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Abstract. High angular resolution diffusion imaging (HARDI) can pro-
duce better estimates of fiber orientation and richer sets of features for
disease classification than diffusion tensor imaging. However, existing
HARDI reconstruction algorithms require a large number of gradient
directions, making the acquisition time too long to be clinically viable.
State-of-the-art compressed sensing methods can reduce the number of
measurements needed for accurate reconstruction by exploiting angular
sparsity at each voxel, but the global sparsity level is therefore bounded
below by the number of voxels. In this work, we aim to find a signif-
icantly sparser representation of HARDI by exploiting redundancies in
both the spatial and angular domains jointly with a global HARDI basis.
However, this leads to a massive global optimization problem over the
whole brain which cannot be solved using existing sparse coding meth-
ods. We present a novel Kronecker extension to ADMM that exploits
the separable spatial-angular structure of HARDI data to efficiently find
a globally sparse reconstruction. We validate our method on phantom
and real HARDI brain data by showing that we can achieve accurate
reconstructions with a global sparsity level corresponding to less then
one atom per voxel, surpassing the absolute limit of the state-of-the-art.

1 Introduction

Diffusion magnetic resonance imaging (dMRI) is a 6D neuroimaging modality
that produces 3D q-space signals at every voxel of a 3D brain MRI volume and
can be used to estimate the orientation and integrity of neuronal fiber bundles
in vivo. Diffusion tensor imaging (DTI), which models the probability of water
diffusion in each voxel with a 3D Gaussian distribution, requires a relatively low
number of q-space signal measurements. While this makes DTI well-suited for
clinical research, the diffusion tensor cannot model multiple fiber orientations
crossing in a single voxel.

High angular resolution diffusion imaging (HARDI) can provide more accu-
rate estimations of anatomical fiber networks than DTI by estimating a higher-
order probability distribution function. However, HARDI reconstruction algo-
rithms require a larger number of q-space directions, which leads to a significantly
longer patient scan time in comparison to DTI. As a consequence, HARDI has
not been broadly accepted as a clinically viable dMRI protocol. Therefore, reduc-
ing HARDI scan times to the rate of DTI while maintaining accurate orientation
estimation is an important open question in HARDI research.
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Compressed sensing (CS) is a very useful tool to solve problems of this
type and hinges on finding a sparse representation of a signal with respect to
some basis. If such a sparse representation exists, CS can recover nearly per-
fect signals with sub-Nyquist sampling, allowing the potential to reduce signal
acquisition time. Many approaches [9] have applied CS to dMRI protocols like
multi-shell/single-shell HARDI and DSI to sparsely reconstruct signals, esti-
mate orientation distribution functions (ODFs), fiber orientation distribution
functions (FODs) [4], and ensemble average propagators (EAPs) [7], using dic-
tionary learning or fixed sparsifying bases such as spherical ridgelets/wavelets
[15], spherical polar Fourier bases, spherical Fourier-Bessel bases, directional
radial bases, higher order tensors, and many more. These approaches reduce
the number of q-space measurements needed from hundreds to tens by repre-
senting a q-space signal with as few q-space basis atoms as possible. However,
since these methods compute one sparse representation for each and every voxel,
the sparsest representation they can possibly achieve is with a single atom per
voxel. Since spatial correlations between atoms are not exploited, these methods
are still likely to represent a brain volume with millions of possibly redundant
parameters.

In practice, measurements from neighboring voxels share much of the same
information, hence there may exist further redundancies in the spatial domain
when signals are modeled sparsely over the angular domain alone. Therefore,
to reduce the number of measurements further, recent work [3,8,10,11] aims to
apply CS to DSI/HARDI in the joint (k,q)-space. These methods apply joint
(k,q) undersampling but still only apply sparse coding in the angular domain.
Some works add sparse spatial regularization such as total-variation, yet with
disjoint spatial and angular terms, global sparsity is still limited by the size of
the data and (k,q)-CS may not be fully utilized.

