
Towards User-Defined Cross-Device Interaction

Audrey Sanctorum(B) and Beat Signer

Web & Information Systems Engineering Lab,
Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

{asanctor,bsigner}@vub.ac.be

Abstract. Over the last decade we have seen various research on dis-
tributed user interfaces (DUIs). We provide an overview of existing DUI
approaches and classify the different solutions based on the granularity
of the distributed UI components, location constraints as well as their
support for the distribution of state. We propose an approach for user-
defined cross-device interaction where users can author their customised
user interfaces based on a hypermedia metamodel and the concept of
active components. Furthermore, we discuss the configuration and shar-
ing of customised distributed user interfaces by end users where the focus
is on an authoring rather than programming approach.

Keywords: Cross-device interaction · DUIs · End-user development

1 Classification of Distributed User Interfaces

Over the last few decades, distributed user interfaces (DUIs) have gained a lot
of attention [23]. Various terms have been introduced in order to differenti-
ate between different DUI systems, ranging from multi-device and multi-display
interaction to interactive spaces and cross-device interaction. Multi-device appli-
cations started to emerge already in the late twentieth century when, for exam-
ple, Robertson et al. [26] presented a system that allowed users to interact with
a TV by using a personal digital assistant (PDA) and a stylus. A limitation of
this early system was that the information flow was only possible in one direction
from the PDA to the TV, which prevented a user from capturing information
from the TV to their PDA. Only a year later, Rekimoto [25] introduced the
pick-and-drop technique which allowed users to exchange information in any
direction by picking up an object on one computer screen and dropping it on
another screen by using a digitiser stylus. Since then, research in cross-device
interaction has gone a long way and different techniques, interaction possibilities,
frameworks and applications have been developed [10]. In order to pass infor-
mation across devices, Frosini et al. [12] make use of QR codes. The Deep Shot
system [7] supports information sharing between a smartphone and a computer
screen via the smartphone’s camera. While Deep Shot uses a feature match-
ing algorithm, in the Conductor system Hamilton and Wigdor [13] proposed
another solution which enables the distribution of information across different

c© Springer International Publishing AG 2016
S. Casteleyn et al. (Eds.): ICWE 2016 Workshops, LNCS 9881, pp. 179–187, 2016.
DOI: 10.1007/978-3-319-46963-8 17



180 A. Sanctorum and B. Signer

tablets via broadcasting. An alternative way for cross-device communication has
been presented by Rädle et al. [24] with the HuddleLamp system which uses a
lamp with an integrated camera to track hand movements and the position of
any mobile device that has been placed on the table the lamp is standing on.
While HuddleLamp covers a limited area, other systems allow for interactions
across a room [5,11,16,18,31], a network environment [6,7,13–15,21,32] or have
no space limitations and can be used anywhere [2–4,8,12,17,20,27].

Apart from the ‘space’ dimension, other criteria can be used to highlight
the differences between existing DUI solutions. For example, the granularity
of the distributed components is another interesting criteria. Some systems,
such as the ARIS system [5] where application windows can be moved across
devices, only support the distribution of applications as a whole. Other solu-
tions offer a specific set of components that can be distributed. For example,
MultiMasher [15] supports the distribution of arbitrary elements from any web-
site while Melchior et al. [20] support the distribution of application widgets and
arbitrary pixels on a screen. This also offers the possibility to transfer the state
of an application across devices and to have synchronous views of the shared
data. The distribution of user interfaces and user interface components is often
performed via a message passing mechanisms [1,3,4,13,16,18,21,27]. Moreover,
certain systems developed their own software infrastructure for the sharing of
information across devices as seen with BEACH in the i-LAND [31] project.

Distributed user interfaces are often built following a client-server architec-
ture, where the server plays a central role in keeping each user interface on the
different devices up to date [6,7,13–15,21,32]. However, this approach limits the
interaction space of the connected devices since all devices need to be connected
to the server. A solution to overcome this limitation is the use of peer-to-peer
networks without a need for a central server [3,4,20].

