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Abstract. When characterizing teams of people, molecules, or general
graphs, it is difficult to encode all information using a single feature
vector only. For these objects dissimilarity matrices that do capture
the interaction or similarity between the sub-elements (people, atoms,
nodes), can be used. This paper compares several representations of dis-
similarity matrices, that encode the cluster characteristics, latent dimen-
sionality, or outliers of these matrices. It appears that both the simple
eigenvalue spectrum, or histogram of distances are already quite effec-
tive, and are able to reach high classification performances in multiple
instance learning (MIL) problems. Finally, an analysis on teams of people
is given, illustrating the potential use of dissimilarity matrix characteri-
zation for business consultancy.

1 Introduction

Consider the problem of evaluating and improving performances of teams in
organizations based on the employee responses to questionnaires. The teams
differ in size, and the roles of employees may be different for every organization.
A key question for an organizations top management is how to support the
autonomy of these teams while still keeping an eye on the overall process and the
coherency of the teams performance. Assuming a span of control of 10–15 direct
reports for an average manager, a middlesize organization may easily comprise of
hundreds of teams. So, pattern recognition in organizational development may
supply fundamentally important information of how similar – or dissimilar –
teams are [1,15,20]. A possible solution is to focus at the diversity within a
team – is there a large group of people who are all doing a similar job, or are
there some isolated groups of people who are doing very different from the rest?
Identifying such groups – clusters of employees – would help to compare the
organizational structures on a higher level.

More formally, in this paper we focus on comparing sets (teams) of different
samples (employees), residing in different feature spaces (evaluation questions).
Comparing the team structures would be equivalent to comparing similarity
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matrices, with each similarity matrix originating from a single team. Compar-
ing similarities alleviates the problem of different feature spaces, yet is still not
trivial because the sets can be of different sizes, and there are no natural corre-
spondences between the samples.

Comparing distance matrices has links with comparing graph structures: a
distance matrix between N samples can be seen as a fully connected graph
with N nodes, where the nodes are unlabeled and the edges are associated with
weights. In graph-based pattern recognition, approaches such as graph edit dis-
tance [3,21] or graph kernels [10,12] have been used to define distance or sim-
ilarity measures between graphs. Graph matching approaches search for a best
correspondence between the nodes and define the graph distance as a measure
of discrepancy between the matched nodes and edges. Graph kernels define simi-
larity by considering all possible correspondences. However, the search space for
correspondences becomes very large if the nodes are unlabeled, and the graph
is fully connected. In [16] we used a threshold on the distances to reduce the
number of edges. However, this threshold had a large influence on the results,
suggesting that the larger distances can, too, be informative.

To avoid removing informative edges and to present a computationally effi-
cient solution, in this paper we focus on finding feature representations to repre-
sent distance matrices. By representing each distance matrix in the same feature
space, they can be compared with each other, for example, using the Euclidean
distance. We investigate several representations in this paper, based on spec-
tra [6], histograms of all distances [18], histograms of nearest neighbor distances,
and hubness properties [23]. A detailed description of the representations is given
in Sect. 2.

In Sect. 3 we investigate how well these features representations can encode
the class information for some artificial examples. In Sect. 4 we investigate how
good these representations are for multiple instance learning (MIL) datasets,
where the goal is to classify sets of feature vectors. In Sect. 4.2 we apply the
representation on real-world organisational data, and discuss some of the insights
that arise from comparing teams of people.

2 Dissimilarity Matrix Representation

We assume we have a collection of N square dissimilarity matrices {Dn ∈
R

mn×mn ;n = 1...N} of size mn ×mn. One element of matrix Dn is indicated by
Dn(i, j). We assume that the matrices have the following characteristics:

– The dissimilarities of objects to themselves is zero (i.e. the Dn have zeros
on the diagonal), and the dissimilarity is symmetric (Dn(i, j) = Dn(j, i)).
In situations the matrices are not symmetric, they are made symmetric by
averaging Dn and its transpose: D̃n = (Dn + D�

n )/2.
– The size mn × mn of the matrices can be different for each Dn. It is assumed

that the matrices have a minimum size of 3 × 3.
– The order of the rows and columns is arbitrary and may be permuted without

altering the information that is stored in the dissimilarity matrix.
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For this data type we investigate a few simple vector representations. Addi-
tional similarities between the dissimilarity matrices are also possible (such
as embedding each matrix into a low-dimensional space and using the earth-
movers distance, or matching the rows and columns of the dissimilarity matrices
and computing the Frobenius norm [14]), but these tend to be computationally
expensive. Here we focus on vector representations of the dissimilarity matrices.

