Skip to main content

Obstetric Outcome of In Vitro Maturation Treatment and Risk of Congenital Malformations

  • Chapter
  • First Online:
Development of In Vitro Maturation for Human Oocytes

Abstract

In vitro maturation (IVM) does not require ovarian stimulation (OS), and sex steroid levels remain at physiological range during the treatment cycle. This could be more important than initially thought, because recent findings suggest an association between OS and preterm birth and small-for-gestational-age babies. Even singletons from conventional OS–IVF cycles are found to be at higher risk of preterm birth and weigh less than spontaneously conceived infants. Currently available data on IVM infants show that they are not more likely to be delivered preterm or not more likely to be underweight than infants conceived spontaneously or by OS–IVF. To the contrary, they appear to weigh heavier than IVF infants. The risk of major birth defects does not seem to increase in IVM infants as compared to conventional OS–IVF infants or the general population. Beyond the well-known benefit of decreasing the risk of ovarian hyperstimulation syndrome and avoiding estrogen exposure in patients with hormone sensitive tumors, the above-mentioned findings can be corroborated in future studies; IVM or natural cycle IVF/M may also prove advantageous by avoiding obstetric complications associated with abnormal placentation observed in OS–IVF pregnancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bromer JG, Ata B, Seli M, Lockwood CJ, Seli E. Preterm deliveries that result from multiple pregnancies associated with assisted reproductive technologies in the USA: a cost analysis. Curr Opin Obstet Gynecol. 2011;23(3):168–73.

    Article  PubMed  Google Scholar 

  2. McGovern PG, Llorens AJ, Skurnick JH, Weiss G, Goldsmith LT. Increased risk of preterm birth in singleton pregnancies resulting from in vitro fertilization-embryo transfer or gamete intrafallopian transfer: a meta-analysis. Fertil Steril. 2004;82(6):1514–20.

    Article  PubMed  Google Scholar 

  3. Helmerhorst FM, Perquin DA, Donker D, Keirse MJ. Perinatal outcome of singletons and twins after assisted conception: a systematic review of controlled studies. BMJ. 2004;328(7434):261.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jackson RA, Gibson KA, Wu YW, Croughan MS. Perinatal outcomes in singletons following in vitro fertilization: a meta-analysis. Obstet Gynecol. 2004;103(3):551–63.

    Article  PubMed  Google Scholar 

  5. McDonald SD, Murphy K, Beyene J, Ohlsson A: Perinatel outcomes of singleton pregnancies achieved by in vitro fertilization: a systematic review and meta-analysis. J Obstet Gynaecol Can JOGC Journal d’obstetrique et gynecologie du Canada. 2005;27(5):449–59.

    Google Scholar 

  6. Pandey S, Shetty A, Hamilton M, Bhattacharya S, Maheshwari A. Obstetric and perinatal outcomes in singleton pregnancies resulting from IVF/ICSI: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(5):485–503.

    Article  PubMed  Google Scholar 

  7. Hansen M, Bower C. The impact of assisted reproductive technologies on intra-uterine growth and birth defects in singletons. Semin Fetal Neonatal Med. 2014;19(4):228–33.

    Article  PubMed  Google Scholar 

  8. Rimm AA, Katayama AC, Diaz M, Katayama KP. A meta-analysis of controlled studies comparing major malformation rates in IVF and ICSI infants with naturally conceived children. J Assist Reprod Genet. 2004;21(12):437–43.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhu JL. Infertility, infertility treatment, and congenital malformations: Danish national birth cohort. Br Med J. 2006;333(7570):679–81.

    Article  Google Scholar 

  10. Jaques AM. Adverse obstetric and perinatal outcomes in subfertile women conceiving without assisted reproductive technologies. Fertil Steril. 2010;94(7):2674–9.

    Article  PubMed  Google Scholar 

  11. Messerlian C, Maclagan L, Basso O. Infertility and the risk of adverse pregnancy outcomes: a systematic review and meta-analysis. Hum Reprod. 2013;28(1):125–37.

    Article  PubMed  Google Scholar 

  12. Wennerholm UB, Henningsen AK, Romundstad LB, Bergh C, Pinborg A, Skjaerven R, Forman J, Gissler M, Nygren KG, Tiitinen A. Perinatal outcomes of children born after frozen-thawed embryo transfer: a Nordic cohort study from the CoNARTaS group. Hum Reprod. 2013;28(9):2545–53.