While Demeure et al. [9] proposed a reference framework to differentiate
existing DUI approaches based on the four dimensions of computation, commu-
nication, coordination and configuration, in Fig. 1 we provide our classification
of the discussed approaches based on their constraints in terms of location and
the supported granularity for distributed UI components. On the x-axis we go
from local solutions on the left to solutions without any space limitation on
the right. On the y-axis we differentiate between systems where the entire UI
and data can be shared to approaches that support the sharing of UI elements
at a finer granularity. Note that we further highlight systems that support the
distribution of state by labelling them in a bold blue font.

Some of the previously described systems focus on the portability, others
centre around the collaborative aspect and a third group focusses on making it
easier for designers and developers to create DUI applications. However, almost
none of them deals with making the frameworks or applications available to end
users without programming skills. Certain systems like Weave provide “easy-
to-use” scripting languages to build DUIs or to ease the distribution across
different devices. WebSplitter [14] provides users with an XML file which con-
tains the distribution of the UI elements across devices. Going a step further,



Towards User-Defined Cross-Device Interaction 181

Fig. 1. Classification of DUIs based on location constraints (x-axis) and the supported
granularity of distribution (y-axis) (Color figure online)

XDStudio [21] provides a web-based authoring environment for designers who
have only basic web development experience. Finally, Husmann et al. [15] pre-
sented MultiMasher, a tool for technical as well as non-technical users. Multi-
Masher is limited to the distribution of website components and users cannot
distribute their applications and data. These systems make a step into the right
direction but often still represent “closed solutions” where it is up to the devel-
oper or designer to define how exactly an end user can interact across devices.

2 Proposed Approach

In order to overcome some of the shortcomings of existing distributed user inter-
face approaches described in the previous section, we aim at empowering end
users to create, modify and reconfigure DUIs. This allows end users to combine
multiple interfaces and build their own customised distributed user interfaces in
order to better support their daily activities. A first question that arises in this
context is how to concretely enable end users to define their customised inter-
actions across electronic devices dealing with digital information and services.
Further questions are: “What will end users be able to modify?”, “How much
control will end users have in terms of the granularity of the UI components to
be distributed?”, “Will end users be limited by a specific location, space or office
setting?”, “Will end users be able to share their configuration of customised
UIs?” and “Can end users reuse parts of other configurations?”.

In order to allow end users to customise existing user interfaces as well as to
define their own new distributed interfaces, there is a need for end-user author-
ing tools that enable the specification of cross-device interactions. Note that



182 A. Sanctorum and B. Signer

the authoring should not rely on a single method but offer different possibilities
for unifying the different devices forming part of the interaction. We plan to
develop a framework which enables the rapid prototyping of innovative DUIs
by developers but also allow end users to customise existing interfaces or define
their own new distributed user interfaces via a dedicated end-user authoring
tool. However, we would also like to investigate new forms of authoring which go
beyond the graphical definition and composition of DUI interactions based on
programming-by-example. In order to develop such a rapid prototyping frame-
work, we are currently investigating a model and the necessary abstractions
for the end-user definition of cross-device interactions. Thereby, we aim for a
solution where digital interface components, tangible UI elements as well as the
triggered application services are treated as modular components. Any program-
ming efforts for new cross-device user interfaces should further be minimised by
turning the development into an authoring rather than a programming activity.

A number of authors presented models for cross-device interactions. For
example, Nebeling et al. [22] introduced a model including the user, device, data,
private session and session concepts that are used in their platform. Another plat-
form model which is more centered around the concrete distribution of UIs has
been introduced by Melchior [19]. In their case, a platform has the three main
component categories of connection, hardware and audio/video. Existing models
are often designed for a specific platform or system introduced by the authors,
focus on the distribution across devices and lack concepts such as the re-usability
of UI components, the different classes of users as well as the sharing of DUI
configurations between users. We are currently developing a more user-centric
cross-device interaction model addressing some of these issues.

