaling pathways, and responses to mechanical loading. The influence of mechanical loading on mesenchymal stem cell differentiation will be discussed, as will the influence of use and disuse on bone turnover. The influence of microdamage on osteocyte apoptosis and bone resorption will be summarized, and current knowledge regarding mechanotransduction in bone explored in some detail. Finally, what is known regarding potential mechanoreceptors will be briefly summarized. These mechanisms allow the skeleton to adapt successfully to changing loading conditions and minimize the risk of fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen J-H, Liu C, You L, Simmons CA. Boning up on Wolff’s Law: mechanical regulation of the cells that make and maintain bone. J Biomech. 2010;43:108–18.

    Article  PubMed  Google Scholar 

  2. Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng. 2006;8:455–98.

    Article  CAS  PubMed  Google Scholar 

  3. Liu D, Genetos DC, Shao Y, Geist DJ, Li J, Ke HZ, et al. Activation of extracellular-signal regulated kinase (ERK1/2) by fluid shear is Ca(2+)- and ATP-dependent in MC3T3-E1 osteoblasts. Bone. 2008;42:644–52.

    Article  CAS  PubMed  Google Scholar 

  4. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129:1261–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schlaepfer DD, Hauck CR, Sieg D. Signaling through focal adhesion kinase. Prog Biophys Mol Biol. 1999;71:435–78.

    Article  CAS  PubMed  Google Scholar 

  6. Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S. Mechanosensation and transduction in osteocytes. Bone. 2013;54:182–90.

    Article  CAS  PubMed  Google Scholar 

  7. Ozcivici E, Luu YK, Adler B, Qin YX, Rubin J, Judex S, Rubin CT. Mechanical signals as anabolic agents in bone. Nat Rev Rheumatol. 2010;6:50–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rangaswami H, Marathe N, Zhuang S, Chen Y, Yeh JC, Frangos JA, et al. Type II cGMP-dependent protein kinase mediates osteoblast mechanotransduction. J Biol Chem. 2009;284:14796–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sunters A, Armstrong VJ, Zaman G, Kypta RM, Kawano Y, Lanyon LE, et al. Mechano-transduction in osteoblastic cells involves strain-regulated estrogen receptor alpha-mediated control of insulin-like growth factor (IGF) I receptor sensitivity to ambient IGF, leading to phosphoinositol 3-kinase/AKT-dependent Wnt/LRP5 receptor-independent activation of beta-catenin signaling. J Biol Chem. 2010;285:8743–58.

    Article  CAS  PubMed  Google Scholar 

  10. Hung CT, Pollack SR, Reilly TM, Brighton CT. Real-time calcium response of cultured bone cells to fluid flow. Clin Orthop Relat Res. 1995;313:256–9.

    Google Scholar 

  11. Thompson WR, Rubin CT, Rubin J. Mechanical regulation of signaling pathways in bone. Gene. 2012;503:179–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Haasper C, Jagodzinski M, Drescher M, Meller R, Wehmeier M, Kettrek C, Hesse E. Cyclic strain induces FosB and initiates osteogenic differentiation of mesenchymal cells. Exp Toxicol Pathol. 2008;59:355–63.

    Article  CAS  PubMed  Google Scholar 

  13. Malone AM, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, Jacobs CR. Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci U S A. 2007;104:13325–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schwartz MA, DeSimone DW. Cell adhesion receptors in mechanotransduction. Curr Opin Cell Biol. 2008;20:551–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Noble BS. The osteocyte lineage. Arch Biochem Biophys. 2008;473:106–11.

    Article  CAS  PubMed  Google Scholar 

  16. Leblanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM. Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res. 1990;5:843–50.

    Article  CAS  PubMed  Google Scholar 

  17. Burr DB, Martin RB. Calculating the probability that microcracks initiate resorption spaces. J Biomech. 1993;26:613–6.

    Article  CAS  PubMed  Google Scholar 

  18. Loiselle AE, Jiang JX, Donahue HJ. Gap junction and hemichannel functions in osteocytes. Bone. 2012;54:205–12.

    Article  PubMed  Google Scholar 

  19. Bonewald L, Johnson ML. Osteocytes, mechanosensing, and Wnt signaling. Bone. 2008;42:606–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bidwell JP, Pavalko FM. The load-bearing mechanosome revisited. Clin Rev Bone Miner Metab. 2010;8:213–23.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

Financial Support: None.

The authors state that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart L. Clarke MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Xing, Q., Clarke, B.L. (2017). Effect of Mechanical Loading on Cells: An Update. In: Sinaki, M., Pfeifer, M. (eds) Non-Pharmacological Management of Osteoporosis. Springer, Cham. https://doi.org/10.1007/978-3-319-54016-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54016-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54014-6

  • Online ISBN: 978-3-319-54016-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics