
Output Domain Downscaler

Mert Büyükmıhçı1, Vecdi Emre Levent2, Aydin Emre Guzel2, Ozgur Ates2,
Mustafa Tosun2, Toygar Akgün3, Cengiz Erbas3, Sezer Gören1,

and Hasan Fatih Ugurdag2(B)

1 Department of Computer Engineering, Yeditepe University, Istanbul, Turkey
sgoren@cse.yeditepe.edu.tr

2 Department of Electronics and Electrical Engineering,
Ozyegin University, Istanbul, Turkey
fatih.ugurdag@ozyegin.edu.tr
3 ASELSAN, Ankara, Turkey

takgun@aselsan.com.tr

Abstract. This paper offers an area-efficient video downscaler hardware
architecture, which we call Output Domain Downscaler (ODD). ODD is
demonstrated through an implementation of the bilinear interpolation
method combined with Edge Detection and Sharpening Spatial Filter.
We compare ODD to a straight-forward implementation of the same
combination of methods, which we call Input Domain Downscaler (IDD).
IDD tries to output a new pixel of the downscaled video frame every time
a new pixel of the original video frame is received. However, every once in
a while, there is no downscaled pixel to produce, and hence, IDD stalls.
IDD sometimes also skips a complete row of input pixels. ODD, on the
other hand, spreads out the job of producing downscaled pixels almost
uniformly over a frame. As a result, ODD is able to employ more resource
sharing, i.e., can do the same job with fewer arithmetic units, thus offers
a more area-efficient solution than IDD. In this paper, we explain how
ODD and IDD work and also share their FPGA synthesis results.

1 Introduction

Downscalers are found in many image processing applications. This work
addresses video streaming applications and hence needs to be real-time, which
opens the door for hardware implementation.

Downscaling produces a lower resolution version of the input image. The
purpose is to do this with the least quality loss in the image. The simplest
downscaler in the literature is the Nearest Neighbor method (NN) [1]. NN is more
area-efficient and easier to implement than other methods, for instance, Bicubic

This work has been partially supported by the Artemis JU Project ALMARVI (Algo-
rithms, Design Methods, and Many Core Execution Platform for Low-Power Massive
Data-Rate Video and Image Processing), Artemis GA 621439 [6] and TUBITAK
(The Scientific and Technological Research Council of Turkey) Project number
114E343.

c© The Author(s) 2016
T. Czachórski et al. (Eds.): ISCIS 2016, CCIS 659, pp. 262–269, 2016.
DOI: 10.1007/978-3-319-47217-1 28

Output Domain Downscaler 263

Interpolation (BcubI) [2] and Adaptable K-Nearest [3] methods. However, the
drawback of NN is that the resulting image/frame contains blocking and aliasing
artifacts. On the other hand, BcubI can handle blocking and aliasing issues
well and produce high quality images; however, because of its complexity and
memory requirements, its implementation is difficult and costly. A compromise is
possible though. Another method, called Bilinear Interpolation (BlinI) [4], that
can also handle blocking and aliasing issues, has lower complexity and hence
lower cost than BcubI. Although its output has lower quality than BcubI, the
downscaled images it produces are acceptable. Chen [5] proposes an enhanced
BlinI downscaler that uses an edge detection algorithm and Sharpening Spatial
Filter (SSF) before BlinI to prevent the blurring caused by BlinI.

In this paper, we propose a novel area-efficient implementation of the
enhanced downscaler in [5]. We call our downscaler implementation Output
Domain Downscaler (ODD) and the straight-forward implementation in [5] as
Input Domain Downscaler (IDD). Note that both ODD and IDD apply to also
other downscaling algorithms.