In this paper, we propose to model HARDI signals using a global spatial-
angular basis. However, because of the large size and complexity of HARDI
data, optimizing over an entire HARDI volume is a computationally challenging
problem. Our main contribution is an efficient joint spatial-angular sparse coding
algorithm that exploits a separable model of the spatial and angular domains of
HARDI data. With this proposed framework we aim to efficiently find a signifi-
cantly sparser HARDI representation than state-of-the-art voxel-based methods
can theoretically allow. In future work, joint spatial-angular sparse coding will
allow us to more naturally apply (k,q)-CS with joint undersampling [8,11] to
further reduce the total number of HARDI measurements.

2 HARDI Data Representation

Angular (Voxel-Based) HARDI Representation. For each voxel v in a
HARDI brain volume Ω ⊂ R

3, q-space measurements are acquired at gradient
directions �g ∈ S

2 and are modeled by an angular (spherical) basis, {γi(�g)}NΓ
i=1,

with NΓ atoms such that sv(�g) =
∑NΓ

i=1 aiγi(�g) where sv(�g) denotes the HARDI
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signal at voxel v measured at gradient direction �g. Classical HARDI reconstruc-
tion methods model the q-space signals from each voxel separately and add a
regularization term R to enforce desirable properties such as spatial coherence,
ODF non-negativity, or sparsity. Some recent methods [1,5,12,13] have consid-
ered simultaneous voxel-based reconstruction over an entire volume by solving

A∗ = arg min
A

||S − ΓA||2F + λR(A), (1)

where S = [s1 . . . sV ] ∈ R
G×V is the concatenation of signals sv ∈ R

G sampled
at G gradient directions over V voxels, A = [a1 . . . aV ] ∈ R

NΓ ×V is the concate-
nation of coefficients and Γ ∈ R

G×NΓ is the discretization of the basis γ. While
these methods attempt to reduce redundancies by adding spatial regularization,
signal reconstruction still only operates on angular basis Γ at every voxel.

Spatial-Angular HARDI Representation. In this work, we propose to
model the HARDI signal S(v,�g) based on a single global basis, say ϕ(v,�g), to
explicitly reduce redundancies in both the spatial and angular domains. However,
typical HARDI contains on the order of V ≈ 1003 voxels each with G ≈ 100
q-space measurements for a total of 1004 ≈ 100 million signal measurements.
Since many sparse coding applications often use bases that are over-redundant,
this leads to a massive matrix Φ of size greater than 1004 × 1004. Therefore
efficiently optimizing over a global basis is a very difficult problem. To overcome
this challenge, we introduce additional structure on the dictionary atoms by con-
sidering separable functions over Ω and S

2, namely a set of atoms of the form
ϕ(v,�g)i,j = (ψj(v)γi(�g)), where ψ(v) is a spatial basis for Ω with NΨ atoms.
The HARDI signal may then be decomposed as:

S(v,�g) =
Nγ∑

i=1

Nψ∑

j=1

ci,jψj(v)γi(�g) =
NψNγ∑

k=1

ckϕk(v,�g), (2)

where c = [ck] ∈ R
NΨ NΓ is the vectorization of C = [ci,j ] ∈ R

NΓ ×NΨ . In dis-
cretized form, our global basis ϕ is the separable Kronecker product matrix
Φ � Ψ ⊗ Γ ∈ R

V G×NΨ NΓ with Ψ ∈ R
V ×NΨ and Γ ∈ R

G×NΓ such that

s =

⎛

⎜
⎜
⎜
⎝

s1
s2
...

sV

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

Ψ1,1Γ Ψ1,2Γ · · · Ψ1,NΨ
Γ

Ψ2,1Γ Ψ2,2Γ · · · Ψ2,NΨ
Γ

...
...

. . .
...

ΨV,1Γ ΨV,2Γ · · · ΨV,NΨ
Γ

⎞

⎟
⎟
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⎠

⎛

⎜
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⎝

c1
c2
...

cNΨ NΓ

⎞

⎟
⎟
⎟
⎠

= Φc. (3)

Alternatively, in matrix form, (3) can be written compactly as S = ΓCΨ�.
In the special case of Ψ = IV , the identity, we can see this leads to the state-of-
the-art voxel-based formulation (1) with C ≡ A.

