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Abstract. Non-linear registration is an essential part of modern neu-
roimaging analysis, from morphometrics to functional studies. To be
practical, non-linear registration methods must be precise and compu-
tational efficient. Current algorithms based on Thirion’s demons achieve
high accuracies while having desirable properties such as diffeomorphic
deformation fields. However, the increased complexity of these methods
lead to a decrease in their efficiency. Here we propose a modification of
the demons algorithm that both improves the accuracy and convergence
speed, while maintaining the characteristics of a diffeomorphic registra-
tion. Our method outperforms all the analysed demons approaches in
terms of speed and accuracy. Furthermore, this improvement is not lim-
ited to the demons algorithm, but applicable in most typical deformable
registration algorithms.

1 Introduction

In any modern neuroimaging study non-linear registration is an essential step,
allowing for the quantitative analysis of form, such as detecting changes in
brain shape and size, or the precise alignment of the anatomy required for func-
tional group studies. To be useful, non-linear registration methods must be both
accurate and computationally efficient [1]. The former reduces the inter-subject
anatomical variability allowing identification of small anatomical or functional
changes between groups, while the latter is required to enable timely analysis
of large datasets [7]. Additionally, non-linear registration should generate well-
behaved spatial transformations that best align two images [16]. To achieve this,
most typical algorithms [2,3,12,16] constrain the displacement fields to diffeo-
morphic deformations (i.e. deformations fields which have an inverse, and both
the field and its inverse are differentiable).

The demons algorithm, as originally introduced by Thirion [14], presented
a step forward in both speed and accuracy. He proposed a method that alter-
nates between the computation of the demons forces (inspired from Maxwell’s
Demons, and optical flow equations) and a Gaussian smoothing regularization.
This allowed dense correspondences within a computationally efficient algorithm.

Due to its success and implementation simplicity further developments were
proposed to improve convergence speed and precision, such as the introduction
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of a normalization factor α [5] bounding the step size, and the addition of an
“active” force [17] based in the moving image gradient. To extend the clas-
sical demons algorithm to provide diffeomorphic transformations, Vercauteren
et al. [15] proposed looking for an update step u on the Lie algebra and then
mapping it to the space of diffeomorphisms through the exponential map; and
later [16] suggested an extension of the demons algorithm to work completely
in the log domain, showing improvements over the diffeomorphic-demons. To
improve the demons algorithm to intensity inhomogeneities and contrast changes
other similarity metrics such as the local cross correlation (LCC [4,7]) or the
point-wise mutual information (PMI [8]) were further proposed.

While subsequent extensions of the demons algorithm showed better total
accuracy and higher accuracy per iteration, they also increased the computa-
tional cost at each iteration.

Here we propose an adaptation of the demons algorithm to improve total
convergence speed of all demon-like variants without compromising on accuracy.
The remainder of this paper is organized as follows: the demons framework is
presented in Sect. 2 followed by the introduction of the Inertial Demons; both the
original and proposed demons are evaluated in Sect. 3; final remarks regarding
the applicability of this extension to other non-linear registration approaches are
presented in Sect. 4.

2 Demons Framework

2.1 Demons as a Minimization Problem

In non-linear registration, the transformation T (x) that best aligns a source
image I0(x) to a reference image I1(x) is obtained by the optimization of a
similarity function Sim(I1(x), I0(T (x)). Classically, in intensity-based methods
the sum of square differences (SSD) is used as the similarity metric, Eq. 1:

Sim =
∑

(I1(x) − I0(T (x)))2 (1)

Since the optimization of the Sim term alone is ill-posed, a regularization
term Reg(T (x)) is usually added to the global energy function E, Eq. 2:

E(T (x)) = Sim(I1(x), I0(T (x)) + Reg(T (x)) (2)

The demons algorithm can then be seen as the optimization of Eq. 2 with the
addition of a hidden correspondences C(x) variable [4] that allows the alternate
optimization of the similarity and regularization terms, Eq. 3.