IDD tries to output a new pixel every time a new input pixel is received.
However, once every few input pixels, there is no downscaled pixel to produce,
and IDD stalls (i.e., idles). IDD sometimes also skips a complete row of input
pixels. ODD, on the other hand, spreads out the job of producing downscaled
pixels almost uniformly over a frame. As a result of that, ODD is able to do more
resource sharing, i.e., can do the same job with fewer arithmetic units, thus offers
a more area-efficient solution than IDD. In this paper, we implement our ODD
architecture with a downscale ratio between 1 and 2 with no loss of generality.
That is because it is best to achieve larger downscale ratios of BlinI by applying
a downscale ratio between 1 and 2 multiple times. Note that we implemented
Verilog RTL generators for ODD and IDD, which are highly parameterized,
instead of implementing fixed instances of the two architectures with a specific
downscale ratio, fps, and frame resolution. Besides datapath optimizations, we
also did memory optimizations as well.

2 The Downscaling Algorithm

The downscaling algorithm implemented in this work is the algorithm in [5], which
is based on BlinI. [5] proposes the idea of detecting edges and boosting the pixels
around them with SSF in order to circumvent the blur caused by BlinI.

When Edge Detection (ED), SSF, and BlinI are considered altogether, a
sliding of 8 input pixels shown in Fig. 1a are used around the downscaled pixel
(e.g., pixels P, Q, R). These 8 pixels are used to decide the values of the 4 pixels
(pointed to by the arrows) immediately around the downscaled pixel, which are
then used by BlinI. In Fig. 1, the input pixels (the dots) are at integer locations,
while the downscaled pixels of P, Q, R are at fractional locations with a distance
of 1.5 between them, assuming that the downscale ratio is 1.5. If P is at an x
coordinate of 1.3, then Q and R are at respectively 2.8 and 4.3. When we take
the integer part of these coordinates, we get 1, 2, and 4. These numbers show

264 M. Büyükmıhçı et al.

Fig. 1. a. ODD’s sliding window b. SSF and BlinI’s windows when edge is at L

the starting positions of these consecutive sliding windows. One way to describe
this is that the sliding window sometimes shifts by 1 and sometimes by 2. This
is our way of looking at it (i.e., the ODD way). Another way to look at this
is that sliding window always shifts by 1 but sometimes it does not produce a
downscaled pixel. This is the IDD way of looking at it.

Top 4 of these 8 pixels are used for ED. That are the pixels marked with
TLL (Top Left Left), TL, TR, TRR as shown in Fig. 1b. In order to find if there
are edges at pixel P, the Asymmetry parameter, A, for that pixel needs to be
computed as defined by Eq. 1. If A is more positive than a positive threshold, it
means that there is a vertical edge at the horizontal position of L (no horizon-
tal edges are considered). If A is more negative than the negative of the same
threshold, there is an edge at R.

A = |PTRR − PTL| − |PTR − PTLL| (1)

Suppose an edge is detected at the horizontal position of L (as opposed
to R), then the T-like convolutional window in Fig. 1b is used to recompute
the input pixel at location TL, which is the pixel where the edge is detected.
The neighboring pixels are multiplied by −1 and pixel TL is multiplied by the
sharpening coefficient, S, and the sum is divided by S − 3. The pixel below
where the edge is detected (BL) is also recomputed by the SSF, hence the dotted
window in Fig. 1b. If the edge is detected at R, then SSF shifts the two T-like
windows to the right by one position. Hence, SSF uses all 8 pixels to compute
two pixels and then replaces either TL and BL pixels or TR and BR.

BlinI computes a downscaled pixel as a weighted average of 4 input pixels
surrounding it, i.e., TL, TR, BL, BR pixels. To compute output pixel P , which
we also denote by Pxy, we first compute two intermediate pixel values (Eqs. 2 and
3, namely, PyL and PyR (see Fig. 1b for locations of yL and yR), as weighted
averages of pixels vertically positioned with respect to them, where dy is the
weight of the bottom pixel and 1 − dy is the weight of the top pixel. Then,
we take a weighted average of the two intermediate pixels to compute the pixel
value at downscale location (x, y) and arrive at Eq. 4. Note that dx and dy are

Output Domain Downscaler 265

respectively fractional parts the x and y coordinates of the downscaled pixel P,
in other words, they constitute the displacement of P from input pixel TL.

