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Abstract. We present a novel framework for retrospective dynamic 3D
volume reconstruction from a multi-slice MRI acquisition using manifold
alignment. K-space data are continuously acquired under free breathing using
a radial golden-angle trajectory in a slice-by-slice manner. Non-overlapping
consecutive profiles that were acquired within a short time window are grouped
together. All grouped profiles from all slices are then simultaneously
embedded using manifold alignment into a common manifold space (MS), in
which profiles that were acquired at similar respiratory states are close
together. Subsequently, a 3D volume can be reconstructed at each of the
grouped profile MS positions by combining profiles that are close in the MS.
This enables the original multi-slice dataset to be used to reconstruct a
dynamic 3D sequence based on the respiratory state correspondences estab‐
lished in the MS. Our method was evaluated on both synthetic and in vivo
datasets. For the synthetic datasets, the reconstructed dynamic sequence
achieved a normalised cross correlation of 0.98 and peak signal to noise ratio
of 26.64 dB compared with the ground truth. For the in vivo datasets, based on
sharpness measurements and visual comparison, our method performed better
than reconstruction using an adapted central k-space gating method.
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1 Introduction

Dynamic magnetic resonance imaging (MRI) involves imaging a region of interest
ideally with high temporal resolution, and is useful in many applications in which
knowledge of motion (e.g. respiratory motion) is of interest. However, the acquisition
speed of MRI is not sufficiently fast to permit enough data to be acquired quickly enough
to reconstruct fully sampled images with high temporal resolution, especially for 3D
imaging. This problem can be tackled by using under-sampled reconstruction schemes
such as compressed sensing (CS) [1], but such techniques typically involve a complex
optimisation which can be time-consuming for large amounts of dynamic MRI data.
Another approach is to use a gating technique, which involves the retrospective combi‐
nation of imaging data that were acquired at different times but similar motion states.
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The term ‘self-gating’ refers to performing this gating using the acquired data itself. A
common self-gating approach for radial acquisitions is to use the magnitude of the centre
of k-space which is acquired in every radial profile as the self-gating signal [2]. A key
weakness of this approach is the simplicity of the gating signal – gating using a scalar
value necessarily causes complex intra- and inter-cycle variations in respiratory motion
to be averaged out.

Alternative self-gating methods that are based on manifold learning (ML) have
been reported [3–7]. The intuition behind such methods is that respiratory motion is
pseudo-repetitive in nature, and can therefore be represented by a small number of
motion variables. Usman et al. [7] applied Laplacian Eigenmaps to estimate respira‐
tory motion from the central intersection region of a number of consecutive profiles
using a radial golden-angle acquisition (RGA) [8]. Similarly, Bhatia et al. [5] used
Laplacian Eigenmaps to estimate cardiac motion from repetitively sampled central
k-space lines using a Cartesian acquisition. However, both methods estimated only
1D signals (i.e. scalar values over time) for self-gating and also only worked for 2D
images. It would be nontrivial to extend these approaches to reconstruction of 3D
volume. In [3, 4], Baumgartner et al. proposed a method for MRI self-gating using
manifold alignment (MA) of 2D reconstructed image slices acquired at different
anatomical positions. However, [3, 4] are image-based self-gating methods that
assumed there was no motion within each of the fully sampled 2D image acquisi‐
tions (~ 300 ms per image), which may not be true for fast motion. The use of images
for self-gating also limits the achievable temporal resolution to the time taken to
acquire enough data to reconstruct the entire image.

In this paper, we propose to retrospectively reconstruct 3D dynamic volume
sequences from k-space data acquired using a multiple 2D slice (M2D) acquisition. The
proposed framework provides a number of advantages over other methods in the liter‐
ature: (1) In contrast to the central k-space gating (CKG) method, instead of using a 1D
gating signal, the proposed method allows the use of a larger k-space region to estimate
a multi-dimensional gating signal to better capture intra-cycle and inter-cycle motion
variations. (2) Different from [3, 4], we perform MA directly on k-space profiles rather
than reconstructed images. This enables our technique to achieve higher temporal reso‐
lution. (3) Compared to the 2D ML methods in [5, 7], our method works for recon‐
struction of 3D dynamic volumes. To the authors’ knowledge, no work has been reported
in the literature for reconstructing high temporal resolution dynamic 3D MRI sequences
based on k-space data from a M2D acquisition.