E(C(x), T (x)) = Sim(I1(x), I0(C(x)) + σ ‖C(x) − T (x)‖2 + Reg(T (x)) (3)

One first optimizes Sim(I1(x), I0(C(x)) + σ ‖C(x) − T (x)‖2 with respect to
C(x) and with T (x) fixed, and then optimizes σ ‖C(x) − T (x)‖2 + Reg(T (x))
with respect to T (x) with C(x) fixed. The minimization of the second term is
usually obtained by the convolution of the global transformation with a Gaussian
kernel, yet more complex approaches such as the use of edge preserving filters
have also been proposed [6].
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2.2 Demons Forces

In the classical demons the minimization of the first term is performed through
the computation of Thirion’s “fixed” demons force, Eq. 4, which was shown to be
equivalent to the second order gradient descendent with the SSD as the similarity
term [11].

u(x) = (I1(x) − I0(T (x)))
�I1(x)

‖�I1(x)‖2 + α2(I1(x) − I0(T (x)))2
(4)

Following this framework one can instead derive different demons forces
through different minimization procedures. Of particular interest in this work
are the symmetric Sym forces, Eq. 5, obtained through the Efficient Second-
order Minimization (ESM) [9].

u(x) = 2(I1(x)−I0(T (x)))
�I1(x) + �I0(T (x))

‖�I1(x) + �I0(T (x))‖2 + α2(I1(x) − I0(T (x)))2
(5)

2.3 Demons Composition

As non-linear registration should present desirable properties such as diffeomor-
phism, Vercauteren et al. [15] proposed looking for an update step u(x) on the
Lie algebra and then mapping it to the space of diffeomorphisms through the
exponential map, Eq. 6,

T (x) ← T (x) ◦ exp (u(x)) (6)

and later [16] suggested to work completely in the log-domain, by considering
the spatial transformations as exponentials of smooth velocity fields, Eq. 7, with
the advantage of having access to the true inverse transformation.

⎧
⎨

⎩

v(x) ← v(x) ◦ u(x)

T (x) = exp (v(x))
(7)

Although both these approaches are particularly attractive (since the expo-
nential map can be efficiently approximated by the scaling and squaring app-
roach [10]), it can still be computationally demanding if the magnitudes of
the velocity field (in the case of the log-demons) or the update field (in the
diffeomorphic-demons) are large. On the other hand, diffeomorphic registra-
tion can also be achieved by composing u(x) to T (x) while constraining u(x)
to small optimization steps (by treating the voxels as B-Spline control points,
it can be shown that a maximal displacement of 0.4 leads to a diffeomorphic
field [12,18]), Eq. 8. ⎧

⎨

⎩

‖u(x)‖ � 0.4

T (x) ← T (x) ◦ u(x)
(8)
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2.4 Demons Momentum

Although computationally efficient, the demons framework relies on forces
derived from the images’ gradients (e.g. Eqs. 4 and 5). This fundamentally limits
the ability of demons algorithms to converge quickly where gradients are scarce
or non-existent (such as homogeneous regions or texture-less images).

To overcome this deficiency, multilevel frameworks are typically employed.
Such approaches attempt to retrieve large deformations by sub-sampling the
space of deformations, and progressively increasing the resolution to resolve
local deformations. However, they do not solve the intrinsic problem of gradient-
based methods within each level. Other approaches such as using preconditioning
schemes have also been proposed [19].

Here we propose to use the previous update field u(x)[n−1], Eq. 9, as a pre-
dictive update step for the subsequent iteration [n].

p(x)[n] ← α × u(x)[n−1] (9)

The momentum term p(x) simply adds a fraction of the previous update field to
the current one u(x)[n], controlled by a constant α between [0,1]1, Eq. 10.

u(x)[n] ← u(x)[n] ◦ α × p(x)[n] (10)

Here the system is seen as having an inertia preventing sudden changes in u(x).
When the image gradient and the momentum have the same direction, this leads
to an increase in step size towards the minimum. When they have different direc-
tions this approach leads to smoother updates. Since it is also desirable for T (x)
to be part of a diffeomorphic group D , the inclusion of the momentum term
should not change the behaviour of each approach presented in Sect. 2.3. Here
we show that these conditions still apply with the use of momentum.