PyL = (PBL − PTL)dy + PTL (2)
PyR = (PBR − PTR)dy + PTR (3)
P = Pxy = (PyR − PyL)dx + PyL (4)

3 Output Domain Downscaler

Consider a video stream at 90 frames per second (fps) and full HD resolution
(1920 by 1080 pixels per frame). If the downscaler is running at a clock frequency
of 187 MHz, then we will be receiving one input pixel per clock cycle. If we
designed the hardware of our downscaler in a brute-force manner (i.e., the IDD
way), then we would be shifting our sliding window of 8 input pixels to the right
by one pixel every clock cycle just like most designers do in most video streaming
applications.

Consider a downscale ratio of 1.8. Then, we would be producing 1067 down-
scaled output pixels per one line of a video frame. That is, we would be idling
in 853 (=1920 − 1067) non-consecutive cycles. We would also be idling for 360
complete lines, each time 1920 cycles back to back. That is because the step size
in the vertical direction is also equal to the downscale ratio.

However, since sometimes we would need to produce downscaled pixels in
back to back cycles, we would have to design an arithmetic datapath that can
execute all operations at a throughput (but not necessarily latency) of 1 down-
scaled pixel per 1 cycle. Therefore, we would not be able to do resource sharing
and would employ as many multipliers as multiplication operations, as many
adders as addition operations, and so on.

Fortunately, we do not do it that way; we do it as follows. While IDD shifts
the sliding window by one position every time a new input pixel is received (i.e.,
once every Input Cycle Time, or in short, ICT), we slide the window by the scale
ratio, 1.8, in a time period of 3 times ICT (i.e., Output Cycle Time, or in short,
OCT). If ICT is 1 cycles per input pixel, then our OCT is 3 cycles per output
pixel.

OCT is 3 because we produce N/r2 output pixels over one frame time if there
are N pixels in an input frame. If r = 1.8, then we could spread our computations
for a downscaled pixel over 3.24 cycles, it would be perfect. However, we have
to schedule computations over an integer number of cycles unless we are willing
to do loop unrolling. To summarize, OCT = �ICT ∗ r2�.

In our ODD architecture, Output Cycle Time (OCT) determines the cycle
time of the datapath (i.e., hence length of the schedule), and that is why it
is called “Output Domain”. On the other hand, in the naive IDD approach,
Input Cycle Time (ICT) determines the cycle time of the datapath, hence the
name “Input Domain”. OCT is larger than or equal to ICT; therefore, ODD has
more opportunity for resource sharing, and in the asymptotic case, uses M/r2

arithmetic units, whereas IDD uses M arithmetic units.

266 M. Büyükmıhçı et al.

Fig. 2. a. IDD’s top-level b. ODD’s top-level

Figure 2 shows the top levels of ODD and IDD architectures. Both ODD and
IDD employ a line buffer (Linebuf) and a FIFO. ODD’s datapath is connected
to the output port of the FIFO, while IDD’s datapath is on the input side of its
FIFO. Line buffers are, on the other hand, 1 line and 4 pixel long and are due
to the 4 × 2 sliding window the downscaling algorithm uses (shown in Fig. 1).

It is obvious that ODD needs a FIFO. While input pixels are received in
raster order at a rate of 1 pixel per cycle, ODD consumes them at a rate of
1.8 pixels (due to the downscale ratio) every 3 cycles. Therefore, it consumes
1.8/3 = 0.6 pixels per cycle, and as a result the FIFO of input pixels builds up
at a rate of 0.4 pixels per cycle. When the downscaler skips a line, then it catches
up. It even sometimes leapfrogs the input pixels and waits for the FIFO to fill
up as it has a cycle-time of 3 cycles as opposed to the ideal and slower rate of
3.24 cycles.

