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Abstract. Pharmacokinetic analysis of Positron Emission Tomography
(PET) data typically requires at least one hour of image acquisition,
which poses a great disadvantage in clinical practice. In this work, we
propose a novel approach for pharmacokinetic modelling with signifi-
cantly reduced PET acquisition time, by incorporating the blood flow
information from simultaneously acquired arterial spin labelling (ASL)
magnetic resonance imaging (MRI). A relationship is established between
blood flow, measured by ASL, and the transfer rate constant from plasma
to tissue of the PET tracer, leading to modified PET kinetic models
with ASL-derived flow information. Evaluation on clinical amyloid imag-
ing data from an Alzheimer’s disease (AD) study shows that the pro-
posed approach with the simplified reference tissue model can achieve
amyloid burden estimation from 30 min [18F]florbetapir PET data and
5 min simultaneous ASL MR data, which is comparable with the esti-
mation from 60 min PET data (mean error= −0.03). Conversely, stan-
dardised uptake value ratio (SUVR), the alternative measure from the
data showed a positive bias in areas of higher amyloid burden (mean
error= 0.07).

1 Introduction

Position Emission Tomography (PET) is currently the most sensitive in vivo
molecular imaging technique to provide a non-invasive assay of the human body.
Dynamic PET image data acquired following the injection of a radioactive tracer
allows the use of pharmacokinetic modelling techniques to quantify a range of
biological, physiological and biochemical parameters. However, a typical dynamic
PET scan requires at least 1 h to sufficiently cover the underlying processes. The
long scan duration is prohibitive for routine clinical use, where time is limited,
and data integrity is risked by the increased chance of subject motion.
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Currently clinical imaging in PET is often performed using single time point
estimates (static imaging) of tracer uptake, such as the standardised uptake
value ratio (SUVR). SUVR, a semi-quantitative measure of uptake, is the ratio
of the activity concentration within a region relative to the concentration in a
tissue which is free from the imaging target, called the reference region. It usu-
ally requires 10 min of PET data, which are acquired once non-specifically bound
tracer reaches equilibrium between a region and the reference tissue, approxi-
mately 50 min or more post injection. This measure is expected to correlate with
fully quantitative estimates derived from the full dynamic PET data. However,
changes in blood flow affect the delivery of the tracer to tissue and consequently
alter the tracer concentration in the tissue when a static image is acquired.
Without the blood flow information contained in the early dynamic data, there
is no way to account for the influence of the changes in blood flow, thus SUVR
values can be biased. This has been highlighted in longitudinal studies, where
pathophysiological changes in blood flow have caused spurious changes in SUVR
values which do not reflect imaging target abundance [1]. The estimates derived
by kinetic modelling are not biased in this way, as the full dynamic curve contains
blood flow information, which is parametrised within the model.

Fig. 1. Dynamic PET acquisition
for amyloid burden quantification
and time reduction for the proposed
method.

In neuroimaging, cerebral blood flow
can be measured using arterial spin
labelled (ASL) MRI, where magnetically
tagged blood is used as an endogenous
contrast agent. With the advent of PET-
MRI scanners, this information can be
acquired concurrently with PET data.
Therefore the blood flow information from
the ASL can be used in pharmacokinetic
analysis when the early part of a dynamic
PET scan, which involves blood flow, is
not collected. This will lead to the reduc-
tion of PET acquisition time needed to
perform pharmacokinetic modelling.

In this work, we propose a novel app-
roach for combining PET and ASL infor-
mation to derive the parameters of inter-
est with a greatly reduced scanning time,
Fig. 1. To our knowledge, this is the first time that ASL blood flow estimates have
been used to perform PET kinetic analysis to reduce image acquisition time. We
evaluated the proposed approach in an AD study using [18F]florbetapir, a PET
radiotracer that binds to amyloid-β, which is considered to be an important
target in the AD brain.
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2 Methods

2.1 CBF Estimation with ASL MRI

The cerebral blood flow (CBF) map is estimated from pseudo continuous arte-
rial spin labelling (PCASL) data using the relationship established in [2]. The
parameter values used in this work were 0.9 ml/g for the plasma/tissue partition
coefficient, a blood T1 value of 1650 ms, and a labelling efficiency of 0.85.

2.2 Amyloid-β Burden Estimation with SRTM

In this work, the simplified reference tissue model (SRTM) [3] was used to quan-
tify the PET data. SRTM describes the tracer-target interaction using a single
tissue compartment model. Using the tracer time activity curve in the reference
region CR(t) as an input function, the operational equation between the tracer
time activity curve in the target tissue CT (t) and CR(t) is formulated as:

CT (t) = R1CR(t) +
(

k2 − R1
k2

1 + BPND

)
CR(t) ⊗ e

− k2
1+BPND

t
, (1)

where t denotes time and t = 0 at tracer injection, R1 is the local rate of delivery
in the target tissue relative to reference tissue, k2 is the rate constant from target
tissue to blood, BPND is the binding potential that is proportional to the density
of amyloid-β, and ⊗ denotes the convolution operator. Cerebellar grey matter
is used as the reference region to derive CR(t) as it is considered to be devoid
of amyloid-β in this study [4]. BPND, as the outcome measure of interest to
represent the amyloid-β burden, can then be estimated together with R1 and
k2 by performing curve-fitting using (1) with CT (t) and CR(t) extracted from
PET data acquired from tracer injection over a sufficient duration. We used a
linearised version of SRTM [5] to calculate BPND, R1 and k2 from dynamic PET
data of 0:60 min as the gold standard.

2.3 SRTM with Incomplete PET Scan and CBF

Population-Based Extrapolation of Reference Input CR(t). To estimate
BPND using the PET data where the early part from the tracer injection is
absent (t ∈ [ts, te], ts > 0), firstly extrapolation is required to have the reference
input CR(t) for t ∈ [0, ts] so that the convolution term in (1) can be calculated.
In this work the whole reference input CR(t) for t ∈ [0, te] was generated using
a single tissue compartment model CR(t) = K ′

1e
−k′

2t ⊗ αAIF (t). If we assume
AIF (t), t ∈ [0, te] is a population arterial input function with α being an individ-
ual scaling factor, k′

2 a population rate constant from reference tissue to blood,
and K ′

1 an individual rate constant from blood to reference tissue, then K ′
1α

can be estimated by scaling a measured population-based reference input curve
Cp

R(t), t ∈ [0, te] to match the individual CR(t), t ∈ [ts, te] to generate CR(t),
t ∈ [0, te].
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R1 Estimation with CBF. ASL is used to measure the CBF, flow denoted by
F , which is converted into a pseudo R1 estimate to use in SRTM. R1 is defined
as R1 = K1/K ′

1 where K1 is the rate constant from blood to target tissue and
K ′

1 is the rate constant from blood to reference tissue.
Based on the Renkin-Crone model, the relationship between K1 and F can

be described as
K1 = EF =

(
1 − e− PS

F

)
F, (2)

where E denotes the net extraction, P is the vessel permeability and S the surface
area. Under common physiological conditions of flow, where PS is high (> 3 ml
·100 g−1· min−1), the relationship between K1 and flow F is linear. In the absence
of knowledge on PS across the brain, we assume that it is sufficiently high such
that the relationship between K1 and F , and in turn the relationship between
R1 and F , can be approximated as a linear function. Linear regression between
R1 and F was performed on a group of subjects, and the linear relationship was
then applied to a different group of subjects to convert CBF to a pseudo R1

value for estimating BPND with incomplete PET data.

SRTM with CBF-derived R1 and Extrapolated CR(t). Rewrite (1) as
C ′

T (t) = φCR(t) ⊗ e−θt, where C ′
T (t) = CT (t) − R1CR(t) is calculated from the

CT (t) and CR(t) extracted from the measured PET data for t ∈ [ts, te], and R1 is
derived from the CBF. Here, φ = k2−R1k2/(1 + BPND) and θ = k2/(1 + BPND)
are unknown. To solve φ and θ, we used the basis functions defined in [5] to pre-
calculate the convolution term using the extrapolated CR(t), t ∈ [0, te] with a
range of biologically plausible values for θ. BPND and k2 are then derived from
φ, θ and the CBF-derived R1.

3 Experiments and Results

Data. We evaluated the proposed method on data from 11 cognitively nor-
mal subjects participating in Insight 46, a neuroimaging sub-study of the MRC
National Survey of Health and Development, who underwent amyloid PET and
multi-modal MR imaging on a Siemens Biograph mMR PET/MR scanner. List
mode PET data were acquired for 60 min following intravenous injection of
[18F]florbetapir, a radiotracer that binds to amyloid-β. For PET image recon-
struction, simultaneously acquired structural MR was used to synthesise CT
data and calculate the μ-map [6]. Dynamic PET data were binned into 15 s ×
4, 30 s × 8, 60 s × 9, 180 s × 2, 300 s × 8 time frames, and reconstructed using
the manufacturer’s software with corrections for dead-time, attenuation, scat-
ter (based on the synthesised CT), randoms and normalisation. PCASL data
were acquired using a 3D GRASE readout with voxels of 1.88 × 1.88× 4 mm. 10
control-label pairs were acquired with a pulse duration and post labelling delay
of 1800 ms.

Data Processing Framework. T1-weighted images were parcellated [7] into
amygdala, pons, brainstem, cerebellum (white and grey separately), hippocam-
pus, cerebral white matter, putamen, thalamus and 6 cortical grey matter
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Fig. 2. Overview- parcellation is registered to PET and ASL to calculate regional
average values. ASL data is converted into CBF-derived R1 values using the linear
regression relationship. A population reference tissue time activity curve of 0:60 min
combined with the measured reference tissue data (30:60 min) is used with the CBF-
derived R1 and the measured PET tissue data (30:60 min), to apply the modified
simplified reference tissue model to estimate BPND.

regions, with left and right hemispheres combined. The T1-weighted image was
rigidly registered to both ASL and PET space, and the transformation was prop-
agated to the parcellation. Regional average CBF values were calculated, and the
PET time activity curves were averaged across the region prior to kinetic mod-
elling. PET data acquired during 30:60 min were used to evaluate the proposed
method. To estimate the reference region activity in the missing time frames, a
population averaged reference input was extracted from 14 age matched subjects
with 60 min [18F]florbetapir PET data. To establish the relationship between the
CBF and R1 values, linear regression was performed on data from 5 subjects and
the proposed approach was tested on the remaining 6 subjects. A summary of
the data processing framework is shown in Fig. 2.