Diffeomorphic-demons: Since (exp(u(x)/A)A ⊆ D) if (‖u(x)/A‖ � 0.4), through
the scaling and squaring approach, then (exp(u(x)/B)B ⊆ D) if (‖u(x)◦p(x)/B‖ �
0.4), with {A,B} ∈ N. Note A and B will often be different. Also, although u(x)
is updated through composition with p(x), the update through addition is also
possible.

Log-demons: Similarly to the diffeomorphic demons (T (x) ⊆ D) if
(exp(v(x)/A)A ⊆ D), with the latter true if (‖v(x)/A‖ � 0.4). Therefore, the
above logic can be applied here to show that (T (x) ⊆ D), when (u(x)[n] ←
u(x)[n] ◦ α × p(x)[n]).

Restricted-demons: In this approach (T (x) ⊆ D) if (‖u(x)‖ � 0.4). We can
also observe that, (T (x) ⊆ D) if (u(x) ⊆ D) since (‖u(x)‖ � 0.4) ⇒ (u(x) ⊆ D).
This way we can see that, since (u(x)[n] ← u(x)[n] ◦ α × p(x)[n]) and (p(x)[n] ←
α × u(x)[n−1]) with α = [0, 1], (p(x) ⊆ D) ⇒ (u(x) ⊆ D) ⇒ (T (x) ⊆ D).
1 A value higher than 1 leads to instability of the registration process as the magnitude

of the update field ‖u(x)‖ keeps increasing at each iteration.
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2.5 Demons Iterative Process

We can now define the whole demons framework (at each level) with the addition
of the momentum term:

Algorithm 1. Inertial Demons

1. Calculate the update field through the demon forces (e.g. Eq. 5).
2. Add the momentum term to the update field through Eq. 10.
3. Convolve the update field with a Gaussian kernel (fluid-like regularization).
4. Choose one diffeomorphic approach:

(a) Diffeomorphic-demons:
i. Calculate exp(u(x)) and update T (x) through Eq. 6.
ii. Convolve T (x) with a Gaussian kernel (diffusion-like regularization).

(b) Log-demons:
i. Calculate exp(v(x)) through Eq. 7.
ii. Convolve v(x) with a Gaussian kernel (diffusion-like regularization).
iii. Calculate T (x) through Eq. 7.

(c) Restricted-demons:
i. Calculate T (x) through Eq. 8.
ii. Convolve T (x) with a Gaussian kernel (diffusion-like regularization).

5. Update p(x) through Eq. 9.
6. Repeat from 1. to 5. until convergence.

3 Experiments

3.1 Circle to C

To first test the convergence speed improvement of the proposed methodology
we applied the original and proposed diffeomorphic-demons, log-demons, and
restricted-demons to register the classic “circle to C”.

Since in this example the emphasis is on the comparison of the different
methods with and without momentum, all methods use the symmetric demons
force (Eq. 5), a single-resolution framework, and a 1 voxel FWHM Gaussian
kernel for both the fluid-like and diffusion-like regularizers. Since the restricted-
demons can only guarantee diffeomorphic deformations for small optimization
steps, the maximal step was set as 0.4 voxels, and 2 voxels for the diffeomorphic
and log -demons. For all momentum-based approaches an α = 0.9 was used.

As shown in Fig. 1 all the original demons were unable to fully deform the
native “circle” to the target “C”, while all the proposed variations are visually
identical to the target image (note that all registrations were limited to the same
computation time, since time per iteration differs for the different approaches).
Regarding topology, all methods presented invertible fields with positive Jaco-
bian determinants, with the proposed methods visually more symmetric than
their counterparts (i.e. more symmetric deformation grids).

