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Abstract. Effective utilization of heterogeneous multi-modal data for
Alzheimer’s Disease (AD) diagnosis and prognosis has always been ham-
pered by incomplete data. One method to deal with this is low-rank
matrix completion (LRMC), which simultaneous imputes missing data
features and target values of interest. Although LRMC yields reason-
able results, it implicitly weights features from all the modalities equally,
ignoring the differences in discriminative power of features from different
modalities. In this paper, we propose stability-weighted LRMC (swL-
RMC), an LRMC improvement that weights features and modalities
according to their importance and reliability. We introduce a method,
called stability weighting, to utilize subsampling techniques and outcomes
from a range of hyper-parameters of sparse feature learning to obtain a
stable set of weights. Incorporating these weights into LRMC, swLRMC
can better account for differences in features and modalities for improv-
ing diagnosis. Experimental results confirm that the proposed method
outperforms the conventional LRMC, feature-selection based LRMC,
and other state-of-the-art methods.

1 Introduction

Effective methods to jointly utilize heterogeneous multi-modal and longitudi-
nal data for Alzheimer’s Disease (AD) diagnosis and prognosis often need to
overcome the problem of incomplete data. Data are incomplete due to various
reasons, including cost concerns, poor data quality, and subject dropouts. Most
studies deal with this issue by simply discarding incomplete samples, hence sig-
nificantly reducing the sample size of the study.

A more effective approach to deal with missing data is by imputing them
using k-nearest neighbor, expectation maximization, low-rank matrix comple-
tion (LRMC) [2], or other methods [8,13]. However, these methods perform well
only if a small portion, but not a whole chunk, of the data is missing. To avoid
propagation of the imputation error to the diagnosis stage, Goldberg et al. [3]
propose to simultaneously impute the missing data and the diagnostic labels
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using LRMC. This approach, along with other variants [9], however, inherently
assumes that the features are equally important. This might not be the case
especially when the data are multi-modal and heterogeneous, with some fea-
tures being more discriminative than others [4,6,10]. For example, in our study
involving magnetic resonance imaging (MRI) data, positron emission tomogra-
phy (PET) data, and cognitive assessment data, we found that clinical scores,
though fewer in dimension, are more discriminative than PET data, and within
the PET data, only few features are related to the progression of mild cognitive
impairment (MCI), a prodromal stage of AD. To address this issue, the method
in [9] shrinks the data via selection of the most discriminant features and sam-
ples using sparse learning methods and then applies LRMC. Although effective,
this approach still neglects the disproportionate discriminative power of different
features, when employing LRMC.

In this paper, we explicitly consider the differential discriminative power of
features and modalities in our formulation of LRMC by weighting them using
a procedure called stability weighting. We first explain feature weighting, where
each feature is assigned a weight according to its feature-target relationship,
i.e., more discriminative features are assigned higher weights, and vice versa.
For instance, in sparse feature weighting [14], the feature-target regression coef-
ficients are used as feature weights. Feature weighting like [14] always involves
tuning one (or multiple) regularizing hyper-parameter(s), which is (are) normally
determined via cross-validation. However, as pointed out in [7], it is difficult to
choose a single set of hyper-parameter that is able to retain all the discriminative
features while removing the noisy features.

Stability weighting avoids the difficulties of proper regularization [7] in fea-
ture weighting by going beyond one set of hyper-parameters. It utilizes multiple
sets of hyper-parameters and subsampled data to compute a set of aggregated
weights for the features. Using random subsampling and aggregation, stability
weighting estimates the weights based on the “stability” of the contribution of a
feature. More specifically, we perform a series of logistic regression tasks, involv-
ing different hyper-parameters and different data subsets, for each modality.
Regression coefficients corresponding to the hyper-parameters that yield higher
prediction performance are then aggregated as feature weights. We use the term
“importance” and “reliability” to denote how good a feature and a modality are
in the prediction task, respectively. In the context of stability weighting, feature
importance is quantified by the aggregated weight values while modality reliabil-
ity is quantified by the performance measures. We then incorporate the feature
importance and modality reliability into LRMC, giving us stability-weighted
LRMC (swLRMC) for greater prediction accuracy.