We consider the following representations:

1. spectrum features spect: use the k largest eigenvalues σ of the centered
matrix Dn:

xn = σ1:k(C�DnC), where C = Imn
− 1

mn
11� (1)

2. histogram of distances hist: collect all dissimilarities from all matrices, split
the range of dissimilarity values from 0 to the maximum into k equally-sized
bins, and count for each Dn the number of occurrences into each bin. Option-
ally, the count can be converted into a frequency by dividing by mn(mn+1)/2.

3. equalized histogram of distances histeq: split the range of dissimilarity values
into k bins with an equal number of counts (instead of using equally wide
bins). The bins become wider when dissimilarity values do not occur often,
and they become smaller for frequently appearing values.

4. histogram of the k-nearest neighbor distances distnn: instead of collecting
all dissimilarities, only the dissimilarities up to the k-nearest neighbors are
used. Per row of Dn, only k < mn dissimilarities are used; the total number
of dissimilarities is therefore reduced from mn(mn + 1)/2 to mnk. By this
variations in local densities are captured better.

5. histogram of how often samples are the k-th nearest neigbor of other samples
disthub: a measure used in hub analysis [24]. First the dataset is represented
by a k-occurence histogram which stores how often each sample is the k-
th nearest neighbor of others. To make this representation comparable across
datasets of different sizes, it is summarized by q quantiles of the histogram. For
the final representation, we concatenate the quantile-histograms for different
values of k ∈ {1, 3, . . . , |K|}, resulting in a |K| × q dim. feature vector.

In some situations we might want to be invariant to (non-linear) scaling
of the dissimilarity values. For example, the expert may only have provided a
relative ranking, but not an exact dissimilarity between two elements of a set.
In this case, the extracted features should be invariant to the scaling of the
dissimilarities. In the above representations, only disthub is invariant.

3 Illustrative Examples

To show the characteristics of the different representations, we construct some
multi-class artificial datasets. Depending on the experiment we perform, the
number of dissimilarity matrices, and the sizes of the matrices are varied.
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– The cluster dataset is constructed to investigate how well the clustering
structure can be characterized. In cluster the dissimilarity matrices are com-
puted from 2-dimensional datasets, containing samples belonging to a varying
number of clusters (up to four clusters). The class label of a dissimilarity
matrix is equal to the number of clusters, and therefore this defines a 4-class
classification problem.

– The subspace dataset is constructed to investigate how well the subspace
structure can be characterized. In subspace the dissimilarity matrices are
derived from p-dimensional Gaussian distributions, where the dimensionality
is one (p = 1) for class 1, p = 2 for class 2, up to class 4.

– The outlier dataset is used to investigate the sensitivity to outliers. In
outlier the matrices are derived from 2-dimensional Gaussian distributions
(zero mean, identity covariance matrix). Class 1 does not contain outliers.
Class 2 contains an outlier from a Gaussian distribution with a 10 times larger
covariance matrix, and for class 3 contains two such outliers.

Figure 1 shows the five different representations for a sample of 100 dissimi-
larities drawn from the cluster dataset. For the spectrum representation three
features are computed, for the (equalized) histograms k = 10 and for the disthub
representation in total 75 features are computed. This cluster dataset has a very
clear structure, and all the representations are able to distinguish well between
the four different classes. In particular, the distinction between 1 cluster and
more-than-1 cluster datasets are easy to make. For the disthub representation
the distinction between the classes is less visible in the figure, due to the large
difference in scales between the different features.
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Fig. 1. The different feature representations for dissimilarity matrices derived from the
cluster dataset with one, two, three or four clusters.
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Fig. 2. Learning curves showing the error as a function of the number of training dis-
similarity matrices. From left to right: results on cluster, subspace and outlier data.

For each dataset, we compute the dissimilarity matrices using the Euclidean
distances between the samples. We then compute the different representations,
and use a linear classifier (LDA) to distinguish the different classes per dataset.

Figure 2 shows the classification performance on the three artificial sets as
function of the number of training matrices. The size of the individual dissimilar-
ity matrices is fixed to mn = 30. For many situations the (equalized) histogram is
able to capture the information needed for good generalization. The histogram
estimates start to suffer from noise for very small datasets and for situations
where there is no clustering structure, and only the subspace dimensionality
is informative. In these situations a spectrum representation is to be preferred.
When very large training sizes are available, it is advantageous to use the nearest-
neighbor distance histograms. Because distnn combines the histograms of the
first-, second-, and all higher-nearest neighbors, this representation becomes very
high-dimensional, but also very rich.

