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Abstract. In this work, we tackle the important problem of dense 3D
volume labeling in medical imaging. We start by introducing HED-3D,
a 3D extension of the state-of-the-art 2D edge detector (HED). Next,
we develop a novel 3D-Convolutional Neural Network (CNN) architec-
ture, 121-3D, that predicts boundary location in volumetric data. Our
fine-to-fine, deeply supervised framework addresses three critical issues
to 3D boundary detection: (1) efficient, holistic, end-to-end volumetric
label training and prediction (2) precise voxel-level prediction to cap-
ture fine scale structures prevalent in medical data and (3) directed
multi-scale, multi-level feature learning. We evaluate our approaches on
a dataset consisting of 93 medical image volumes with a wide variety
of anatomical regions and vascular structures. We show that our deep
learning approaches out-perform the current state-of-the-art in 3D vas-
cular boundary detection (structured forests 3D), by a large margin, as
well as HED applied to slices. Prediction takes about one minute on a
typical 512 x 512 x 512 volume, when using GPU.

1 Introduction

The past decade has witnessed major progress in computer vision, graphics,
and machine learning, due in large part to the success of technologies built
around the concept of “image patches”. Many patch-centric approaches fall into
the category of “sliding-window” methods [3,9,11] that consider dense, over-
lapping windows. Patch-centric approaches limit us in terms of computational
complexity and long-range modeling capabilities. Fully convolutional neural net-
works (FCN) [7] achieved simultaneous performance and full image labeling.
Holistically-Nested Edge Detector (HED) [13] applied this approach to image-
to-image object boundary detection. HED significantly improved the state-of-
the-art in edge detection, and did so at a fraction of the computational cost of
previous CNN-based edge/boundary detection algorithms. Another member of
the FCN family, UNet [10], adapted this architecture for neuronal segmentation.

Volume-to-volume learning has yet to garner the same attention as image-to-
image labeling. One approach applies 2D prediction schemes on images generated
by traversing the volume on an anatomical plane then recombining predictions
into a volume. However, volumetric features exist across three spatial dimensions,
therefore it is crucial to process this data where those features exist.
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The current state-of-the-art in vessel wall detection uses a 3D patch-to-patch
approach along with domain features, a-priori information, and a structured
forest classifier [9]. In that work, the authors mitigate computational cost of
patch-centric classifiers by using a sampling scheme and limiting their dataset
to certain types of vascular structures. This method side-steps patch-centric inef-
ficiency by limiting accurate prediction to a subset of structures and anatomical
regions. Volumetric labeling using a CNN approach has been attempted [14], but
the high computational cost of these frameworks preclude them from accurate
end-to-end volumetric prediction.

A secondary challenge lies in detecting small structures prevalent in medical
volume data. In contrast to objects in natural images, anatomical structures are
often small, and resolution may be limited by acquisition. In fact, small anomalies
are often of greater importance than the larger structures. These factors manifest
a unique challenge for dense labeling of medical volumes.

In this work, we first extend HED (2D-CNN) to HED-3D for direct dense vol-
ume labeling; we then propose a novel 3D-CNN architecture, 12I-3D, for precise
volume-to-volume labeling. Our approach tackles three key issues in dense med-
ical volume label prediction: (1) efficient volumetric labeling of medial data using
3D, volume-to-volume CNN architectures, (2) precise fine-to-fine and volume-
to-volume labeling, (3) nested multi-scale learning. We extend the typical fine-
to-coarse architecture by adding an efficient means to process high resolution
features late in the network, enabling precise voxel-level prediction that benefit
from coarse level guidance and nested multi-scale representations. We evaluate
our approach against the state-of-the-art in vessel wall detection.

2 Dense Volume-to-Volume Prediction

2.1 Pixel Level Prediction in 2D Images

Fully convolutional neural networks [7] were among the first methods to adapt
the fine-to-coarse structure to dense pixel-level prediction. The FCN architec-
ture added element-wise summations to VGGNet [2] that link coarse resolution
predictions to layers with finer strides. However, it has been shown that pulling
features directly from bottom layers to top layers is sub-optimal as the fine-level
features have no coarse-level guidance [4]. HED [13] produced top accuracy on
the BSDS500 dataset [8] with an alternative adaptation of VGGNet which fused
several boundary responses at different resolutions with weighted aggregation.
However, HED’s fine-to-coarse framework leaves fundamental limitations to pre-
cise prediction and a close look at the edge responses produced by HED reveals
many thick orphan edges. HED only achieves top accuracy after boundary refine-
ment via non-maximum suppression (NMS) and morphological thinning. This
approach is often sufficient for 2D tasks, however, it is less reliable in volumetric
data. Furthermore, NMS fails when the prediction resolution is lower than the
object separation resolution.

In these architectures, the most powerful outputs (in terms of predictive
power) lack the capability to produce fine resolution predictions. Not only is
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this problematic for making high resolution predictions, but coarse representa-
tions inform finer resolution predictions and finer resolution distinctions often
require complex predictive power. UNet [10] addressed some of these issues by
adding more convolutional layers, and using a loss function that penalizes poor
localization of adjacent structures. However, UNet does not directly learn nested
multi-level interactions and the large number of dense layers hinder efficiency in
3D tasks.

2.2 Precise Multi-Scale Voxel Level Prediction

Our framework addresses these crucial issues to volume-to-volume labeling and
applies them to vascular boundary detection in medical volumes. Our proposed
network, 12I-3D, consists of two paths: a fine-to-coarse path and a multi-scale
coarse-to-fine path. The fine-to-coarse network structure follows popular net-
work architecture and generates features with increasing feature abstraction and
greater spatial extent. By adding side outputs and a fusion layer, we obtain an
efficient 3D-CNN: HED-3D. As expected, HED-3D struggles to localize small
vascular structures, and requires a secondary path to increases prediction reso-
lution. I121-3D uses a secondary path to learn complex multi-scale interactions in
a coarse-to-fine fashion creating a fine-to-fine architecture.

Each stage of the coarse-to-fine path incorporates abstract representations
with higher resolution features to produce fine resolution responses that benefit
from multi-scale influences and coarse level guidance. Special ‘mixing’ layers
and two convolution layers combine these two inputs to minimize a multi-scale,
deeply supervised loss function. Here, deep supervision [6], plays an important
role through multiple loss functions that reward multi-scale integration at each
stage. Cascading this process results in features with large projective fields at
high resolution. Later layers benefit from abstract features, coarse level guidance,
and multi-scale integration; this culminates in a top most layer with the best
predictive power and highest resolution. Figure 1 depicts the layer-wise connected
3D convolutional neural network architectures of I12I-3D and HED-3D.

2.3 Formulation

We denote our input training set of N volumes by S = {(X,,,Y,),n=1,...,N},
where sample X,, = {l‘gn),j =1,...,|X,|} denotes the raw input volume and
Y, = {yj(-n),j =1,...,|X.l}, yj") € {1,.., K} denotes the corresponding ground
truth label map. For our task, K = 2, here we define the generic loss formula-
tion. We drop n for simplicity, as we consider volumes independently. Our goal
is to learn network parameters, W, that enable boundary detection at multi-
ple resolutions. Our approach produces M multi-scale outputs with QM%I input
resolution. Each output has an associated classifier whose weights are denoted

w = (wh, ..., wM), Loss for each of these outputs is defined as:
M
Lowt(W,w) = > €50 (W, wm), (1)

m=1



374 J. Merkow et al.

where £, denotes the volume-level loss function. Loss is computed over all voxels
in a training volume X and label map Y. Specifically, we define the following
cross-entropy loss function used in Eq. (1):

W, wm) = =35 log Pr(y; = k|X; W, w(™) (2)
k jeEY)

where Y} denotes the voxel truth label sets for the k'" class. Pr(y; =
kX W, wim) = a(agm)) € [0, 1] is computed using sigmoid function o (.) on the

activation value at voxel j. We obtain label map predictions )A’O(,ZL ) = J(Ag:ﬁ)),

where Agﬁ) = {agm), j=1,... Y|} are activations of the output of layer m.
Putting everything together, we minimize the following objective function via

standard stochastic gradient descent:
(W, w) = argmin(Lout (W, w)) (3)

During testing, given image X we obtain label map predictions from the out-
put layers: Yiop, = I2I(X, (W, w)), where I2I(-) denotes the label maps produced
by our network.