On the other hand, it is not obvious that IDD needs a FIFO. However, if we
have a non-stallable pipeline at the output of the downscaler, and/or we desire to
minimize the amount of logic in that pipeline, we need to buffer the downscaled
pixels in a FIFO and spread out the computations in the video pipeline that
uses the downscaled frames over a pipeline heart-beat of �ICT ∗ r2� cycles.

ODD’s FIFO is a special FIFO; unlike a regular FIFO, it has different width
on the write and read sides. It is 1-pixel wide on the write side and 8-pixel wide
on the read side. It is indeed a FIFO as all it needs is a push/pop interface
with addresses (i.e., write and read pointers) kept inside. Its write pointer is
the coordinates of the input pixel that is being received. Its read pointer is the
coordinates of the downscaled pixel that is being currently worked on. However,
the FIFO outputs 8 input pixels with addresses based on some arithmetic done
with the fractional read pointer. Note that in ODD’s case, Linebuf can be merged
into the FIFO.

Figure 3a gives a procedural code for the downscaling algorithm implemented
in this work. Figure 3b shows its Data Flow Graph (DFG). The schedule obtained
by mapping this DFG to arithmetic units (columns of the schedule) is shown
in Fig. 3c. Every operation in the DFG is named after its output variable. The
subscripts of the variable (thus operation) names in the schedule indicate the
index of the output pixel, i.e., its order in the video stream. We scheduled ED,
SSF, and BlinI separately.

While [5] does all computations in fixed point arithmetic, we do BlinI part
in floating point arithmetic since the algorithmic verification model we are given
by our image processing people does BlinI in floating point. The advantage of
floating point is that it eliminates the engineering time to fine tune the decimal
point location in fixed point. Therefore, ED and SSF use integer arithmetic units

Output Domain Downscaler 267

Fig. 3. a. Downscaling algorithm b. Its DFG c. Its schedule for OCT = 3

(non-pipelined), while BlinI uses heavily pipelined floating point units, which is
why the degree of functional pipelining in BlinI is quite high (k−(k−14)+1 = 15
stages).

4 Synthesis Results

We implemented our architecture not as a fixed RTL design but as a Perl gen-
erator that outputs a Verilog RTL design, given design parameters of fps, reso-
lution, clock frequency, and downscale ratio. We targeted a Virtex-7 FPGA. We
obtained synthesis results for 90 fps, 1920 × 1080 pixels/frame, clock frequency
of 187 MHz, and a downscale ratio of 1.8 for both ODD and IDD.

Hardware resources needed for both ODD and IDD are given in Table 1. Note
that FP stands for Floating Point. FP Adders are in fact Add/Sub units. Int.
stands for Integer. Although IDD does BlinI with 2 FP multiplications and 4
FP additions/subtractions as opposed to ODD’s 3 and 6, respectively, ODD still
uses substantially fewer hardware resources.

We have generated and synthesized ODD and IDD for two different cases.
One case has an ICT of 1, and the other has an ICT of 2. When OCT is computed
for the downscale ratio of 1.8 for these cases, we obtain 3 and 6. Therefore, we
have ICT/OCT of 1/3 and 2/6 for these cases.

Linebuf is the same size for both ODD and IDD; however, the FIFO size is
different. IDD has a FIFO that is more shallow but wider. That is because it
sores the output pixels, which have a 1/1.8 times the rate of input pixels and are
wider (32 bits versus 8 bits). Hence, IDD FIFO is 4/1.8 times (45 % of) ODD
FIFO. When Linebuf is also taken into account, the memory part of ODD is
approximately 60 % of IDD. These numbers are the same for both 1/3 and 2/6
cases.

As for the Datapath, Table 1 first lists the number of arithmetic units per sub-
task of the downscaler (ED, SSF, BlinI) and the total numbers (Tot.). The num-
ber of LUTs and flops these arithmetic units amount to are listed on the lines in

268 M. Büyükmıhçı et al.

Table 1. Area comparison of ODD and IDD

ICT/OCT IDD ODD

1/3 2/6 1/3 2/6

ED SSF BlinI Tot. ED SSF BlinI Tot. ED SSF BlinI Tot. ED SSF BlinI Tot.