In Fig. 3 a similar curve to Fig. 2 is shown, only here the sizes of the individual
dissimilarity matrices are varied while the number of training matrices is fixed to
N = 100 per class. Here as well the (equalized) histograms perform well when
the dissimilarity matrices are large. Then there is a sufficient number of values
available to estimate histograms well. For very small matrices, and characterizing
subspace structure or outliers, the spectrum performs well. Somewhat surprising,
to characterize the clustering structure with small dissimilarity sizes, the nearest
neighbor distances are most effective, although this tends to overfit with larger
matrices.

Matrix size
0 20 40 60 80 100

C
la

ss
ifi

ca
tio

n 
er

ro
r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Cluster

spectrum
histogram
eq.histogram
NN dist
disthub.

Matrix size
0 20 40 60 80 100

C
la

ss
ifi

ca
tio

n 
er

ro
r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Subspace

spectrum
histogram
eq.histogram
NN dist
disthub.

Matrix size
0 20 40 60 80 100

C
la

ss
ifi

ca
tio

n 
er

ro
r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Outlier

spectrum
histogram
eq.histogram
NN dist
disthub.

Fig. 3. The classification performance as function of the size mn of the dissimilarity
matrices, for the cluster data (left), the subspace data (middle) and the outlier data
(right).
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4 Experiments

We distinguish between two sets of experiments, a supervised and an unsuper-
vised set. For the supervised set, we have a collection of labeled dissimilarity
matrices. Here we use the bags from MIL data, where the distances between the
instances in one bag give one dissimilarity matrix, and each matrix is labeled
according to the original bag label (positive or negative). For the unsupervised
set we only have a collection of dissimilarities between teams of people, for which
we want to investigate how much variability is present in the teams, and what
constitutes this variability.

4.1 Supervised Experiments: Multiple Instance Learning

We look at a wide variety of multiple instance learning (MIL) problems. In MIL,
the i-th sample is a bag Bn = {xn1,xn2, . . . ,xnmn

} of mn instances. The goal is
to classify bags, based on the presence of concept feature vectors, or based on the
overall distribution of the bag’s instances. Consider image classification, where
a bag is an image, and an instance is an image patch. When classifying images
of tigers, a patch containing a tiger is an example of a concept instance. When
classifying images of scenes, it might be more reasonable to examine several
patches before deciding what type of environment the image is depicting.

Characteristics of the datasets are listed in Table 1. From our previous expe-
riences with these datasets [5,25], we expect these datasets to contain a mix of
concept-like and distribution-like problems. Note that in our previous work [5,25]
we represented each bag by its dissimilarities relative to a set of prototype bags,
whereas here we use an absolute representation where each bag is represented
by dissimilarities between its own instances.

Table 1. Characteristics of MIL datasets. Most of the datasets are available for down-
load from http://www.miproblems.org

Dataset #bags
neg/pos

#instances
min-mean-max

Dataset #bags
neg/pos

#instances
min-mean-max

Musk 1 23/37 3-7-40 alt.atheism 50/50 22-54-76

Musk 2 53/37 4-73-1044 comp.graphics 51/49 12-31-58

Corel African 1410/93 3-5-13 Harddrive 178/190 3-186-299

AjaxOrange 1440/60 31-32-32 Brown Creeper 350/197 3-19-43

Web recomm. 1 55/20 9-46-229 Biocreative comp 2591/396 3-12-53

We removed bags that contained only 1 or 2 instances. We then represented
each bag by a mn×mn dissimilarity matrix between its instances, where the dis-
similarity is simply the Euclidean distance between the feature vectors. We rep-
resented each dissimilarity matrix with the representations described in Sect. 2.
We used two classifiers: a linear discriminant classifier and a 1-nearest neighbor



90 D.M.J. Tax et al.

classifier. The experiments were performed using 10-fold cross-validation, where
the best hyper parameter for each representation type (the optimal value for
k), was determined on the training set using a second internal 10-fold cross-
validation. We choose k ∈ {5, 10, 25, 50, 100}.

We report the AUC performances of both classifiers, using the best para-
meters for each representation type. For reference, we also list the best perfor-
mance of traditional MIL classifiers1. The classifiers that often perform well are
MILES [4], MI-SVM [2], EM-DD [27], a logistic classifier trained on a bag sum-
mary representation (based on the mean instance, or the min/max values per
feature) [11], and p-posterior classifier [26] (Table 2).