The contribution of our work is two-fold. (1) We propose a stability weighting
procedure to quantify the importance of features and the reliability of modalities.
(2) We incorporate this information into the formulation of the proposed swL-
RMC for more robust and accurate prediction using incomplete heterogeneous
multi-modal data.
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2 Materials, Preprocessing and Feature Extraction

In this study, we focus on MCI and use the baseline multi-modal data from
ADNI dataset1, including MRI, PET, and clinical scores (i.e., Mini-Mental
State Exam (MMSE), Clinical Dementia Rating (CDR-global, CDR-SOB), and
Alzheimer’s Disease Assessment Scale (ADAS-11, ADAS-13)). Only MRI data is
complete, the other two modalities are incomplete. MCI subjects who progressed
to AD within 48 month are retrospectively labeled as pMCI, whereas those who
remained stable are labeled as sMCI. MCI subjects who progressed to AD after
the 48th month are excluded from this study. Table 1 shows the demographic
information of the subjects involved.

Table 1. Demographic information of MCI subjects involved in this study. (Edu.: Edu-
cation)

# Subjects Gender (M/F) Age (years) Edu. (years)

pMCI 169 103/66 74.6 ± 6.7 15.8 ± 2.8

sMCI 61 45/16 73.9 ± 7.7 14.9 ± 3.4

Total 230 148/82 - -

We use region-of-interest (ROI)-based features from the MRI and PET
images in this study. The processing steps involved are described as follows.
Each MRI image was AC-PC aligned using MIPAV2, corrected for intensity
inhomogeneity using the N3 algorithm, skull stripped, tissue segmented, and
registered using a template to obtain subject-labeled image with 93 ROIs [11].
Gray matter (GM) volumes, normalized by the total intracranial volume, were
extracted from 93 ROIs as features [9,10]. We also linearly aligned each PET
image to its corresponding MRI image, and used the mean intensity values of
each ROI as PET features.

3 Method

Figure 1 gives an overview of the proposed swLRMC framework. The main dif-
ference between swLRMC and LRMC is the introduction of a stability weight
matrix W, which is computed via stability weighting. W is then used in swL-
RMC to simultaneously impute the missing feature values and the unknown tar-
get values (i.e., diagnostic labels and conversion times). We provide the details
of each step in the following.

1 http://adni.loni.ucla.edu.
2 http://mipav.cit.nih.gov.

http://adni.loni.ucla.edu
http://mipav.cit.nih.gov
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Fig. 1. Stability-weighted low-rank matrix completion (swLRMC).

3.1 Notation

Let X = [X(1) · · ·X(m)] ∈ R
N×d denotes the feature matrix of N samples.

The features from m modalities (i.e., MRI, PET and clinical scores (Cli)) are
concatenated to give d features per sample. Since, for each sample, not all the
modalities are available, X is incomplete with some missing values. We use Y =
[y1 · · ·yt] ∈ R

N×t to denote the corresponding target matrix with two targets
(t = 2), i.e., the diagnostic labels (1 for pMCI and −1 for sMCI), and the
conversion time (i.e., number of months prior to AD conversion). The conversion
time of an sMCI subject should ideally be set to infinity. But for feasibility, we set
the conversion time to a large value computed as 12 months plus the maximum
conversion time over all pMCI samples. Throughout the paper, we use bold
upper-case to denote matrices and bold lower-case to denote column vectors.

3.2 Low-Rank Matrix Completion (LRMC)

Prediction using LRMC is based on several assumptions. First, it assumes linear
relationship between X and Y, i.e., Y = [X 1] ∗ β, where 1 is a column vector of
all 1’s, and β is the coefficient matrix. Second, it assumes X is low-rank, i.e., rows
(columns) of X could be represented by other rows (columns). It can be inferred
then that the concatenated matrix M = [X 1 Y] is also low-rank [3]. Hence, it
follows that LRMC can be applied on M to impute the missing feature values and
the unknown output targets simultaneously, without knowing β. This is achieved
by solving minZ{‖Z‖∗ | PΩ(M) = PΩ(Z)} [2], where Z is the completed version
of M, Ω is the set of indices of known values in M, P is the projection operator,
and ‖ · ‖∗ is the nuclear norm (i.e., sum of singular values), which is used as a
convex surrogate for matrix rank. In the presence of noise, and using different loss
functions for X and Y, this problem is reformulated as [3]:

min
Z

μ‖Z‖∗ +
1

|ΩX | ‖PΩX
(Z − M)‖2F +

t∑

i

λi

|Ωyi
|Li(PΩyi

(Z),PΩyi
(M)), (1)

where Li(·, ·) is the loss function for the i-th column of Y. Since the first target
is the diagnostic label (binary) and the second target is the conversion time
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(continuous), we use logistic loss (L1(u,v) =
∑

j log(1+exp(−ujvj))) and mean
square loss (L2(u,v) =

∑
j 1/2(uj − vj)2) functions for the first and second

targets, respectively. ΩX and Ωyi
are the index sets of the known feature values

and target outputs in M, respectively. | · | denotes the cardinality of a set,
and ‖ · ‖F is the Frobenius norm. Parameters μ and λi are the tuning hyper-
parameters that control the effect of each term. The features fitting term (second
term) in (1) shows that the conventional LRMC treats all the features equally,
without considering the importance of each feature in relation to the target(s).
In the following, we propose to modulate this fitting term according to the
feature-target relationship.