    Article  PubMed  Google Scholar 

  13. Pinborg A, Wennerholm UB, Romundstad LB, Loft A, Aittomaki K, Soderstrom-Anttila V, Nygren KG, Hazekamp J, Bergh C. Why do singletons conceived after assisted reproduction technology have adverse perinatal outcome? Systematic review and meta-analysis. Hum Reprod Update. 2013;19(2):87–104.

    Article  CAS  PubMed  Google Scholar 

  14. Sunkara SK, La Marca A, Seed PT, Khalaf Y. Increased risk of preterm birth and low birthweight with very high number of oocytes following IVF: an analysis of 65 868 singleton live birth outcomes. Hum Reprod. 2015.

    Google Scholar 

  15. Maheshwari A, Bhattacharya S. Elective frozen replacement cycles for all: ready for prime time? Hum Reprod. 2013;28(1):6–9.

    Article  CAS  PubMed  Google Scholar 

  16. Chian RC, Gulekli B, Buckett WM, Tan SL. Priming with human chorionic gonadotropin before retrieval of immature oocytes in women with infertility due to the polycystic ovary syndrome. N Engl J Med. 1999;341(21):1624, 1626.

    Google Scholar 

  17. Ata B, Shalom-Paz E, Chian RC, Tan SL. In vitro maturation of oocytes as a strategy for fertility preservation. Clin Obstet Gynecol. 2010;53(4):775–86.

    Article  PubMed  Google Scholar 

  18. Cha KY, Chung HM, Lee DR, Kwon H, Chung MK, Park LS, Choi DH, Yoon TK. Obstetric outcome of patients with polycystic ovary syndrome treated by in vitro maturation and in vitro fertilization-embryo transfer. Fertil Steril. 2005;83(5):1461–5.

    Article  PubMed  Google Scholar 

  19. Mikkelsen AL. Strategies in human in-vitro maturation and their clinical outcome. Reprod Biomed Online. 2005;10(5):593–9.

    Article  PubMed  Google Scholar 

  20. Soderstrom-Anttila V, Salokorpi T, Pihlaja M, Serenius-Sirve S, Suikkari AM. Obstetric and perinatal outcome and preliminary results of development of children born after in vitro maturation of oocytes. Hum Reprod. 2006;21(6):1508–13.

    Article  PubMed  Google Scholar 

  21. Shu-Chi M, Jiann-Loung H, Yu-Hung L, Tseng-Chen S, Ming IL, Tsu-Fuh Y. Growth and development of children conceived by in-vitro maturation of human oocytes. Early Hum Dev. 2006;82(10):677–82.

    Article  PubMed  Google Scholar 

  22. Buckett WM, Chian RC, Holzer H, Dean N, Usher R, Tan SL. Obstetric outcomes and congenital abnormalities after in vitro maturation, in vitro fertilization, and intracytoplasmic sperm injection. Obstet Gynecol. 2007;110(4):885–91.

    Article  PubMed  Google Scholar 

  23. Foix-L’Helias L. French National cohort of children born after oocytes in vitro maturation (IVM). Fertility and Sterility 2009, Conference:65th Annual Meeting of the American Society for Reproductive Medicine.

    Google Scholar 

  24. Fadini R, Mignini Renzini M, Guarnieri T, Dal Canto M, De Ponti E, Sutcliffe A, Shevlin M, Comi R, Coticchio G. Comparison of the obstetric and perinatal outcomes of children conceived from in vitro or in vivo matured oocytes in in vitro maturation treatments with births from conventional ICSI cycles. Hum Reprod. 2012;27(12):3601–8.

    Google Scholar 

  25. Chian RC, Xu CL, Huang JY, Ata B. Obstetric outcomes and congenital abnormalities in infants conceived with oocytes matured in vitro. Facts Views Vis ObGyn. 2014;6(1):15–8.

    PubMed  PubMed Central  Google Scholar 

  26. Foix-L’Helias L, Grynberg M, Ducot B, Frydman N, Kerbrat V, Bouyer J, Labrune P. Growth development of French children born after in vitro maturation. PLoS ONE. 2014;9(2):e89713.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Boomsma CM, Eijkemans MJ, Hughes EG, Visser GH, Fauser BC, Macklon NS. A meta-analysis of pregnancy outcomes in women with polycystic ovary syndrome. Hum Reprod Update. 2006;12(6):673–83.

    Article  CAS  PubMed  Google Scholar 

  28. Homburg R. Pregnancy complications in PCOS. Best Pract Res Clin Endocrinol Metab. 2006;20(2):281–92.

    Article  PubMed  Google Scholar 

  29. International Statistical Classification of Diseases and Related Health Problems 10th Revision. Version for 2007. (http://apps.who.int/classifications/apps/icd/icd10online/).