The results are similar to those on artificial data: when the dissimilarity
matrices are small, a spectrum representation is preferred. When larger training
sets are available, it is often good to choose for an equalized histogram. These
histograms tend to become relatively high dimensional, and the classifier can
therefore not be too complex, so a linear classifier is a good choice.

What is also surprising is that, although these representations remove
the absolute locations of the instances in the feature space, it is still possi-
ble to achieve very reasonable classification performance. For some datasets
classification performances exceed the best performances achieved up to now
(comp.graphics, Biocreative) or are comparable (Corel African, alt.atheism,
Harddrive). For datasets that contain a specific concept (Musk1, Musk2, AjaxOr-
ange, Web recomm. 1, Brown Creeper), the classifier that has access to individual
feature vectors is better off.

4.2 Unsupervised Experiments: Analysis of Teams of People

Given the required speed in a strategic decision making process, we used an
online survey for the unsupervised gathering of a strategic status update from
20,191 employees in 1,378 teams in 277 different client projects on, for exam-
ple, Human Resource Management, Information Technology and Marketing and
Sales. We did not use a Likert scale given the subsequent need for statistical
corrections for the structure of the survey [9], for various response styles [7], for
a variety of sampling errors [19] and for a wide variety of biases [22]. Instead, we
opted to use a Guttman scale with objective verifiable answers [8,13]. The assess-
ment questions were different for different teams. Four different types of assess-
ment can be distinguished: (1) human resource (HR): focusing on team effec-
tiveness, competency assessments, cultural aspects, (2) strategy: how strategy
is finally incorporated, innovation assessment, (3) marketing and sales: analysis
of client processes, commercial guidance of shops, and (4) IT: project assess-
ment, IT processes, IT governance. From the answers a dissimilarity is derived
by computing the pairwise Euclidean distances between the answer scores of all
the members in a team.

1 Available from http://homepage.tudelft.nl/n9d04/milweb/.

http://homepage.tudelft.nl/n9d04/milweb/
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Table 2. AUC mean (standard deviation) ×100 % of two classifiers on five represen-
tations of MIL bags. Bold = best or not significantly worse than best representation
per classifier.

Musk 1 Musk 2

MI-SVM 92.9 (1.3) MILES 95.3 (1.5)

repr LDA 1-NN repr LDA 1-NN

spect 25D 74.2 (18.7) 55.8 (18.9) spect 10D 53.5 (21.1) 58.6 (19.5)

hist 5D 60.6 (27.6) 54.6 (18.7) hist 50D 59.1 (28.6) 50.8 (21.5)

histeq 25D 45.6 (26.1) 52.7 (21.4) histeq 5D 59.3 (23.3) 51.6 (15.5)

distnn 10 68.8 (16.8) 50.8 (17.2) distnn 5 64.3 (26.1) 63.0 (23.3)

disthub 5D 73.3 (19.4) 68.8 (17.1) disthub 5D 55.8 (22.4) 63.7 (20.7)

Corel African SIVAL AjaxOrange

EM-DD 91.5 (0.4) MI-SVM 99.6 (0.1)

repr LDA 1-NN repr LDA 1-NN

spect 25D 65.3 ( 9.1) 74.7 (11.0) spect 25D 87.0 ( 9.1) 70.0 (15.4)

hist 100D 81.2 (12.0) 73.0 ( 7.7) hist 10D 72.3 (11.6) 60.3 (10.8)

histeq 10D 87.8 ( 9.1) 76.1 (15.7) histeq 100D 68.8 (12.5) 61.1 (10.9)

distnn 5 87.5 ( 5.8) 78.2 (10.4) distnn 5 73.6 (10.9) 66.7 (15.2)

disthub 5D 59.5 ( 9.4) 51.6 (12.2) disthub 20D 64.6 (13.2) 68.8 (11.1)