Globally, the proposed diffeomorphic-demons achieved the quickest conver-
gence, followed by the proposed restricted-demons. The proposed log-demons
was unable to achieve the same convergence within the maximum allowed com-
putation time.



42 A. Santos-Ribeiro et al.

Restricted Diffeomorphic Log

O
rig

in
al

Pr
op

os
ed

Restricted
Diffeomorphic
Log

Restricted
Diffeomorphic

Log

Original

Proposed

1

10-1

10-2

10-3

10-4

0 1 42 3
Time (a.u.)

N
or

m
al

iz
ed

 S
SD

Fig. 1. Non-linear registration of the classical “circle to C”. Top - Deformation fields
and registered images; Bottom - Normalized SSD against time. Full lines: original
methods; Dashed lines: proposed variation. For all cases lower is better.

3.2 Anatomical MRI

To further study the precision of each of the original demons approaches against
our methodology we used the simulation framework presented in [13]. In this
framework, 20 individual healthy T1-weighted brain images along with corti-
cal and sub-cortical manual segmentation were used to generate a total of 400
ground truth deformations. For each simulation the different demons approaches
were used to register the native to the simulated images. In this example, the
same parameters used in Sec. 3.1 were applied within a multi-resolution frame-
work with 3 levels, and 50 iterations at the highest resolution. The registration
accuracy of each method was obtained by comparing the generated deformation
fields and corresponding Jacobian map with the ground truth.

As shown in Fig. 2 (Top) for all approaches the proposed methodol-
ogy achieved visually closer Jacobian maps to the ground truth, than the
original framework. Further quantitative analysis, Fig. 2 (Bottom), show that
the deformation field error and Jacobian error scores are significantly lower for
the proposed methods (dark shade) comparatively with the original framework
(light shade), but similar within them2. From all methods here, the proposed
restricted-demons achieved the best scores, and showed the largest improvement
relative to the original framework (DFE = 55 %, JE = 38 %).
2 The statistical comparison between each original and proposed methods was per-

formed through a Mann-Whitney U test. Although not shown here a significant
improvement is also seen if ‖u(x)‖ ≤ 0.4 for all methods.
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Fig. 2. Anatomical MRI. Top - Jacobian map comparison between the original and pro-
posed methods, and the ground truth; Warmer colors refer to contractions, cooler colors
to expansions. Bottom - Violin plot comparison between the original (light shade) and
proposed (dark shade) frameworks for the restricted (blue), diffeomorphic (magenta),
and log (cyan) -demons approaches; Lower is better for both evaluation metrics. (Color
figure online)

4 Conclusion

Although computationally efficient, the demons framework relies on forces
derived from the images’ gradients, fundamentally limiting its ability to con-
verge quickly where gradients are scarce or non-existent. Here we proposed an
extension of the demons framework to improve the convergence speed through
the addition of a momentum term, without compromising on accuracy.

Our experiments showed that the proposed methodology achieves faster and
more accurate results for the restricted, diffeomorphic and log -demons for the
classical “circle to C” registration, and closer results to the ground truth for the
anatomical MRI non-linear registration. While in the classical “circle to C” the
proposed log-demons was less accurate than the two other proposed approaches
(for the allowed computational time), it showed similar results for the anatomical
MRI dataset (where the number of iterations were fixed). Regarding computation
time, the original diffeomorphic and log -demons took longer (by approximately
40 % and 90 % more time respectively) than the original restricted-demons. For
each approach, the proposed methodology only increased the computation time
by less than a third.

In this paper, we considered only the SSD similarity criteria, yet this exten-
sion can be conveniently applied to other similarity metrics such as the LCC or
PMI. Furthermore, it is easily applicable to other non-linear registration frame-
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works (e.g. free-form deformations), or group-wise non-linear registration and
atlas construction.
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