Skip to main content

Emergence of Sustainable Approaches for Functional Materials: Cashew Nut Shell Liquid and Other Relevant Crop-Based Renewable Resources

  • Chapter
  • First Online:

Abstract

Development of renewable resources as an alternative to fossil fuel-based feedstock for the production of different materials is vital due to various concerns associated with petroleum-based resources. Cashew nut shell liquid, an industrial waste from cashew nut (Anacardium occidentale) processing industry, is widely exploited as a renewable resource for developing several sustainable materials. This chapter presents few projections on the development of biorenewable resources, utilization and implementation; especially, it highlights the recent progress in the production of cardanol-derived products.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A Timeline of highlights from the histories of ASTM committee D02 and the petroleum Industry (1996) ASTM International, West Conshohocken. http://www.astm.org/COMMIT/D02/to1899_index. Accessed 02 Feb 2016

  2. “Petroleum.” The columbia encyclopedia, 6th edn. 2016. Retrieved July 18, 2016 from Encyclopedia.com: http://www.encyclopedia.com/doc/1E1-petroleu.html

  3. Malhotra R (ed) (2013) Fossil energy: selected entries from the encyclopedia of sustainability science and technology. Springer, New York

    Google Scholar 

  4. Werpy T, Petersen G (2004) Top Value Added Chemicals from Biomass: Volume I-Results of Screening for Potential Candidates from Sugars and Synthesis Gas. United States. doi:10.2172/15008859. http://www.osti.gov/scitech/servlets/purl/15008859

  5. Danner H, Braun R (1999) Biotechnology for the production of commodity chemicals from biomass. Chem Soc Rev 28:395–405

    Article  Google Scholar 

  6. Ross ML (2012) The oil curse: How petroleum wealth shapes the development of nations. Princeton University Press, Princeton

    Google Scholar 

  7. Key World Energy Stastics (2015) International energy agency (IEA), Paris Cedex.https://www.iea.org/publications/freepublications/publication/KeyWorld_Statistics_2015.pdf Accessed on 02 Feb 2016

  8. Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297:803–807

    Article  Google Scholar 

  9. IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Link to EPA’s External Link Disclaimer Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  10. Benefits of renewable energy use (2012) http://www.ucsusa.org/cleanenergy-choices/renewable-energy/public-benefits-orenewable.html#.V48gjNIrLIU. Accessed 10 June 2015

  11. Environmental Protection Agency (2012) Inventory of U.S. greenhouse gas emissions and sinks: 1990–2010

    Google Scholar 

  12. Climate change 2007: working group I: the physical science basis https://www.ipcc.ch/publications_and_data/ar4/wg1/en/spmsspm-direct-observations.html. Accessed 08 July 2016

  13. CFR backgrounders (2016) http://www.cfr.org/china/chinas-environmental-crisis/p12608. Accessed 05 May 2016

  14. Natural resources Canada (2009) http://www.nrcan.gc.ca/energy/renewable-electricity/7293 Accessed on 30 May 2016

  15. Anastas P, Eghbalia N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312

    Article  Google Scholar 

  16. Chemical research brief (2016) http://www.sasb.org/wp-content/uploads/2015/03/RT0101_Chemicals_Brief.pdf. Accessed on 30 May 2016

  17. Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26

    Article  Google Scholar 

  18. Stevens ES (2002) Green plastics. Princeton University Press, Princeton

    Google Scholar 

  19. Thompson RC, Moore CJ, Saal FS, Swan SH (2009) Our plastic age. Philos Trans R Soc B 364:2153–2166

    Article  Google Scholar 

  20. Gkatsou S, Kounenou M, Papanagiotou P et al (2014) The impact of green energy on employment: a preliminary analysis. Int J Bus Soc Sci 5:29–41

    Google Scholar 

  21. Renewable energy jobs: status, prospects & policies, biofuels and grid-connected electricity generate (2013) http://www.irena.org/documentdownloads/publications/renewableenergyjobs.pdf. Accessed on 20 June 216

  22. Pimentel D, Herz M, Glickstein M et al (2002) Renewable energy: current and potential issues. Bioscience 52:1111–1123

    Article  Google Scholar 

  23. Alsahlawi MA (2010) The future prospect of world oil supply: depletion of resources or price trends. OPEC Energy Rev 34:73–81