3 Network Architecture and Training

The coarse-to-fine path of I2I-3D, we mimic VGGNet’s [2] design with domain
specific modifications. First, we truncate at the fourth pooling layer resulting in
a network with 10 convolutional layers at four resolutions. Second, we decrease
the filter count of the first two convolution layers to 32. Lastly, we replace max
pooling with average pooling. For our HED-3D framework, we place deep super-
vision at side-outputs at each convolution layer just prior to pooling, as in [13].
These side-outputs are fused via weighted aggregation.

121-3D adds a pathway to HED-3D’s architectures to combines multi-scale
responses into higher resolution representations. The second structure follows
an inverted pattern of the fine-to-coarse path; it begins at the lowest resolution
and upsamples in place of pooling. Each stage of the coarse-to-fine path con-
tains a mixing layer and two convolutional layers. Mixing layers take two inputs:
one from the corresponding resolution in fine-to-coarse path and a second from
the output of the previous (coarser) stage in the coarse-to-fine path. Mixing
layers concatenate inputs and do a specialized 1 x 1 x 1 convolution operation
to mix multi-resolution input features. Mixing layers are similar to reduction
layers in GoogLeNet [12] but differ in usage and initialization. Mixing layers
directly hybridize low resolution and fine-to-coarse features, while maintaining
network efficiency. Mixing layer output is pass through two convolutional layers
to spatially mix the two streams. Each coarse-to-fine stage is deeply supervised
after the final convolution layer, just prior to upsampling. These side outputs
push each stage to produce higher quality predictions by incorporating informa-
tion from the lower resolution, more abstract representations These outputs are
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Fig. 1. The proposed network architecture 12I-3D. Our architecture couples fine-to-
coarse and coarse-to-fine convolutional structures and multi-scale loss to produce dense
voxel-level labels at input resolution. The number of channels is denoted on the left of
each convolution layer, arrows denote network connections and operations.

only used to promote multi-scale integration at each stage, and are phased out,
leaving single output at the top-most layer.

We begin by describing the training procedure for HED-3D. We, first, load
pre-trained weights (details in Sect.4) and place deep supervision at each of the
four multi-scale outputs and at the fusion output. We iteratively train starting
with a learning rate of 1e~” and decimate every 30k iterations. Weight updates
occur after every iteration till convergence.

For 121-3D, we attach a coarse-to-fine path and move deep supervision to new
multi-scale outputs. Each stage is initialize to produce the identity mapping of
the fine-to-coarse input. We decrease all learning rates in the fine-to-coarse path
to ﬁ and train until loss plateaus. These hyper-parameters force the network
to learn multi-scale features at each stage in order to minimize loss at each res-
olution. Finally, we return learning rate multipliers to 1, remove all supervision
on all outputs except the highest resolution, and train until convergence.

4 Experimentation and Results

In [9], the authors use direct voxel overlap for evaluation, however, this met-
ric fails to account for any localization error in boundary prediction and over-
penalizes usable boundaries that do not perfectly overlap with ground truth
boundaries. The metrics used here a 3D extension of the BSDS benchmark
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metrics [1] which are standard protocols for evaluating boundary contours in
natural images.

These metrics find match correspondences between ground truth and pre-
dicted contour boundaries. Matched voxels contribute to true positive counts,
and unmatched voxels contribute to fall-out and miss rates. We report three per-
formance measures: fixed threshold F measure (ODS), best per-image threshold
F measure (OIS), and average precision (AP) and show precision-recall curves
for each classifier.