3.3 Stability-Weighted LRMC (swLRMC)

Due to missing feature values for some modalities, conventional feature selection
methods cannot be applied to the whole data. Thus, we compute the weights
separately for each modality. Denoting the importance of features in the j-th
modality as vector w(j) and the reliability of the j-th modality as s(j), we refor-
mulate the second term of (1) as follows:

1
|ΩX |

m∑

j=1

s(j)‖PΩ
X(j) (diag(w(j))(ZX(j) − X(j)))‖2F , (2)

where ZX(j) is the j-th modality feature part of Z, ΩX(j) is the known value
indices of X(j), and diag(·) is the diagonal operator. Each element in w(j) quan-
tifies the importance of the corresponding feature in X(j) in terms of discrimi-
native power. More important features are given higher values, so that they are
less affected by the smoothing effect of the low rank constraint (first term of
(1)), and play more dominant roles in the optimization process. In the following,
we explain how w(j) and s(j) are obtained via stability weighting.

Stability Weighting: Stability weighting uses data subsampling and sparse
feature weighting with multiple hyper-parameters (similar to stability selection
[7]), to improve robustness in feature weighting. Any feature weighting method
can be used for stability weighting. In this paper, we choose logistic elastic net
[14]. First, we use elastic net to compute a weight vector for each modality:

minβ(i)‖log(1 + exp(−y1 � (X(i)β(i))))‖1 + α1‖β(i)‖1 + α2‖β(i)‖22 , (3)

where y1 is a column vector of diagnostic labels, � is element-wise multiplica-
tion, α1 and α2 are the tuning hyper-parameters, and β(i) is a sparse coefficient
vector. The magnitude of each element in β(i) can be seen as an indicator of
the importance of the corresponding feature in X(i). Note that, in this process
one needs to determine the hyper-parameter α = [α1 α2], which is normally
done through cross-validation. However, instead of limiting ourselves to just one
hyper-parameter and one set of data, we use a range of hyper-parameters and
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the subsamples of training data to determine the feature weights. More specif-
ically, we solve (3) using a range of α values using 5-fold cross-validation on
the training data with 10 repetitions. For each α, we therefore have 50 ver-
sions of β(i), and one average F-score3. We choose three α values that give us
highest F-score values, and compute the weight vector for the i-th modality as
w(i) = β̄

(i)
/max(β̄(i)) + ε, where ε is a small constant and β̄

(i) is the mean
absolute vector of all (50 × 3 = 150) β(i)’s that correspond to the α’s with
the highest average F-scores. We then use the best average F-score to quantify
the reliability of using X(i) in predicting target y1, which is denoted as s(i).
Note that s(i) and w(i) in (2) can be combined into a single weight matrix as
W = diag([s(1)w(1); · · · ; s(m)w(m)]). Finally, the compact equivalent form of
swLRMC is given as

min
Z

μ‖Z‖∗ +
1

|ΩX | ‖PΩX (W(Z − M))‖2
F +

t∑

i

λi

|Ωyi |
Li(PΩyi

(Z), PΩyi
(M)). (4)

Optimization: Equation (4) can be solved to obtain matrix Z by iterating
through l in the two steps below until convergence [3]:

1. Gradient Step: Gl = Zl − τg(Zl), where G is a intermediate matrix, τ is the
step size, and g(Zl) is the matrix gradient defined as

g(Zij) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ1

|Ωy1 |
−Mij

1+exp(MijZij)
, (i, j) ∈ Ωy1

Wjj

|ΩX | (Mij − Zij), (i, j) ∈ ΩX
λ2

|Ωy2 | (Mij − Zij), (i, j) ∈ Ωy2

0, otherwise

(5)

2. Shrinkage Step [2]: Zl+1 = Sτμ(Gl) = P (max(Λ − τμ, 0))QT , where S(·) is
the matrix shrinkage operator, PΛQT is the SVD of Gl, and max(·) is the
element-wise maximum operator.