    Article  Google Scholar 

  24. Gandini A (2008) Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 41:9491–9504

    Article  Google Scholar 

  25. Gandini A, Lacerda TM, Carvalho AJF et al (2016) Progress of polymers from renewable resources: furans, vegetable oils, and polysaccharides. Chem Rev 116:1637–1669

    Article  Google Scholar 

  26. Ciesielski W, Lii CY, Yen MT et al (2003) Interactions of starch with salts of metals from the transition groups. Carbohydr Polym 51:47–56

    Article  Google Scholar 

  27. Belgacem MN, Gandini A (eds) (2008) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam

    Google Scholar 

  28. Yalpani M (1985) A survey of recent advances in selective chemical and enzymic polysaccharide modifications. Tetrahedron 41:2957–3020

    Article  Google Scholar 

  29. Cumpstey I (2013) Chemical modification of polysaccharides. ISRN Organic Chemistry, vol 2013, Article ID 417672, 27 pages, 2013. doi:10.1155/2013/417672

  30. Hansen NML, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromlecules 9:1493–1505

    Article  Google Scholar 

  31. Tatarka PD, Cunningham RL (1998) Properties of protective loose-fill foams. J Appl Polym Sci 67:1157–1176

    Article  Google Scholar 

  32. Shinoj S, Visvanathan R, Panigrahi S et al (2011) Oil palm fiber (OPF) and its composites: A review. Ind Crops Prod 33:7–22

    Article  Google Scholar 

  33. Boddohi S, Moore N, Johnson AP et al (2009) Polysaccharide-based polyelectrolyte complex nanoparticles from chitosan, heparin, and hyaluronan. Biomacromolecules 10:1402–1409

    Article  Google Scholar 

  34. Bravin B, Peressini D, Sensidoni A (2004) Influence of emulsifier type and content on functional properties of polysaccharide lipid-based edible films. J Agric Food Chem 52:6448–6455

    Article  Google Scholar 

  35. Sánchez-Gonzáleza L, Cháfera M, Hernández M et al (2011) Antimicrobial activity of polysaccharide films containing essential oils. Food Control 22:1302–1310

    Article  Google Scholar 

  36. Global production of vegetable oils from 2000/01 to 2015/16 (in million metric tons) (2016) http://www.statista.com/statistics/263978/global-vegetable-oil-production-since-2000-2001/. Accessed on 0808.2016

  37. Lligadas G, Ronda JC, Galià M et al (2013) Renewable polymeric materials from vegetable oils: a perspective. Mater Today 16:337–343

    Article  Google Scholar 

  38. Xia Y, Larock RC (2010) Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chem 12:1893–1909

    Article  Google Scholar 

  39. Valverde M, Andjelkovic D, Kundu PP (2007) Conjugated low-saturation soybean oil thermosets: free-radical copolymerization with dicyclopentadiene and divinylbenzene. J Appl Polym Sci 107:423–430

    Article  Google Scholar 

  40. Andjelkovic DD, Valverde M, Henna P et al (2005) Novel thermosets prepared by cationic copolymerization of various vegetable oils—synthesis and their structure–property relationships. Polymer 46:9674–9685

    Article  Google Scholar 

  41. Quirino RL, Garrison TF, Kessler MR (2014) Matrices from vegetable oils, cashew nut shell liquid, and other relevant systems for biocomposite applications. Green Chem 16:1700–1716

    Article  Google Scholar 

  42. Rydz J, Sikorska W, Kyulavska M et al (2015) Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development. Int J Mol Sci 16:564–596

    Article  Google Scholar 

  43. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798

    Article  Google Scholar 

  44. Rodriguez-Galan A, Franco L, Puiggali J (2011) Degradable poly(ester amide)s for biomedical applications. Polymers 3:65–99

    Article  Google Scholar 

  45. Migneco F, Huang YC, Birla RK (2009) Poly(glycerol-dodecanoate), a biodegradable polyester for medical devices and tissue engineering scaffolds. Biomaterials 30:6479–6484

    Article  Google Scholar 

  46. Seyednejad H, Ghassemi AH, van Nostrum CF et al (2011) Functional aliphatic polyesters for biomedical and pharmaceutical applications. J Control Release 152:168–176