A promising approach that we are currently investigating for modelling
loosely coupled interaction between user interface components and various forms
of actions is presented in the work of Signer and Norrie [28]. They proposed a
resource-selector-link (RSL) hypermedia metamodel which enables the linking
of arbitrary digital and physical entities via a resource plug-in mechanism. In
our context, resources can be seen as different user interface components which
can be linked together. Since often we do not want to link an entire resource
but only specific parts of a resource, such as parts of a UI in order to control
the granularity of the distributed user interface components as discussed in the
previous section. The concept of a selector allows us to address parts of a specific
resource. A detailed description of the RSL hypermedia metamodel can be found
in [28]. An important RSL concept for realising our goal of DUI state transfer
and the execution of third-party application logic is the concept of so-called
active components [29,30]. An active component is a special type of resource
representing a piece of program code that gets executed once a link to an active
component is followed. This has the advantage that one can trigger some appli-
cation logic by simply linking the UI, or parts of the UI represented by resources
and selectors, to an active component. More importantly, an active component
does not have to implement the application logic itself but can also act as a
proxy for functionality offered by any third-party application. We foresee that



Towards User-Defined Cross-Device Interaction 183

the concept of active components can enable the rapid prototyping of cross-
device applications by simply defining links between the necessary components.
We further plan to address a number of other issues such as how to clearly sep-
arate the cross-device interactions from the underlying shared data and applica-
tion state, different forms of lightweight data exchange between devices as well
as the possibility for configuring interactions in an ad-hoc manner.

In addition to our model for cross-device interaction, we are currently design-
ing an architecture and implementation of a framework which provides the nec-
essary functionality to communicate between different user interface components
and the corresponding application services. In order to facilitate replication and
to enable the synchronisation of UIs and UI components on different devices,
a distributed model-view-controller (dMVC) pattern, which has proven to be
efficient by Bardam et al. [3,4], might be used. Another possibility is to follow
the replication-based model of Biehl et al. [6] which captures the application
window’s pixel data and reproduces it on other devices. On the implementa-
tion level, we plan to use an event-based system and a publish/subscribe mes-
sage passing mechanism as used by other systems [1,3,4,7,8,13,16,18,21,27].
Since we aim for a portable solution that can be used at any location without
prior installation, such as some of the systems discussed earlier in the previous
section [2,8,12,17,20,27], we consider using JavaScript to support the distribu-
tion across devices as seen in other DUI systems [7,8,15,21,24,27].

While we plan to base our cross-device interaction model on some of the
concepts introduced in the RSL metamodel, we also intend to develop a frame-
work providing the necessary functionality to communicate between different
user interface components as well as a mechanism to discover and manage exist-
ing user interface components (e.g. resource/selector plug-ins and active compo-
nents). The latter is encapsulated in the Developer Registry component shown
in the general architecture overview of our envisioned framework in Fig. 2. The
Active Components sub-component stores all active components that have been
implemented by developers while the Resource/Selector Plug-ins sub-component
stores all the resource and selector plug-ins. In addition, it is essential to have
a user interface registration and discovery service where end users can upload
their newly composed interfaces to share them with other users. This function-
ality is encapsulated in the End User Registry component. The registry service
is used to keep track of the different UI components in a given setting by means
of user profiles. If a user created some new cross-device interactions between
different UI components, they might be interested to make their new DUI con-
figuration available to other users in a similar way as developers do this in the
first place. For this purpose, users can post their own cross-device configurations
to the Configuration Pool. This has the advantage that the interactions can be
adapted and modified by different users over time which might be seen as an
evolutionary development of the corresponding interactions. While in most cases
users will adapt existing solutions based on their individual preferences, it can
of course also be interesting to see whether some general interaction patterns
evolve over time.



184 A. Sanctorum and B. Signer

Fig. 2. Architecture for user-defined cross-device interactions

We foresee a synergy between interactions that have been predefined by a
developer and are used as is, the ones that are slightly adapted by end users,
as well as newly defined interactions by end users. Note that we do not plan
to delegate all the interaction definitions to the end user. End users might still
mainly rely on predefined interactions but will have the possibility to adapt
them or add new cross-device interactions if necessary. By providing the end
user the freedom to adapt the interactions, we address the issue that individual
users might have slightly different requirements for certain tasks which makes it
impossible to design interactions which perfectly suit everybody. Furthermore,
the acceptance of specific user interfaces might be increased if end users have
the chance to better integrate them with their existing work practices.