4 Results and Discussions

We evaluated the proposed method, swLRMC, using multi-modal data for
the ADNI database. We evaluated two versions of swLRMC: (1) swLRMC on
the original feature matrix without removing any features, and (2) swLRMC
on feature-selected matrix (fs-swLRMC) by discarding the features that were
selected less than 50 % of the time in stability selection. We compared our meth-
ods with two baseline LRMC methods: (1) LRMC without feature selection,
and (2) LRMC with sparse feature selection (fs-LRMC). The hyper-parameters
μ, λ1, λ2 for all methods were selected automatically using Bayesian hyper-
parameter optimization [1] in the ranges of {10−6, · · · , 10−2}, {10−4, · · · , 10−1},

3 We use F-score as performance measure as our dataset is unbalanced.
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and {10−4, · · · , 10−1}, respectively. For sparse feature selection, we used the
SLEP package4 and performed 5-fold cross validation on the training data to
select the best hyper-parameter.

Since the dataset we used was unbalanced, we used the F-score and the area
under the ROC curve (AUC) to measure the classification performance, and
correlation coefficient (CC) to measure the accuracy of conversion time predic-
tion. All the results reported are the averages of 10 repetitions of 10-fold cross
validation. The results shown in Fig. 2 indicate that swLRMC (blue bars) per-
forms consistently better than baseline LRMC (orange bar), for all the perfor-
mance metrics and modality combinations. It is worth noting that swLRMC and
fs-swLRMC seem to be performing almost equally well, but fs-swLRMC is faster
in computation, due to its smaller matrix size during imputation. It is also inter-
esting to see that swLRMC performs better than fs-LRMC in terms of F-score
and CC values, indicating that penalizing less discriminative features is bet-
ter than removing them. Another encouraging observation is that swLRMC is
less sensitive to “noisy” features in the multi-modal data. This can be seen in
MRI+PET combination, where performance of LRMC drops, compared to the
case where only MRI is used, whereas the performance of swLRMC improves.
A similar pattern can be observed for MRI+PET+Cli, where LRMC performs
poorer than MRI+Cli case, whereas swLRMC maintains its performance.

MRI MRI+PET MRI+Cli MRI+PET+Cli
0.8
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∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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C

Fig. 2. Comparisons between the baseline LRMC and the proposed swLRMC methods
using multi-modal data. The first two plots: pMCI/sMCI classification results (first
target), the last plot: conversion time prediction results (second target). Error bars:
standard deviations, *: statistically significant.

4 http://www.yelab.net/software/SLEP/.

http://www.yelab.net/software/SLEP/
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Table 2. Comparison with [12] and [5]. Bold: Best results, *: Statistically significant.

Data F-score AUC CC

swLRMC [12] [5] swLRMC [12] [5] swLRMC [12] [5]

MRI 0.862 0.853* 0.777* 0.776 0.758* 0.755* 0.506 0.427* 0.464*

MRI+PET 0.870 0.853* 0.798* 0.802 0.786* 0.806 0.523 0.469* 0.492*

MRI+Cli 0.892 0.853* 0.809* 0.838 0.829* 0.841 0.594 0.567* 0.560*

MRI+PET+Cli 0.883 0.859* 0.805* 0.851 0.827* 0.842 0.599 0.568* 0.553*

We also show in Table 2 a comparison of swLRMC with two methods that
works with incomplete dataset: (1) incomplete data multi-task learning [12], and
(2) Ingalhalikar’s ensemble method [5]. We selected the best hyper-parameters
for these methods using 5-fold cross validation. We used logistic loss and mean-
square loss function for classification and regression, respectively, for [12]. The
highest score for each category is highlighted in bold. The results show that
swLRMC outperforms both methods in F-score and CC for all the combinations
of modalities. In terms of AUC, swLRMC gives comparable performance.

To test the significance of the results, we perform paired t-test between the
best result and the other results in each category. The outcomes of the paired t-
test are included in Fig. 2 and Table 2, where statistically significantly difference
results in comparison with the best method, at 95 % confidence level, are marked
with asterisks. The results show that the improvement of the proposed method is
statistically significant in terms of F-score and CC values, in all the combinations
of multi-modal data.

5 Conclusion

We have demonstrated that the proposed method, swLRMC, which explicitly
considers feature importance and modality reliability using stability weighting
procedure, outperforms conventional LRMC, fs-LRMC, and two state-of-the-
art methods that were designed for incomplete multi-modal data. Experimental
results show that our proposed method is effective when dealing with incomplete
multi-modal data, where not all the feature values are equally important.
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