2 Methodology

As illustrated in Fig. 1, the proposed framework consists of k-space data acquisition,
manifold alignment and image reconstruction, which are described in the following
subsections.
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Fig. 1. Overview of the proposed framework.

2.1 K-Space Data Acquisition and Pre-processing

Data acquisition is performed under free breathing using a RGA trajectory (Fig. 1(a)),
in which the angle between each two consecutive profiles is 111.25°. This enables a
uniform coverage of k-space with high temporal incoherence for any arbitrary number
of consecutive profiles.

M profiles are acquired at each slice position, followed by M profiles at the next slice
position, and so on (see Fig. 1(a)). We denote the k-space data for each slice by
Xn =

[
xn,1,… , xn,M

]
 (n ∈ {1, 2,… , N} is the slice number), where the columns xn,m are

k-space profiles. As reported in [7], using a larger central k-space region rather than the
single sample of the k-space centre can produce more reliable estimation of respiratory
motion. Therefore, since it takes only about 3 ms to acquire a single profile, we combine
P consecutive profiles (Fig. 1(b)), and assume that no significant motion within this short
time period occurred. Combination of profiles in this way enables a larger k-space central
region to be used for respiratory self-gating. Since the radial profiles are sampled at non-
uniform k-space positions, the convolutional gridding method [9] is applied to re-sample
the non-uniform data to a Cartesian grid. Finally, the central S × S k-space region is used
for the subsequent MA (see Sect. 2.2). After the profile combination and central region
extraction, the original k-space data Xn are re-organised as An =

[
an,1,… , an,L

]
. L is the

quotient of M/P, and the remaining profiles after the L × Pth profile are not used. The
columns an,l are the vector representations of the S × S central k-space region. To reduce
sensitivity to noise, we applied a 1D Gaussian smoothness filter (σ = 15 ms) along the
temporal direction for each element in an,l.
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2.2 Manifold Alignment

The k-space dataset A1,… , AN, now consists of N groups, each of which represents a
different slice, where each group contains L vectors with S2 elements each. The MA
method is used to simultaneously reduce the dimensionality (ℝS×S) of each group and
align all groups of profiles into a common MS (with dimensionality d < S × S), in which
profiles acquired at similar respiratory states are close together (Fig. 1(c)). The dimen‐
sionality reduction and alignment of the groups is performed using the MA scheme
proposed in [3]. Therefore, we briefly review this technique here. The MA scheme esti‐
mates the low dimensional embeddings Yn =

[
y
(n)

1 ,… , y
(n)

L

]
 of the input high dimensional

data by minimising a joint cost function:

∅total

(
Y1 …YN

)
=
∑N

n=1 𝜑n

(
Yn

)
+

𝜇

2
∑N

n = 1, m = 1,
m ≠ n

∑L

l,j U
(nm)

lj
||y(n)

l
− y

(m)

j
||2

(1)

The first term 𝜑n is the locally linear embedding (LLE) cost function [10], which
represents the intra-group embedding errors. LLE forms the low-dimensional MS by
preserving locally linear relations derived from the original high-dimensional data An.
These relations at the lth high dimensional data vector are represented by a weighted
(W (n)

lj
) linear combination of its KLLE nearest neighbours with indices j ( j ∈ 𝜂(l)), i.e.

𝜑n

(
Yn

)
=
∑

l
||yl −

∑
j∈𝜂(l)

W
(n)

lj
yj||2 = Tr(YMYT) (2)

Tr(∙) is the trace operator, and the centred reconstruction weight matrix M is calcu‐
lated as M = (I − W)T(I − W). Note that W (n)

lj
 are computed from the high dimensional

data An.
The second term in Eq. (1) represents the inter-group cost function. yl

(n) represents
the MS coordinates of vector an,l. μ is a weighting parameter that balances the intra-

group and inter-group terms. U(nm) is an inter-group similarity kernel derived from intra-
group comparisons of the high-dimensional data A1,… , AN. This is achieved by deriving
a feature descriptor for each vector an,l using the concept of random walks from graph
theory. This feature descriptor allows the relationships between vectors from the same
group to be preserved and uniquely represented, which permits the inter-group similarity
to be robustly measured without inter-group comparisons of the original high-dimen‐
sional data. For us, the groups represent k-space data acquired from different slices,
which are not directly comparable since they encode the frequency properties of different
anatomical regions. For more details of the MA process please refer to [3].