    Article  Google Scholar 

  47. Bentsen NC, Felby C (2012) Biomass for energy in the european union–a review of bioenergy resource assessments. Biotechnol Biofuels 5:25–35

    Article  Google Scholar 

  48. Ben-Iwo J, Manovic V, Longhurst P (2016) Biomass resources and biofuels potential for the production of transportation fuels in Nigeria. Renew Sustain Energy Rev 63:172–192

    Article  Google Scholar 

  49. Pimentel D, Hepperly P, Hanson J (2005) Environmental, energetic, and economic comparisons of organic and conventional farming systems. Bioscience 55:573–582

    Article  Google Scholar 

  50. Velmurugan A, Loganathan M (2011) Performance and emission characteristics of a DI diesel engine fuelled with cashew nut shell liquid (CNSL)-diesel blends. World Acad Sci Eng Technol 58:889–900

    Google Scholar 

  51. Banchhor M, Baid R (2007) CNSL (Cashew Nut Shell Liquid)—a versatile renewable natural resource. Plant Arch 7:497–501

    Google Scholar 

  52. Voirin C, Caillol S, Nilakshi V et al (2014) Functionalization of cardanol: towards biobased polymers and additives. Polym Chem 5:3142–3162

    Article  Google Scholar 

  53. Lubi MC, Thachil ET (2000) Cashew nut shell liquid (CNSL)—a versatile monomer for polymer synthesis. Des Monomers Polym 3:123–153

    Article  Google Scholar 

  54. Balachandran VS, Jadhav SR, Vemula PK et al (2013) Recent advances in cardanol chemistry in a nutshell: from a nut to nanomaterials. Chem Soc Rev 42:427–438

    Article  Google Scholar 

  55. Paramashivappa R, Kumar PP, Vithayathil PJ et al (2001) Novel method for isolation of major phenolic constituents from cashew (anacardium occidentale l.) nut shell liquid. J Agric Food Chem 49:2548–2551

    Article  Google Scholar 

  56. Devi A, Srivastava D (2007) Studies on blends of cardanol-based epoxidized novolac type phenolic resin and carboxyl-terminated polybutadiene (CTPB) I. Mater Sci Eng A 458:336–347

    Article  Google Scholar 

  57. Ravichandran S, Bouldin RM, Kumar J et al (2011) A renewable waste material for the synthesis of a novel non-halogenated flame retardant polymer. J Clean Prod 19:454–458

    Article  Google Scholar 

  58. Scorzza C, Nieves J, Vejar F, Bullon J (2010) Synthesis and physicochemical characterization of anionic surfactants derived from cashew nut shell oil. J Surfactants Deterg 13:27–31

    Article  Google Scholar 

  59. Anilkumar P, Jayakannan M (2007) Fluorescent tagged probing agent and structure-directing amphiphilic molecular design for polyaniline nanomaterials via self-assembly process. J Phy Chem C111:3591–3600

    Google Scholar 

  60. Rios MAS, Sales FAM, Mazzetto SE (2009) Study of antioxidant properties of 5-n-pentadecyl-2-tert-amylphenol. Energy Fuels 23:2517–2522

    Article  Google Scholar 

  61. Pillai CKS, Prasad VS, Sudha JD (1990) Polymeric resins from renewable resources. II. Synthesis and characterization of flame-retardant prepolymers from cardanol. J Appl Polym Sci 41:2487–2501

    Article  Google Scholar 

  62. John G, Vemula PK (2006) Design and development of soft nanomaterials from biobased amphiphiles. Soft Matter 2:909–914

    Article  Google Scholar 

  63. John G, Masuda M, Okada Y et al (2001) Nanotube formation from renewable resources via coiled nanofibers. Adv Mater 13:715–719

    Article  Google Scholar 

  64. Radhakrishan S, Rao CRK, Vijayan M (2009) Electrochemical synthesis and studies of polypyrroles doped by renewable dopant cardanol azophenylsulfonic acid derived from cashew nutshells. J Appl Polym Sci 114:3125–3131

    Article  Google Scholar 

  65. Toyomizu M, Sugiyama S, Jin RL et al (1993) Glucosidase and aldose reductase inhibitors: constituents of cashew, Anacardium occidentale, nut shell liquids. Phytother Res 7:252–254