For HARDI, ODFs, p, can be estimated globally for all voxels with a single
equation p(v, �x; c) = 1

4π + Φ̃(v, �x)c, where Φ̃(v, �x) � Ψ(v) ⊗ Γ̃ (�x) and Γ̃ (�x) is
the transformed angular basis into the space of ODFs for �x ∈ S

2. This novel
global formulation could provide a nice framework for HARDI applications like
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enforcing global non-negativity, extracting global features or global fiber seg-
mentation. Though this current spatial-angular formulation may be specific to
HARDI, our framework is generalizable to any dMRI protocol such as DSI, or
multi-shell methods, by choosing an appropriate Γ which represents these data
in q-space.

3 Efficient Globally Sparse HARDI Reconstruction

With our proposed spatial-angular basis representation of HARDI, the goal of
this paper is to accurately reconstruct an entire HARDI volume with fewer atoms
than the state-of-the-art voxel-based methods can theoretically allow. To find a
globally sparse representation c, we aim to solve the l1 minimization problem:

c∗ = arg min
c

1
2
||s − Φc||22 + λ||c||1, (4)

where λ > 0 is the sparsity trade-off parameter. The Alternating Direction
Method of Multipliers (ADMM) [2] is a popular method for solving (4), however,
its application in the case of a large dictionary Φ remains prohibitive. To reduce
computation, we first note that when using over-redundant dictionaries (i.e.,
V < NΨ , G < NΓ ), it is more efficient to apply ADMM to the dual of (4) so
that we can switch from calculating Φ�Φ of size NΨNΓ ×NΨNΓ to ΦΦ� of size
V G×V G. The dual of (4) is:

max
α

−1
2
||α||22 + α�s s.t. ||Φ�α||∞ ≤ λ, (5)

and update equations of the Dual ADMM (DADMM) [6] are given by:

αk+1 = (I + ηΦΦ�)−1(s − Φ(ck − ηνk)) (6)

νk+1 = P∞
λ (

ck

η
+ Φ�αk+1) (7)

ck+1 = shrinkλη(ck + ηΦ�αk+1), (8)

where P∞
λ (x) is an element-wise projection to [−λ, λ], shrinkρ(x) is the soft-

threshold operator and η > 0 is an optimization parameter. The globally sparse
output vector c∗ minimizes the primal problem (4). DADMM reduces inner
product computations to matrices of smaller size G×V instead of NΓ ×NΨ

and is therefore not dependent on the size of basis but only on the size of the
data. Furthermore, soft-thresholding is now done directly on c, which reduces the
number of iterations for reaching a sparsity level by building up from 0 atoms
instead of descending down from the total NΨNΓ atoms. However, this näıve
formulation with large Φ still has complexity O(GV NΓ NΨ ) per iteration. Even
submitting Φ into memory may be an issue, as well as the expensive cost of
an inverse. We address this issue by exploiting the separability of Φ to perform
computations with the much smaller Ψ and Γ . Our proposed method, called
Kronecker DADMM, exploits the Kronecker product in two ways:



Spatial-Angular Sparse Coding 479

1. Kronecker SVD. Computing (I + ηΦΦ�)−1 for large Φ is challenging and
even taking an SVD to reduce the inverse to a diagonal of singular values
is O((GV )2NΓ NΨ ). Instead, we can exploit the Kronecker product and com-
pute separate SVDs of the smaller ΨΨ� and ΓΓ�. Let ΨΨ� = UΨΣΨU�

Ψ and
ΓΓ� = UΓ ΣΓ U�

Γ , then we have (I + ηΦΦ�)−1 = (UΨ ⊗ UΓ )(I + η(ΣΨ ⊗
ΣΓ ))−1(UΨ ⊗ UΓ )�, where the inverse is now simply taken over a diagonal
matrix. Computing these two SVDs is now of complexity O(V 2NΨ + G2NΓ ).
In the case of tight frames, such as Wavelets, where ΨΨ� = I, we can signifi-
cantly reduce computations to only involve Γ . We then simplify computations
for (6) by pre-multiplication, setting α′ � (UΨ ⊗ UΓ )�α, s′ � (UΨ ⊗ UΓ )�s and
Φ′ � (UΨ ⊗ UΓ )�Φ = (UΨ ⊗ UΓ )�(Ψ ⊗ Γ ) = (U�

Ψ Ψ) ⊗ (U�
Γ Γ ) � (Ψ ′ ⊗ Γ ′). [6]

proves that we can now replace our original variables with α′, s′, and Φ′ and our
primal and dual optimization problems do not change.

2. Kronecker Matrix Formulation. We can further reduce the size of our
problem and avoid any computations with Φ′ by using the Kronecker product
matrix formulation of (3) to write Φ′(ck − ηνk) = Γ ′(Ck − ηVk)Ψ ′�, where C
and V are the NΓ ×NΨ matrix forms of c and ν. Likewise, Φ′�α′ = Γ ′�A′Ψ ′,
where A′ is the G×V matrix form of α′ and we can pre-compute S′ = U�

Γ SUΨ

where S is the G×V matrix form of s. To fit the G×V matrix dimensions, we
simplify diagonal (I +η(ΣΨ ⊗ΣΓ ))−1 to Σ−1

η �1/(1+ηΣ) where Σ �dΓ d�
Ψ and

dΨ and dΓ are the diagonals of ΣΨ and ΣΓ . This Kronecker matrix formulation
has a significantly reduced complexity of O(GV NΨ ) per iteration compared with
O(GV NΓ NΨ ) for the näıve approach. Furthermore, in the case where Ψ is a tight
frame transformation, such as Wavelets, for which Ψ ′ = Ψ , fast decomposition
and reconstruction algorithms can be used to replace multiplication by Ψ and
Ψ� reducing complexity to O(GV log2(NΨ )).

Algorithm 1. (Kron-DADMM)
Precompute: S′, Γ ′, Ψ ′, Σ.
Initialize: k = 0, C0 = 0, V0 = 0. Choose: η0, λ, ε.
while Duality Gap > ε do

1: A′
k+1 = Σ−1

ηk
◦ (S′ − Γ ′(Ck − ηkVk)Ψ ′�);

2: Vk+1 = P ∞
λ ( 1

ηk
Ck + Γ ′�A′

k+1Ψ
′);

3: Ck+1 = shrinkληk(Ck + ηkΓ ′�A′
k+1Ψ

′);

4: ηk+1 = min(
||S′−Γ ′Ck+1Ψ ′�||2F ||Ck+1||2F

2λ||Γ ′Ck+1Ψ ′�||2
F

, ||S||1
λGV

)

5: Σ−1
ηk+1 = 1/(1 + ηk+1Σ)

6: k = k + 1;
end while
Return: globally sparse representation C∗

Our proposed algorithm for globally sparse HARDI reconstruction (Kron-
DADMM) is presented in Algorithm1. The symbol “◦” in Step 1 denotes
element-wise matrix multiplication. We follow [6] to update penalty parameter
η and stop when the duality gap is sufficiently small.
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4 Experiments

Data Sets. We provide experiments on the ISBI 2013 HARDI Reconstruction
Challenge Phantom dataset, a 50 × 50 × 50 volume consisting of 20 phantom
fibers crossing intricately within an inscribed sphere, measured with G = 64
gradient directions (SNR = 30). Figures 1 and 2 show quantitative signal error
vs. sparsity and qualitative ODF estimations at specific sparsity levels, respec-
tively. We also experimented on a real 128×128×26 HARDI brain volume with
G = 384 from the Hippocampal Connectivity Project (FOV: 192, resolution: 1.5
mm isotropic, b-value: 1400 s/mm2, TR/TE: 3500/86). Figure 3 shows sparse
reconstruction using Kron-DADMM with Haar-SR compared to full voxel-based
SH reconstruction. We can achieve a good reconstruction with ∼2 atoms per
voxel in about 2.5 h.