  30. Bonduelle M. Neonatal data on a cohort of 2889 infants born after ICSI (1991–1999) and of 2995 infants born after IVF (1983–1999). Hum Reprod. 2002;17(3):671–94.

    Article  PubMed  Google Scholar 

  31. International Clearinghouse for Birth Defects Surveillance and Research: 2009 Annual Report with data for 2007. In. 2009.

    Google Scholar 

  32. (http://www.icbdsr.org/page.asp?n=AboutUs).

  33. Bowen JR. Medical and developmental outcome at 1 year for children conceived by intracytoplasmic sperm injection. Lancet. 1998;351(9115):1529–34.

    Article  CAS  PubMed  Google Scholar 

  34. Ludwig M. Malformation rate in fetuses and children conceived after ICSI: results of a prospective cohort study. Reprod Biomed Online. 2002;5(2):171–8.

    Article  PubMed  Google Scholar 

  35. Narayan S. Profile of live-born infants of in-vitro fertilisation. Med J Armed Forces India. 2010;66(1):18–21.

    Article  CAS  PubMed  Google Scholar 

  36. Sutcliffe AG. Outcome in the second year of life after in-vitro fertilisation by intracytoplasmic sperm injection: A UK case-control study. Lancet. 2001;357(9274):2080–4.

    Article  CAS  PubMed  Google Scholar 

  37. Loft A. A Danish national cohort of 730 infants born after intracytoplasmic sperm injection (ICSI) 1994–1997. Hum Reprod. 1999;14(8):2143–8.

    Article  CAS  PubMed  Google Scholar 

  38. Hansen M. The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N Engl J Med. 2002;346(10):725–30.

    Article  PubMed  Google Scholar 

  39. Pinborg A. Neonatal outcome in a Danish national cohort of 3438 IVF/ICSI and 10 362 non-IVF/ICSI twins born between 1995 and 2000. Hum Reprod. 2004;19(2):435–41.

    Article  PubMed  Google Scholar 

  40. Klemetti R. Children born after assisted fertilization have an increased rate of major congenital anomalies. Fertil Steril. 2005;84(5):1300–7.

    Article  PubMed  Google Scholar 

  41. FIVNAT: Pregnancies and births resulting from in vitro fertilization: French national registry, analysis of data 1986 to 1990. FIVNAT (French In Vitro National). Fertil Steril. 1995;64(4):746–56.

    Google Scholar 

  42. Olson CK. In vitro fertilization is associated with an increase in major birth defects. Fertil Steril. 2005;84(5):1308–15.

    Article  PubMed  Google Scholar 

  43. El-Chaar D. Risk of birth defects increased in pregnancies conceived by assisted human reproduction. Fertil Steril. 2009;92(5):1557–61.

    Article  PubMed  Google Scholar 

  44. Ericson A, Kallen B. Congenital malformations in infants born after IVF: A population-based study. Hum Reprod. 2001;16(3):504–9.

    Article  CAS  PubMed  Google Scholar 

  45. Govaerts I. Comparison of pregnancy outcome after intracytoplasmic sperm injection and in-vitro fertilization. Hum Reprod. 1998;13(6):1514–8.

    Article  CAS  PubMed  Google Scholar 

  46. Merlob P. The prevalence of major congenital malformations during two periods of time, 1986–1994 and 1995–2002 in newborns conceived by assisted reproduction technology. Eur J Med Genet. 2005;48(1):5–11.

    Article  PubMed  Google Scholar 

  47. Anthony S. Congenital malformations in 4224 children conceived after IVF. Hum Reprod. 2002;17(8):2089–95.

    Article  CAS  PubMed  Google Scholar 

  48. Hansen M, Bower C, Milne E, de Klerk N, Kurinczuk JJ. Assisted reproductive technologies and the risk of birth defects–a systematic review. Hum Reprod. 2005;20(2):328–38.

    Article  PubMed  Google Scholar 

  49. Schieve LA, Rasmussen SA, Reefhuis J. Risk of birth defects among children conceived with assisted reproductive technology: providing an epidemiologic context to the data. Fertil Steril. 2005;84(5):1320–4; discussion 1327.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baris Ata MD, MSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ata, B., Chian, RC. (2017). Obstetric Outcome of In Vitro Maturation Treatment and Risk of Congenital Malformations. In: Chian, RC., Nargund, G., Huang, J. (eds) Development of In Vitro Maturation for Human Oocytes. Springer, Cham. https://doi.org/10.1007/978-3-319-53454-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53454-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53452-7

  • Online ISBN: 978-3-319-53454-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics