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Abstract. Automated Transit Networks (ATN) are innovative trans-
portation systems where fully driverless vehicles offer an exclusive onde-
mand transportation service. Within this context of ATN, this study
tries to deal with a specific routing problem arising in the context of
a ATN’s network with a multiple depot topology. More specifically, we
present an optimization routing model for automated transit networks
which can be used to strategically evaluate depots locations. Our model
extends the basic Multi-depot Vehicle Routing Problem (MDVRP). In
this paper, the proposed model is tackled using an heuristic approach as
the proposed problem is NP-Hard. Experiments are run on a carefully
generated instances based on the works from the literature. The numer-
ical results show that the proposed algorithm is competitive as it founds
a small gap relative to a lower bound values from the literature.

Keywords: Automated transit network · Multi-depot vehicle routing
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1 Introduction

Nowadays, public rapid transit systems provide an interesting way for reducing
the distinctive negative impact of transportation tools in urban areas. In fact,
public rapid transit systems help to improve the access of lower income groups
in societies to transportation tools as well as reducing the environmental impact
of urban mobilities. Public rapid transit systems consists of light rapid transit
(LRT), bus rapid transit (BRT), Automated Transit Networks (ATN), metro,
commuters rail and so on. Recently, several models has been put forward to
justify the operational, tactical and strategic implementation of rapid transit
systems. In this paper, we focus on the implementation of ATN. We extend
the operational model of Mrad and Hidri [10] which is used as a base of our
operational ATN model.

In the operational model of Mrad and Hidri [10], the optimized variables
are the energy consumption, the objective function is the minimization of total
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energy consumption of ATN. The ATN’network is assumed to have a single un-
capacitated depot [7]. We extend this model to account for a multiple depot
topology network. We introduce also a maximum allowable distance constraint
related to the electric battery capacity of the ATN vehicles. We study the effect
of these constraints on the operational level for the multiple depot topology
ATN’network. In spite of its relative complexity, the proposed operational model
could be solved heuristically based on approximate methods which could yields
some analytical insight on the structure of its optimal solutions. In particular,
we found that introducing multiple depots topology helps to reduce the total
service time for rapid transit users. Also, the proposed heuristic approach was
proven to found good quality solutions in a fast computational time.

The remainder of this paper is as follows: Sect. 2 presents the ATN system
and its related literature review which motivates our work. Section 3 presents the
optimization model. Our proposed heuristic approach is introduced in Sect. 4.
Section 5 provides numerical results analysis of our approach. Conclusions are
reported in Sect. 6.

2 The Automated Transit Networks

ATN (also called Personal Rapid Transit (PRT)) consists mainly on a set of small
automated driverless electrical vehicles running on a set of exclusive guideways.
ATN is implemented to provide an interesting mode of urban transportation
service which could address the need of urban mobility based on specific set-
tings. Table 1 provides an overview of the several needs related to urban mobility
and how could ATN satisfy them. In the literature, there is a general consen-
sus that the key characteristics of ATN includes [2]: (i) Fully automated vehi-
cles; (ii) Small and dedicated guideways; (iii) On-demand, origin-to-destination
service; (iv) Off-line stations; and (v) A network or system of fully connected
guideways.

Table 1. ATN main features

Need ATN feature

Provide faster service Non-stop, on-demand service

Reduce congestion Faster and personalized service to
attract private automobile users

Reduce pollution Electric vehicles

Reduce energy use Small vehicles

On-demand and Non-stop
transportation service to eliminate
empty vehicle movements
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2.1 Literature Review

ATN as a conceptual mode of public rapid transit systems has a history of over
60 years. Since, its first introduction in 1953 [2], it was studied by governments,
universities, research organization and so on. Literature of ATN includes several
books, scholar papers and technical reports. These studies proposed to treat sev-
eral features related to ATN such as technical and operational analysis, system
design, environmental impact, cost performance and so on.

A literature review published in 2005 [5] states that there is more than 200
research papers related to ATN. More recently, several operational and strategic
optimization studies related to ATN were published such as simulation [7], energy
minimization [10], total traveled distance [6,8], optimized operational planning
[4] and so on. However and from our literature review, many optimization routing
models related to ATN considered a single depot network topology [4,6,10].

Consequently, it becomes of a high interest to study optimization routing
problem related to ATN based on a multiple network topology. Therefore in the
next section, we extends the single depot based optimization model of Mrad and
Hidri [10] to propose a multiple depot optimization model which would aim at
reducing the total travel time of ATN vehicles while serving a set of known static
deterministic list of passengers travels.

3 The Optimization Model

In this section, we present the multiple depots ATN optimization model which
extends the works of Mrad and Hidri [10]. We first start by presenting the set of
assumptions related to our model. Then, we give a graph based model. Finally,
we present the complexity of our problem.

3.1 The Set of Assumptions

Let suppose that we have a ATN N with a finite number of stations M .
N satisfies connectivity constraints. Therefore, a ATN vehicle could travel
between any pairs of stations in N . We suppose that N has a set of depots
κ = {d1, d2, d3, ....dk} where k represents the number of depot in N . In each
depot, there exists an unlimited number of ATN vehicles. The exact number
of vehicles needed from each depot is considered as a decision variable. Each
vehicle has a limited battery capacity denoted B. We supposed to have a static
pre-deterministic list of trips to serve denoted T . |T | = n. Each trip i is identified
by a quadruplet:

(i) a depart time Dti,
(ii) a depart station Dsi
(iii) an arrival time Ati and
(iv) an arrival station Asi

Finally, let SP be a matrix cost which defines the shortest time travel path
between each pair of stations.
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3.2 Graph Based Formulation

Our problem has an objective to find a set of least cost roads starting and
ending at one of the depots in N which minimizes the total travel time of the
ATN vehicle while serving each trip exactly once. To model our problem, let us
define G = {V,E} where V is a set of nodes and E is a set of edges. Each trip i
is represented by a node in V . Also, each depot di is represented by two nodes
si and ti. Also, we have n trips and k depots. The cardinality of V is equal to
n + 2k. V ∗ = V \{s1, s2, ...sk, t1, t2, ..., tk}. As for the set of edge E, it will be
defined as following:

– For each pair of nodes i and j ∈ V ∗, we add an edge (i, j) to E if Ati +
SP(Asi, Dsj) ≤ Dtj . The edge has a cost cij , representing the total time needed
to move from arrival station Asi of trip i to depart station Dsj of trip j.

– For each node i and each depot k, we add an edge (k, i). This edge has a cost
cki which is equal to total traveled time to reach the depart station Dsi of
trip i, from the depot k.

– For each node i and each depot k, we add an edge (i, k). This edge has as a
cost the total travel time needed to move from the arrival station Asi of trip
i to the depot k.

Let us also denote E∗ = E{(i, j) where i ∈ κ or j ∈ κ}.

3.3 The Complexity of Our Problem

Starting from our graph modeling of the problem, we could note that it extends
the asymmetric distance constrained vehicle routing problem (ADCVRP) [1].
Our problem is asymmetric as the cost of edge (i, j) �= (j, i). The DCVRP is
a vehicle routing problem where each road is subject to total distance, time or
cost constraints. The ADCVRP is not well studied in the literature. In fact and
as Almoustafa et al. state [1], only two papers studied this problem [1]. The
work related to ADCVRP are based on a single depot topology. Therefore, our
proposed ATN problem could be considered as an extension to the ADCVRP
by adding multiple depots to its basic version. Thus, it represents an interesting
worth to study extension to the works in the literature. The ADCVRP is proven
to be an NP-Hard problem [8]. Consequently, our proposed extension to the
ADCVRP is an NP-Hard problem. In the next section, we present details of our
solution approach proposed to solve our problem.

4 Genetic Algorithm Approach

As mentioned earlier, the proposed multiple depot ATN routing problem is an
NP-Hard optimization problem which has its own difficulties to solve. Conse-
quently, this paper presents an heuristic approach based on the implementa-
tion of genetic algorithm (GA) to solve the proposed optimization problem. GA
presents a good solution approach for the proposed ATN problem as it could dis-
cover many different zones in the search space [4]. Consequently, it could reach



An Heuristic Approach for the Multiple Depot ATN Problem 7

Algorithm 1. Pseudo Code of Genetic Algorithm
1: Initialize-parameter()
2: while Not reach termination criterion do
3: for all Individual in the population do
4: parent1 ←− Select-at-random(pop)
5: parent2 ←− Select-at-random(pop)
6: offspring ←− One point Crossover(parent1, parent2)
7: offspring ←− Insertion mutation(offspring)
8: Evaluate(offspring)
9: if the offspring is better than the worst individual then

10: The offspring replace the worst individual in the population)
11: end if
12: end for
13: end while
14: individual ←− Best-individual(pop)

a good quality solution in a fast computational time. A high level overview of
our GA is presented in Algorithm1.

The choice of developing GA1 for this problem is motivated by the fact that
large number of studies adopted this solution approach to solve routing problems.
One could note for instance [9].

Similarly and starting from a population of individuals, a GA applies genetic
operators like crossover and mutation in each iteration in order to generate new
offsprings. Consequently, the key issue to successfully develop GA is to select
the appropriate genetic operators and solution representation.

In the next subsections, we focus more closely on the proposed GA. We first
describe the individual’representation and evaluation function. Then, we discuss
the implemented genetic operators and the parameters used therein.