Web recomm. 1 alt.atheism

MI-SVM 91.9 (0.0) Logistic on mean 85.2 (2.2)

repr LDA 1-NN repr LDA 1-NN

spect 5D 48.8 (20.3) 67.3 (18.6) spect 5D 86.8 (10.7) 75.2 (14.7)

hist 50D 63.2 (25.0) 66.8 (31.1) hist 100D 76.0 (10.2) 75.2 (12.9)

histeq 5D 58.3 (24.9) 74.7 (29.2) histeq 5D 76.8 (17.6) 61.2 (14.0)

distnn 20 72.8 (22.6) 69.5 (21.1) distnn 5 82.8 (10.2) 66.4 (16.8)

disthub 20D 50.8 (21.9) 53.3 (22.8) disthub 10D 56.8 (18.2) 60.0 (19.9)

comp.graphics Harddrive

SimpleMIL logistic 73.0 (1.7) P-posterior 98.5 (0.5)

repr LDA 1-NN repr LDA 1-NN

spect 5D 89.0 (11.4) 61.3 (20.6) spect 5D 88.5 ( 7.5) 96.2 ( 3.8)

hist 50D 73.2 (12.8) 73.5 (14.8) hist 5D 95.0 ( 6.7) 95.3 ( 5.0)

histeq 50D 82.6 (14.0) 72.4 (19.1) histeq 25D 98.7 ( 2.5) 99.1 ( 1.8)

distnn 10 90.9 (13.2) 79.4 (10.7) distnn 20 76.1 (20.8) 94.1 ( 3.0)

disthub 10D 55.6 (14.2) 71.4 (10.2) disthub 10D 89.6 ( 6.7) 80.5 ( 6.0)

Brown Creeper Biocreative component

MILES 95.8 (0.3) MI-SVM 84.0 (0.0)

repr LDA 1-NN repr LDA 1-NN

spect 50D 56.4 (14.5) 69.1 ( 8.7) spect 50D 78.2 ( 8.6) 81.0 ( 9.7)

hist 100D 87.5 (12.3) 76.4 (10.0) hist 100D 85.9 ( 7.4) 78.0 (10.7)

histeq 100D 81.9 (23.2) 82.2 (15.1) histeq 25D 88.6 ( 7.2) 87.1 ( 8.3)

distnn 20 64.8 (14.6) 72.0 (10.4) distnn 10 89.1 ( 8.8) 86.9 (10.4)

disthub 10D 76.3 (11.9) 65.7 ( 9.2) disthub 20D 76.7 (10.1) 67.7 ( 8.3)
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Fig. 4. t-SNE visualisations of 1378 teams of people. Left: spectrum representation of
all the teams. The size of the circles indicate the size of the corresponding dissimilarity
matrix. Right: equalized histogram representation for teams that got a human resource
assessment.

In Fig. 4 the resulting embeddings are shown using the spectrum and equal-
ized histogram representations. Both representations are 5-dimensional, and the
2-dimensional embedding of the 5D data is obtained by using t-SNE [17]. In
the left subplot the marker size indices the size mn of the corresponding matrix
Dn. It appears that the first important component is the size team. The plot
also shows that there is more variation in the smaller teams, suggesting that
in smaller team there is more possibility of specialisation. Larger teams tend to
become more similar.

When we normalise for team size, and we focus on one type of questionnaires
(Human Resource) we obtain the scatterplot on the right. There is one promi-
nent outlier team. This appears to be a team that got a questionnaire with 160
questions, while normally less than 20 questions are used. Furthermore, there is
a large cluster on the left, which contains fairly homogeneous team members,
and a long tail up to the right where teams get stronger and stronger clusters
of subteams. The teams most far in the tail show a clear clustering, while teams
more close to the homogeneous cluster only contain a few outliers in a team.

5 Conclusions

We compared several feature vector representations for characterizing (square)
dissimilarity matrices that can vary in size, and for which the rows and columns
can be arbitrarily permuted. The spectrum representation is very effective, in
particular when the sample sizes are small. It can not only characterize the intrin-
sic dimensionality, it is also able to characterize cluster structure. When a large
sample size is available, it is often advantageous to use the more descriptive his-
tograms of distances. These results can be observed in some artificial, and some
real-world MIL problems. For MIL, the representations with a linear or nearest
neighbor classifier are sometimes competitive to state-of-the-art classifiers.
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We then used the representations in an unsupervised manner in order to char-
acterize real-world organizations. Our analysis revealed some clusters of organi-
zations, that could be interpreted by an expert. Given the current dissimilarity
scores we suggest further research into the extent to which organizations are
similar with respect to issues that affect a multitude of teams (a top manage-
ment issue), a single team (a middle management issue) or a single employee
(a lower management issue), and whether that similarity is particularly present
in specific management topics (for example, in Human Resource Management)
and/or in specific industries (e.g. in Professional Services).
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11. Gärtner, T., Flach, P.A., Kowalczyk, A., Smola, A.J.: Multi-instance kernels. In:
International Conference on Machine Learning, pp. 179–186 (2002)
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