Our dataset includes all 38 volumes used in [9] but introduces an 55 additional
volumes to form an expanded dataset with 93 volumes. This dataset includes a
variety of anatomical regions, including: abdominal, thoracic, cerebral, vertebral,
and lower extremity regions. All volumes are accompanied by 3D models which
were expertly built for computational blood flow simulation. Volumes were cap-
tured from individual patients for clinically indicated purposes via magnetic res-
onance (MR) or computed tomography (CT) imaging. Volumes include normal
physiologies as well as a variety of pathologies including: aneurysms, stenoses,
peripheral artery disease, congenital heart disease, and dissection. The dataset
contains various arterial vessel types, but only one structure is annotated per
volume. All volumes were obtained from http://www.vascularmodel.com.

We split volumes into training, validation, and test sets, each set contains
67, 7 and 19 volumes respectively and consist of both CT and MR data. Since
volumes contain incomplete annotation, only voxels inside annotated vessels and
those within 20 voxels of the vessel wall are considered during evaluation.

We pre-process each volume by whitening voxel intensities and cropping them
into overlapping, 96 x 96 x48, segments. A single segment takes about one second
to process on a NVidia K40 GPU and a typical volume (512 x 512 x 512) takes
less than a minute. As a result of inconsistent annotation, we only train on
volumes that contain over 0.25 % labeled vessel voxels (approx. 1000 of 442, 368
voxels).

Our networks are implemented in the popular Caffe library [5] where methods
were extended for 3D when necessary. Fine-to-coarse weights were generated
by pre-training a randomly initialized network on entire vessel label prediction
for a fixed number of iterations (50k) with a high learning rate. These labels
produce less overall loss, preventing unstable gradients from developing during
back-propagation.

We compare I12I-3D to the current state-of-the-art [9], a 2D-CNN baseline
(HED) [13] and our HED-3D architecture. HED (in 2D) was trained without
modification on individual slices from each volume. We also compare against the
widely used 3D-Canny edge detector.

Figures2 and 3 show the results of our experimentation. Figure 3 indicates
that our method out-performs all other methods, including the current state-of-
the-art. We also notice that 3D-CNN approaches considerably improves average
precision over 2D-CNN when comparing results from HED and HED-3D. The
precision-recall curves reveal that 12I-3D consistently boosts precision over HED-
3D indicating that our fine-to-fine multi-scale architecture improves localization.
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Fig. 2. Results of our HED-3D and 121-3D vessel boundary classifiers. (a) Input volume
and ground truth (in blue). (b) HED-3D result. (c) I2I-3D result. (d), (g) vessel cross
section and ground truth (in blue). (e), (h) HED-3D cross section result. (f), (i) 21-3D
cross section result. (Color figure online)
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Fig. 3. (left) Precision recall curves comparing our approach with state-of-the-art, our
baseline methods. (right) Performance metrics of our approach and baselines.

In Fig. 2, we see the results of 12I-3D characterized by stronger and more local-
ized responses when compared to HED-3D, showing the benefit of our fine-to-
fine, multi-scale learning approach. The fine-to-coarse architecture of HED and
HED-3D generate low resolution responses resulting in poor localization of tiny
structures and a weaker edge response. This indicates that 12I-3D’s multi-scale
representation enable precise localization.

5 Conclusion

We have proposed two network structures, HED-3D and I21-3D, that address
major issues in efficient volume-to-volume labeling. Our HED-3D framework
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demonstrates that processing volumetric data natively in 3D, improves perfor-
mance over its 2D counterpart; our framework, 12I-3D, efficiently learns multi-
scale hierarchal features and generates precise voxel-level predictions at input
resolution. We demonstrate through experimentation, that our approach is capa-
ble of fine localization and achieves state-of-the-art performance vessel boundary
detection without explicit a-priori information. We provide our source code and
pre-trained models to ensure that our approach can be applied to variety of
medical applications and domains at: https://github.com/jmerkow /I2I.
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