4.1 Solution Representation and Evaluation Function

In our GA, a solution is represented using a vector of trips to perform. In this vec-
tor, each trip is represented by a single gene only once. Therefore, each solution
is in a form of a permutation of trips. As for the evaluation function, we adapt
the split function of Prins [11] to our context. More specifically and starting from
a permutation, the split function constructs an auxiliary graph where each node
represents a trip in addition to a node representing the different depots in the
ATN’network. Each edge in the auxiliary graph represents a feasible road based
in the permutation at hand. Next, the algorithm uses the shortest path in the
auxiliary graph to find the related set of roads. Thus, we obtain the set of roads
starting and ending at one of the depots in the network covering each trip only
once. More details could be found in [11].

1 Non expert readers can for instance refer to [12] for more details about GA.
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4.2 Crossover and Mutation Operators

After deciding the representation form of the individuals in the GA, two parents
are selected randomly according to Algorithm 1 in order to create new offsprings
using crossover operator. Our crossover operator applied in our algorithm is the
one point crossover. For the first parent, we choose randomly a cut point. The
trips that are present before the cut point in the first parent are copied to the
offspring. The missing trips in the resulted offspring are copied from the second
parent while following their order of appearance. More details could be found in
Fig. 1.

Fig. 1. Example of one point crossover

Also, mutation helps GAs to preserve diversification in the population. In
our algorithm, the mutation procedure is applied on the new generated offspring
after the crossover operator. In our approach, we use the insertion mutation
operator. This operator chooses at random one trip from the permutation and
insert it at a random position.

5 Computational Results

In this section, we present the computational results related to the proposed
GA. The algorithms proposed in this paper were coded in C++ language. The
experiments are performed on a PC with a 3.2 GHZ CPU and 8 GB of RAM.

5.1 Test Instances

To test our proposed approach, we generated 100 ATN multiple depot instances.
The size of the problem (i.e. the number of trips) in our testing bed varies
between 10 and 100 trips by a step of 10. For each number of trips, 10 instances
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were generated. To generate the different instances, the ATN’s instances gener-
ator from the literature of Mrad and Hidri [10] is adapted to our context. To
assert the quality of the obtained solutions we used the GAP metric. The GAP
is obtained as follows:

GAP =
(

(SOL − LB)
LB

)
× 100 (1)

We should note that SOL is the solution of LB represents the linear relax-
ation of the valid mathematical formulation presented in the literature [1]. The
mathematical models related to the linear relaxation were implemented using
the IBM ILOG CPLEX Optimizer 12.2.

5.2 Result of the Genetic Algorithm

As for the parameter tuning, we used a specific method from the literature
to effectively tune our proposed GA [3]. Based on this method, we found the
following parameters: (i) Number of generations:800, (ii) population size:20;
(iii) crossover rate:0.9 and (iv) mutation rate: 0.3. Table 2 presents the results
of our approach. It should be noted the good quality of our proposed GA as we
found an average GAP of 2.859 % in 0.231 s.

We should note also that the average GAP grows steadily. The maximum
GAP was equal to 6.435 % which is still represents good quality results. As for
the average time, our algorithm proved to be very effective as the average compu-
tational time was still below 1 s. These results comfort our choice in the selection
of a GA for solving our hard combinatorial optimization problem related to ATN.
These results are encouraging in term of problem solvability.

Table 2. The Obtained Results

Number of travels Average GAP % Average time in seconds

10 0 0.833

20 0.575 0.039

30 0.438 0.485

40 0.832 0.063

50 1.771 0.082

60 3.327 0.103

70 4.263 0.122

80 4.628 0.148

90 6.327 0.191

100 6.435 0.241

Average 2.859 0.231
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6 Conclusions

In this paper the Multi-Depot automated transit network problem is evoked and
modeled. A genetic algorithm is proposed and implemented to solve it. The pro-
posed algorithm integrates an effective genetic operators and evaluation function
for solving the combinatorial optimization problem. The algorithm constructs a
set of ATN’vehicles routes starting and ending at any of the proposed depots
with minimum routing costs. Computational experiments on a set of carefully
generated instances show that the proposed heuristic is very effective. As an
extension to this work, a more adapted meta-heuristic approach such as bee
colony algorithms, ant colony algorithm could be adapted to our context. Also
the inclusion of additional constraints such as mixed fleet with varying maximum
allowable distance and multi-compartment vehicles is under investigation.

Open Access. This chapter is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, a link is provided to the Creative Commons license and any changes made
are indicated.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such mate-
rial is not included in the work’s Creative Commons license and the respective action
is not permitted by statutory regulation, users will need to obtain permission from the
license holder to duplicate, adapt or reproduce the material.
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