FP Adders – – 4 4 – – 2 2 – – 2 2 – – 1 1

FP Multipliers – – 2 2 – – 1 1 – – 2 2 – – 1 1

Int. Adders 3 6 – 9 2 3 – 5 1 2 – 3 1 1 – 2

Int. Multipliers – 2 – 2 – 1 – 1 – 2 – 2 – 1 – 1

Datapath LUTs 4499 2276 2215 1550

Datapath Flops 3797 2012 1958 1294

Linebuf Mem. 15392 bits

FIFO Mem. 37952 bits 17072 bits

Memory LUTs 3569 2172

Memory Flops 182 98

Total LUTs 8068 5845 4387 3722

Total Flops 3979 2194 2056 1392

Table 1 that start with “Datapath LUTs” and “Datapath Flops”. The hardware
resources ODD needs for the Datapath (LUTs and Flops) are roughly half of
what IDD needs in 1/3 case, while it is two thirds in 2/6 case. When we look at
the total needed (Datapath + Memory), in 1/3 case ODD requires 54 % of IDD
in terms of LUTs and requires 52 % of IDD in terms of flops. Those numbers are
64 % and 63 %, respectively, for the 2/6 case.

5 Conclusion

In this paper, an area-efficient downscaler hardware architecture, called Output
Domain Downscaler (ODD) was presented. ODD was compared to Input Domain
Downscaler (IDD) architecture, which is the straight-forward approach used in
pretty much all downscaler hardware implementations. While ODD is applicable
to every downscale algorithm, we have implemented ODD for the downscale
algorithm in [5] to show its merits. Our only modification is the use of floating
point instead of fixed point in the interpolation stage. We have implemented the
same algorithm with IDD as well. We produced ODD and IDD designs from our
ODD and IDD Verilog RTL generators for two different cases of input/output
rates. We found that ODD uses roughly half the hardware resources of IDD in
one case and two thirds in the other case. Hence, we suggest ODD as a viable
architecture for a variety of downscale algorithms.

Open Access. This chapter is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, a link is provided to the Creative Commons license and any changes made
are indicated.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Output Domain Downscaler 269

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such mate-
rial is not included in the work’s Creative Commons license and the respective action
is not permitted by statutory regulation, users will need to obtain permission from the
license holder to duplicate, adapt or reproduce the material.

References

1. Caselles, V., Morel, J.M., Sbert, C.: An axiomatic approach to image interpolation.
IEEE Trans. Image Process. 7(3), 376–386 (1998)

2. Nuno-Maganda, M.A., Arias-Estrada, M.O.: Real-time FPGA-based architecture
for bicubic interpolation: an application for digital image scaling. In: International
Conference on Reconfigurable Computing and FPGAs (ReConFig 2005), Puebla
City, pp. 1–8 (2005)

3. Ni, K.S., Nguyen, T.Q.: Adaptable K-nearest neighbor for image interpolation. In:
IEEE International Conference on Acoustics, Speech and Signal Processing, Las
Vegas, pp. 1297–1300 (2008)

4. Jensen, K., Anastassiou, D.: Subpixel edge localization and the interpolation of still
images. IEEE Trans. Image Process. 4(3), 285–295 (1995)

5. Chen, S.L.: VLSI implementation of an adaptive edge-enhanced image scalar for
real-time multimedia applications. IEEE Trans. Circuits Syst. Video Technol. 23(9),
1510–1522 (2013)

6. Artemis JU Project ALMARVI Algorithms, Design Methods, and Many-
CoreExecution Platform for Low-Power Massive Data-Rate Video and Image-
Processing, GA 621439. http://www.almarvi.eu

http://www.almarvi.eu

	Output Domain Downscaler
	1 Introduction
	2 The Downscaling Algorithm
	3 Output Domain Downscaler
	4 Synthesis Results
	5 Conclusion
	References