Choice of Spatial and Angular Bases. Spatial (Ψ): A popular choice of
sparsifying basis for MRI is a wavelet basis. For our experiments we com-
pared Haar and Daubechies wavelets to get an indication of which can more
sparsely represent the spatial organization of HARDI. Importantly, we also com-
pared to state-of-the-art voxel-wise methods by simply choosing the identity I
as the spatial basis. We compare these basis choices in terms of sparsity and
reconstruction error in Fig. 1 (left). Angular (Γ ): The over-complete spherical
ridgelet/wavelet (SR/SW) basis pair [15] has been shown to sparsely model
HARDI signals/ODFs. We also compare this to the popular SH basis, though
for order L the SH is a low-pass truncation and does not exude sparse signals.
With order L = 4, SH and SR have NΓ = 15 and NΓ = 1169 atoms, respec-
tively. We compare these angular choices in Fig. 1 (right). As a note, these basis
choices are preliminary and future work will involve exploring more advanced
basis options to increase sparsity.

Fig. 1. Phantom Data. Left: Comparison of various spatial basis choices using Kron-
DADMM paired with the SR angular basis. Haar-SR achieves the lowest residual
(∼0.074) with the sparsest number of coefficients (∼0.5). The black line is voxel-based
angular reconstruction where the identity I is the chosen spatial basis. Voxel-based is
unable to achieve sparsity below 1 atom/voxel without forcing some voxels to 0 atoms.
Right: Comparison between Kron-OMP and Kron-DADMM. Kron-OMP takes 40 h to
reach 1 atom/voxel, while Kron-DADMM takes 40 min and provides better accuracy.
SR outperforms SH basis as expected.
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Fig. 2. Phantom Data. Comparison of Kron-DADMM with Haar-SR (middle) and
voxel-based I-SR (right) against a full voxel-based least squares reconstruction with
SH (left). The global reconstruction provides a more accurate signal with less than
1 atom per voxel while the voxel-based sparse reconstruction has difficulty estimating
crossing fibers at this sparsity level and is forced to model isotropic ODFs with 0 atoms.

Fig. 3. Real Data. Global sparse reconstruction via Kron-DADMM with Haar-SR basis
(right) compared to full voxel-based least squares reconstruction with SH basis (left).
We can achieve an accurate reconstruction with only 2.23 atoms/voxel.

Comparison with a Baseline Algorithm. Orthogonal Matching Pursuit
(OMP) is a widely used algorithm to approximate a solution to the l0 problem
by greedily selecting and orthogonalizing the K basis atoms that are most corre-
lated with signal s. The Kronecker OMP (Kron-OMP) proposed in [14] exploits
bases with separable structure but the method still needs to orthogonalize a
K×K matrix where the sparsity level K empirically approaches the number of
voxels V ≈ 1004. Because of this, our implementation takes on the order of 40 h
to optimize over the phantom dataset compared to 40 min for Kron-DADMM.
The results are presented in Fig. 1 (right).

5 Conclusion

We have presented a new efficient algorithm for globally sparse reconstruction
of HARDI using a global basis representation which exploits spatial-angular
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separability to significantly reduce computational complexity. Our experiments
show that greater sparsity for the representations may be achieved using spatial-
angular bases instead of voxel-based approaches. So far, these were conducted as
a proof-of-concept with dictionaries involving very simple spatial wavelet bases
such as Haar, but the versatility of the algorithm enables the use of possibly more
adequate directional Wavelets (e.g. shearlets, curvelets) or dictionary learning
strategies, which are both important directions for future work. Our next step
is to develop spatial-angular sensing matrices to jointly subsample (k,q)-space
using a form of Kronecker CS. Finally, a globally sparse representation can be
utilized in many other areas of HARDI applications including fiber segmentation,
global tractography, global feature extraction, and sparse disease classification.
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