3.1 Comparison of Proposed Method with Gold Standard

Figure 3a shows BPND, the measure of the amyloid burden, estimated using the
proposed method with 30:60 min data plotted against the gold standard using
the full 60 min dynamic data. Linear regression of all subjects and regions shows
that the proposed method offers a good approximation of the gold standard as
it closely follows the line of identity (blue dashed line), which is within the 95 %
confidence interval (CI) of the regression (shaded area). Furthermore, subject
specific Pearson correlation coefficients, ρ, show a high linear correlation.

The alternative measure used in clinical practice, SUVR − 1, was calculated
from PET data over 50:60 min for comparison, Fig. 3b. Whilst ρ is still high
for each subject, a clear bias is shown as SUVR − 1 overestimates the binding
potential at higher values. The mean error quantifies the bias between the esti-
mates and the gold standard which is 0.0740 for SUVR − 1, indicative of the
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Fig. 3. Estimated amyloid burden against the gold standard value calculated using full
PET time series. (Color figure online)

Fig. 4. Regional average binding potential maps for (left to right) gold standard, pro-
posed method, SUVR− 1, difference maps compared to gold standard.

systematic overestimation, compared to −0.0311 for the proposed method. The
proposed method also has a lower mean square error (0.0151 compared to 0.0247
for SUVR−1), and variance (0.0142 compared to 0.0194 for SUVR−1). Figure 4
shows BPND maps for a subject, comparing the gold standard with the proposed
method and SUVR− 1 regionally. The proposed method shows good agreement
with the gold standard, with slight overestimation of the cortical white matter.
For the SUVR − 1 estimation, amyloid burden is greatly overestimated within
both grey and white matter structures. The difference map shows that the errors
in the proposed method are far lower than for SUVR − 1.

3.2 Influence of R1 Estimation on Amyloid Quantification

Whilst Fig. 3a demonstrates a high similarity between binding potential estima-
tion using the gold standard and the proposed method, there is a noise compo-
nent which introduces variation around the line of identity. This is due to noise
in the PET data, noise in the CBF-derived R1 estimate from the ASL data, and
inaccuracies in the estimation of the reference tissue input.

To demonstrate the influence of the CBF-derived R1 estimate using ASL
data, the proposed method was applied using the R1 estimated using the gold
standard technique instead of the CBF-derived R1. The population input func-
tion and 30:60 min PET data were used as before. This represents the optimal
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Fig. 5. Estimated binding potential plotted against the gold standard value calculated
using full PET time series

case in which R1 can be determined exactly from the ASL data. Figure 5a shows
that the variance in the binding potential estimate has been reduced (from 0.0142
to 0.008), and the linear regression line lies along identity with a narrow CI. This
is expected since the CBF map from the ASL is noisy, and linear regression per-
formed to determine the relationship between CBF and R1 was performed with
only 5 subjects, and therefore may not be generalisable. However, for the data
used in this study the estimation of R1 from CBF is sufficiently accurate that
the BPND estimates between the proposed method using CBF-derived R1 and
gold standard R1 are comparable and there is a reduced bias in the estimates.

Figure 5b compares BPND estimation using 30:60 min PET data only to the
gold standard to demonstrate the need of a CBF-derived R1. Due to the lack
of data to support the kinetic modelling, the results are noisy and extreme
parameter estimates occurred for some regions. These points are beyond the
display range in Fig. 5b and have skewed the linear regression such that it no
longer follows the identity line, and the 95 % CI extends beyond that shown.

4 Discussion and Conclusion

This work demonstrates that the proposed method produces estimates of amy-
loid burden which are comparable to full pharmacokinetic modelling of 0:60 min
[18F]florbetapir PET data, using just 30:60 min of PET data together with blood
flow information from ASL. The proposed method is more accurate than the
simplified estimate of amyloid burden, SUVR − 1, which showed a positive bias
especially at higher binding potential values. The results of the proposed tech-
nique depend on the CBF-derived R1 estimate from the ASL data. The ASL
data used here were acquired for only 5 min without motion correction, and
thus susceptible to artefacts and noise. Linear regression between CBF and R1

using just 5 subjects could produce errors which may propagate to the binding
potential estimation. To reduce the influence of errors in the CBF maps on the
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parameter estimation, a more complex kinetic model will be explored in future
work to penalise the deviation of R1 estimation from the CBF-derived R1 value.
The relationship between CBF from ASL and PET R1 will be further explored
to tune this regularisation scheme. The application of this technique to PET
tracers which bind to other biological targets of interest will also be explored.
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