A last point that we want to address, which is related to the idea that users
can share their interaction components, is how to control the granularity of the
shared components. Based on the model that we plan to develop, a user could
only share simple user interface components which trigger a single action via
an active component. However, a user might often want to share more complex
interactions involving multiple devices which can trigger different actions. We
will therefore investigate how our model has to be extended in order to group
multiple components together and share them as a package. Since the RSL meta-
model offers the concept of structural links which can be used to group multiple
entities, we plan to initially address this issue by analysing whether and how
structural links could be used for defining more complex cross-device interac-
tions by grouping multiple components.



Towards User-Defined Cross-Device Interaction 185

3 Conclusion

We have proposed an approach for user-defined cross-device interaction based on
a hypermedia metamodel where UI components can be linked to different appli-
cation logic at any level of granularity based on the concept of active components.
We have further introduced an architecture for the sharing of user-defined user
interface components and discussed the authoring of these UIs.

Acknowledgements. The research of Audrey Sanctorum is funded by a PhD grant
of the Research Foundation Flanders (FWO).

References

1. Bader, T., Heck, A., Beyerer, J.: Lift-and-drop: crossing boundaries in a multi-
display environment by airlift. In: Proceedings of AVI 2010, Roma, Italy, May
2010

2. Balme, L., Demeure, A., Barralon, N., Calvary, G.: CAMELEON-RT: a software
architecture reference model for distributed, migratable, and plastic user interfaces.
In: Markopoulos, P., Eggen, B., Aarts, E., Crowley, J.L. (eds.) EUSAI 2004. LNCS,
vol. 3295, pp. 291–302. Springer, Heidelberg (2004)

3. Bardram, J., Gueddana, S., Houben, S., Nielsen, S.: ReticularSpaces: activity-based
computing support for physically distributed and collaborative smart spaces. In:
Proceedings of CHI 2012, Austin, USA, May 2012

4. Bardram, J., Houben, S., Nielsen, S., Gueddana, S.: The design and architecture of
reticularspaces: an activity-based computing framework for distributed and collab-
orative smartspaces. In: Proceedings of EICS 2012, Copenhagen, Denmark, June
2012

5. Biehl, J.T., Bailey, B.P.: ARIS: an interface for application relocation in an inter-
active space. In: Proceedings of GI 2004, London, Canada, May 2004

6. Biehl, J.T., Baker, W.T., Bailey, B.P., Tan, D.S., Inkpen, K.M., Czerwinski, M.:
IMPROMPTU: a new interaction framework for supporting collaboration in mul-
tiple display environments and its field evaluation for co-located software develop-
ment. In: Proceedings of CHI 2008, Florence, Italy, April 2008

7. Chang, T., Li, Y.: Deep shot: a framework for migrating tasks across devices using
mobile phone cameras. In: Proceedings of CHI 2011, Vancouver, Canada, May 2011

8. Chi, P.P., Li, Y.: Weave: scripting cross-device wearable interaction. In: Proceed-
ings of CHI 2015, Seoul, Republic of Korea, April 2015

9. Demeure, A., Sottet, J., Calvary, G., Coutaz, J., Ganneau, V., Vanderdonckt, J.:
The 4C reference model for distributed user interfaces. In: Proceedings of ICAS
2008, Gosier, Guadeloupe, March 2008

10. Elmqvist, N.: Distributed user interfaces: state of the art. In: Distributed User
Interfaces: Designing Interfaces for the Distributed Ecosystem. Human-Computer
Interaction Series (2011)

11. Everitt, K., Shen, C., Ryall, K., Forlines, C.: MultiSpace: enabling electronic doc-
ument micro-mobility in table-centric, multi-device environments. In: Proceedings
of Tabletop 2006, Adelaide, Australia, January 2006

12. Frosini, L., Manca, M., Paternò, F.: A framework for the development of distributed
interactive applications. In: Proceedings of EICS 2013, London, UK, June 2013



186 A. Sanctorum and B. Signer

13. Hamilton, P., Wigdor, D.J.: Conductor: enabling and understanding cross-device
interaction. In: Proceedings of CHI 2014, Toronto, Canada, April 2014

14. Han, R., Perret, V., Naghshineh, M.: WebSplitter: a unified XML framework
for multi-device collaborative web browsing. In: Proceedings of CSCW 2000,
Philadelphia, USA, December 2000