    Article  Google Scholar 

  66. Sultania M, Rai JSP, Srivastava D (2011) Process modeling, optimization and analysis of esterification reaction of cashew nut shell liquid (CNSL)-derived epoxy resin using response surface methodology. J Hazard Mater 185:1198–1204

    Article  Google Scholar 

  67. Mwaikambo LY, Ansell MP (2001) Cure characteristics of alkali catalysed cashew nut shell liquid-formaldehyde resin. J Mater Sci 36:3693–3698

    Article  Google Scholar 

  68. Pathak SK, Rao BS (2006) Structural effect of phenalkamines on adhesive viscoelastic and thermal properties of epoxy networks. J Appl Polym Sci 102:4741–4748

    Article  Google Scholar 

  69. Mele G, Sole RD, Vasapollo G et al (2004) Polycrystalline TiO2 impregnated with cardanol-based porphyrins for the photocatalytic degradation of 4-nitrophenol. Green Chem 6:604–608

    Article  Google Scholar 

  70. Vasapollo G, Giuseppe Mele G, Sole RD et al (2011) Use of novel cardanol-porphyrin hybrids and their TiO2-based composites for the photodegradation of 4-nitrophenol in water. Molecules 16:5769–5784

    Article  Google Scholar 

  71. Kattimuttathu S, Foerst G, Schubert R, Bartsch E (2012) Synthesis and micellization properties of new anionic reactive surfactants based on hydrogenated cardanol. J Surfactants Deterg 15:207–215

    Article  Google Scholar 

  72. Bruce IE, Mehta L, Porter MJ et al (2009) Anionic surfactants synthesized from replenishable phenolic lipids. J Surfactants Deterg 12:337–344

    Article  Google Scholar 

  73. Souza FG Jr, Soares BG, Siddaramaiah et al (2006) Influence of plasticizers (DOP and CNSL) on mechanical and electrical properties of SBS/polyaniline blends. Polymer 47:7548–7553

    Article  Google Scholar 

  74. John HPT, Mahesh P (2007) Phenolic structure and colour in Mannich reaction products. J Chem Res 1:34–37

    Google Scholar 

  75. Scorzza C, Nieves F, Vejar NF, Bullon J (2010) Synthesis and physicochemical characterization of anionic surfactants derived from cashew nut shell oil. J Surfactants Deterg 13:27–31

    Article  Google Scholar 

  76. Paul RK, Pillai CKS (2001) Melt/solution processable polyaniline with functionalized phosphate ester dopants and its thermoplastic blends. J Appl Polym Sci 80:1354–1367

    Article  Google Scholar 

  77. Lepage ES, Delelis AT (1980) Protecting wood against dry wood termite with cashew nut shell oil. Forest Prod J 36:35–36

    Google Scholar 

  78. Saminathan MS, Pillai CKS (2000) Synthesis of novel liquid crystalline polymers with cross-linked network structures. Polymer 41:3103–3108

    Article  Google Scholar 

  79. Menon ARR, Pillai CKS, Nando GB (1998) Modification of natural rubber with phosphatic plasticizers: a comparison of phosphorylated cashew nut shell liquid prepolymer with 2-ethyl hexyl diphenyl phosphate. Eur Polym J 34:923–929

    Article  Google Scholar 

  80. Mythili CV, Retna AM, Gopalakrishnan S (2004) Synthesis, mechanical, thermal and chemical properties of polyurethanes based on cardanol. J Mater Sci 27:235–241

    Google Scholar 

  81. Renewables global status report 2015 [http://www.ren21.net/wp-content/uploads/2015/07/REN12-GSR2015_Onlinebook_low1.pdf]. Accessed on 10 July 2016

  82. Green Chemicals Will Save Industry $65.5 Billion by 2020 https://www.navigantresearch.Com/newsroom/green-chemicals-will-save-industry.-65-5-billion-by-2020. Accessed on 16 July 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Srinivas Abbina or Parambath Anilkumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Abbina, S., Anilkumar, P. (2017). Emergence of Sustainable Approaches for Functional Materials: Cashew Nut Shell Liquid and Other Relevant Crop-Based Renewable Resources. In: Anilkumar, P. (eds) Cashew Nut Shell Liquid. Springer, Cham. https://doi.org/10.1007/978-3-319-47455-7_1

Download citation

Publish with us

Policies and ethics