2.3 3D Dynamic Sequence Reconstruction

As illustrated in Fig. 1(c), after the MA process, all of the combined profiles (CPs) from
different slice positions are embedded into a common MS. (The CPs refer to the
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combined consecutive profiles as described in Sect. 2.1.) The CPs that were acquired at
similar respiratory states should be close together in the MS, even though they belong
to different slice positions. Image reconstruction is subsequently performed by grouping
the G CPs for each slice that have the closest Euclidean distances (in MS) to the current
CPs (Fig. 1(d)). G is determined by the total number of profiles (T) which is required
for reconstruction of each slice, divided by P (the number of combined profiles). Since
a RGA acquisition is used, this ensures the selected profiles are approximately evenly
distributed in k-space. Using a multi-slice reconstruction, a 3D volume can be recon‐
structed at each of the L respiratory states for each of the N slice positions. This enables
the original multi-slice dataset to be used to reconstruct a dynamic 3D sequence. For the
reconstruction, the non-uniform Fast Fourier Transform [9] is applied to reconstruct the
final image from the selected radial k-space profiles.

3 Experiments and Results

The proposed method was evaluated on both synthetic and in vivo datasets. The synthetic
datasets were used to establish a ground truth for quantitative evaluation. We also
demonstrated the practical feasibility of our technique using 3D in vivo datasets, and the
results were compared with an adapted CKG method.

3.1 Materials

Synthetic Dataset Generation: To mimic the M2D acquisition, we generated high
temporal resolution 3D synthetic datasets, based on image registration of a respiratory
gated high resolution (RGHR) 3D MRI volume to a dynamic 3D low-resolution (DLR)
MRI sequence. The RGHR volume had 120 sagittal slices and was acquired at the end-
exhale position, with TR = 4.4 ms, TE = 2.2 ms, flip angle = 90°, and acquired voxel
size 2.19 × 2.19 × 2.74 mm3 with matrix size 160 × 120. The DLR sequences comprised
35 dynamics acquired under free-breathing using cardiac gating at late diastole. 20 slices
were acquired for each volume using 3D TFEPI with TR = 10 ms, TE = 4.9 ms, flip
angle 20°, acquired voxel size 2.7 × 3.6 × 8.0 mm3, acquired matrix size 128 × 77, TFE
factor 26, EPI factor 13, TFE acquisition time 267.9 ms. The region-of-interest focused
on the right lung and liver region. In order to generate a large amount of realistic synthetic
high spatial/temporal resolution volumes, the following steps were followed.

(a) The RGHR volume was deformed to align with the corresponding end-exhale DLR
volume using B-spline deformable image registration [11].

(b) The end-exhale DLR volume was registered with all other DLR volumes.
(c) The DLR volumes were grouped into three different respiratory groups (inhale,

exhale and mid-inhale), according to their head-foot diaphragm positions in the
central slice. We then randomly selected one volume from each of the inhale and
exhale groups, and two volumes from the mid-inhale group. Extra volumes were
interpolated between these four volumes using B-spline registrations over a
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complete breathing cycle. In our experiments, 60 such breathing cycles were gener‐
ated. Each breathing cycle lasted approximately 5 s and the interpolated volumes
had a temporal resolution of ~ 3.2 ms.

(d) The RGHR volume was warped to each of the DLR positions based on the corre‐
sponding registration results, resulting in about 90000 high spatial/temporal reso‐
lution dynamics containing realistic intra-cycle and inter-cycle variations.

(e) One k-space profile was extracted from each of the synthetic volumes at the corre‐
sponding slice position. Approximately 9000 profiles were extracted for each slice
before moving to the next slice position. We generated 6 (1 for parameter optimi‐
sation and 5 for validation) such highly realistic synthetic sequences to validate our
method against known gold-standard volumes.

In vivo Dataset Acquisition: A M2D acquisition with RGA trajectory was employed
for data acquisition in the liver and lung region of five healthy volunteers. For each
volunteer, M = 9000 profiles were acquired using the RGA trajectory in sagittal view
at each slice position before moving to the next slice. Data with 8 slices were acquired
on a Philips 1.5T scanner using a 28 channel-coil. The settings were TR = 3.2 ms,
TE = 1.58 ms, flip angle = 70°, and acquired voxel size 2.0 × 2.0 × 8.0 mm3 with
acquired matrix size of 160 × 160 for 8 slices. For each volunteer, a total of 72000 radial
profiles were acquired under free-breathing in approximately 4 min.