15. Husmann, M., Nebeling, M., Pongelli, S., Norrie, M.C.: MultiMasher: providing
architectural support and visual tools for multi-device mashups. In: Benatallah,
B., Bestavros, A., Manolopoulos, Y., Vakali, A., Zhang, Y. (eds.) WISE 2014,
Part II. LNCS, vol. 8787, pp. 199–214. Springer, Heidelberg (2014)

16. Johanson, B., Fox, A., Winograd, T.: The interactive workspaces project: expe-
riences with ubiquitous computing rooms. IEEE Pervasive Comput. 1(2), 67–74
(2002)

17. Leigh, S., Schoessler, P., Heibeck, F., Maes, P., Ishii, H.: THAW: tangible inter-
action with see-through augmentation for smartphones on computer screens. In:
Proceedings of TEI 2015, Stanford, CA, USA, January 2015

18. Marquardt, N., Hinckley, K., Greenberg, S.: Cross-device interaction via micro-
mobility and F-formations. In: Proceedings of UIST 2012, Cambridge, USA,
October 2012

19. Melchior, J.: Distributed user interfaces in space and time. In: Proceedings of EICS
2011, Pisa, Italy, June 2011

20. Melchior, J., Grolaux, D., Vanderdonckt, J., Roy, P.V.: A toolkit for peer-to-peer
distributed user interfaces: concepts, implementation, and applications. In: Pro-
ceedings of EICS 2009, Pittsburgh, USA, July 2009

21. Nebeling, M., Mintsi, T., Husmann, M., Norrie, M.C.: Interactive development of
cross-device user interfaces. In: Proceedings of CHI 2014, Toronto, Canada, April
2014

22. Nebeling, M., Zimmerli, C., Husmann, M., Simmen, D.E., Norrie, M.C.: Informa-
tion concepts for cross-device applications. In: Proceedings of DUI 2013, London,
UK, June 2013

23. Paternò, F., Santoro, C.: A logical framework for multi-device user interfaces. In:
Proceedings of EICS 2012, Copenhagen, Denmark, June 2012

24. Rädle, R., Jetter, H., Marquardt, N., Reiterer, H., Rogers, Y.: HuddleLamp:
spatially-aware mobile displays for ad-hoc around-the-table collaboration. In: Pro-
ceedings of ITS 2014, Dresden, Germany, November 2014

25. Rekimoto, J.: Pick-and-drop: a direct manipulation technique for multiple com-
puter environments. In: Proceedings of UIST 1997, Banff, Canada, October 1997

26. Robertson, S.P., Wharton, C., Ashworth, C., Franzke, M.: Dual device user
interface design: PDAs and interactive television. In: Proceedings of CHI 1996,
Vancouver, Canada, April 1996

27. Schreiner, M., Rädle, R., Jetter, H., Reiterer, H.: Connichiwa: a framework for
cross-device web applications. In: Proceedings of CHI 2015, Seoul, Republic of
Korea, April 2015

28. Signer, B., Norrie, M.C.: As we may link: a general metamodel for hypermedia
systems. In: Proceedings of ER 2007, Auckland, New Zealand, November 2007

29. Signer, B., Norrie, M.C.: A framework for developing pervasive cross-media appli-
cations based on physical hypermedia and active components. In: Proceedings of
ICPCA 2008, Alexandria, Egypt, October 2008



Towards User-Defined Cross-Device Interaction 187

30. Signer, B., Norrie, M.C.: Active components as a method for coupling data and
services – a database-driven application development process. In: Norrie, M.C.,
Grossniklaus, M. (eds.) Object Databases. LNCS, vol. 5936, pp. 59–76. Springer,
Heidelberg (2010)

31. Streitz, N.A., Geißler, J., Holmer, T., Konomi, S., Müller-Tomfelde, C.,
Reischl, W., Rexroth, P., Seitz, P., Steinmetz, R.: i-LAND: an interactive landscape
for creativity and innovation. In: Proceedings of the CHI 1999, Pittsburgh, USA,
May 1999

32. Yang, J., Wigdor, D.: Panelrama: enabling easy specification of cross-device web
applications. In: Proceedings of CHI 2014, Toronto, Canada, April 2014


	Towards User-Defined Cross-Device Interaction
	1 Classification of Distributed User Interfaces
	2 Proposed Approach
	3 Conclusion
	References