3.2 Results

All free parameters were tuned using a parameter sweep based on a single synthetic
dataset (which was not used for validation) and consistently applied to the remaining
synthetic and in vivo datasets. The parameters were set as S = 9, P = 20, μ = 10−5, d = 3
and T = 200 for the following experiments.

Synthetic Dataset: The manifold embedding for one of the synthetic datasets is shown
in Fig. 2 (left). The colours represent the normalised head-foot diaphragm position of
the ground truth. Similar coloured points grouping together indicates a good manifold
alignment. The larger distances between the red points in the MS are due to larger respi‐
ratory variations in the end inhale positions. The reconstructed image quality was quan‐
titatively measured for all 5 datasets based on normalised cross correlation (NCC) and
peak signal-to-noise ratio (PSNR), against the ground truth. Example ground truth and

Fig. 2. Manifold embeddings for a synthetic dataset (left) and an in vivo dataset (right).
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corresponding reconstructed images of 3 different sagittal slices, and coronal views at
4 different respiratory positions are shown in Fig. 3. The mean and standard deviation
of NCC and PSNR values for all corresponding volumes of 5 synthetic datasets were
0.9801 ± 0.0057 and 26.64 ± 0.88 dB respectively.

Fig. 3. Reconstructed volumes using MA and the corresponding ground truth of a synthetic
dataset.

In vivo Dataset: Due to the lack of ground truth and comparative techniques for the
in vivo datasets, we adapted the CKG method (ACKG) for comparison. The central k-
space magnitudes of each slice were normalised to the range of 0 to 1. Correspondences

Fig. 4. Examples of reconstructed images using adapted CKG (top row) and the proposed MA
method (bottom row) at different slice positions and different respiratory positions. (Color figure
online)
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across slices were then established by searching the same value of the normalised k-
space magnitudes. To reconstruct a gated 3D volume for a specific profile, a gating
window (0.05) was set around the current profile magnitude for each slice. Any profiles
(Tall) with a magnitude within the gating window represent similar respiratory positions,
and only the T temporally closest profiles were selected for image reconstruction. If
Tall < T, the gating window was iteratively increased by 0.005 until Tall ≥ T. Subse‐
quently, the reconstructed slices were stacked into a volume.

The manifold embeddings for one of the in vivo datasets is shown in Fig. 2 (right).
The colours represent the normalised k-space magnitude. A sharpness measurement was
used as a quantitative measure of image quality. Sharpness was measured by the average
of the image gradient magnitude in the liver and liver-lung boundary. Over all five in vivo
datasets, the mean and standard deviation of the sharpness measure for our method was
0.0587 ± 0.0069. This was statistically significantly (p < 0.01) higher than the ACKG
method (0.0559 ± 0.0071), based on two-sided Wilcoxon signed rank test of the paired
datasets. Figure 4 shows examples of the reconstructed images using the ACKG method
and our method, at different sagittal slice positions, and coronal views at 4 respiratory
positions. Sharper organ details (red boxes) and more accurate slice alignment (red
arrows) can be observed using our method.

4 Conclusion and Discussion

We have presented a novel framework that is able to reconstruct high temporal resolution
dynamic 3D MRI sequences using manifold alignment of k-space data from M2D
acquisitions. Based on synthetic datasets, our method achieved high NCC and PSNR
measurements compared with the ground truth. Our method also showed improved
image sharpness and visual image quality over images reconstructed using an adapted
CKG method on in vivo data. We believe the improved performance of our method is
due to the fact that a multi-dimensional gating signal is extracted from a larger k-space
region. However, similar to the CKG method, the MA method cannot achieve a good
reconstruction if an insufficient number of profiles is available at similar respiratory
positions. It is possible that such a limitation may be addressed by the subsequent use
of CS techniques. High temporal resolution 3D motion information will be useful in any
application for which retrospective motion estimations are required, such as motion
correction of positron emission tomography (PET) data in a simultaneous PET-MR
scenario, or motion-correction of the MR data.
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