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Abstract. 4D ultrasound imaging of the fetal heart relies on reconstruc-
tions from B-mode images. In the presence of fetal or mother’s motion,
current approaches suffer from artifacts. We propose to use many sweeps
and exploit the resulting redundancy to recover from motion by recon-
structing a 4D image which is consistent in phase, space and time. We
first quantified the performance of 7 formulations on simulated data.
Reconstructions of the best and baseline approach were then visually
compared for 10 in-vivo sequences. Ratings from 4 observers showed
that the proposed consistent reconstruction significantly improved image
quality.

1 Introduction

Fast acquisition rates and non-invasiveness of ultrasound (US) imaging makes
it an ideal modality for screening the fetal heart to detect congenital heart mal-
formation. Traditionally, the functioning of fetal heart is inspected in real-time
during B-mode imaging. Guidelines recommend examination of the four-chamber
and outflow tract views [1]. Yet prenatal detection rates vary widely, due to dif-
ferences in examiner experience, maternal obesity, transducer frequency, gesta-
tional age, amniotic fluid volume and fetal position [1]. 4D US imaging simplifies
the assessment of the outflow tracts, allows a more detailed examination and
contributes to the diagnostic evaluation in case of complex heart defects [1,2].

4D US of the fetal heart requires special image reconstruction methods, since
the speed of 3D US acquisitions using common mechanically steered probes is
too slow compared to the fetal heart rate (e.g. 7–10 vs. 2–2.5 Hz). A general app-
roach for such a 4D reconstruction problem is to continuously acquire individual
2D images covering the region of interest [3–5], which then need reordering to
extract consistent 3D images. While cardiac 4D MR reconstructions for adults
can be supported by ECG and respirator signals [6], these signals cannot reli-
ably extracted for fetus [7]. Hence sorting has relied on extracting the periodic
cardiac signal from the images and that no other fetal motion is present [3,4].

The most common method for fetal 4D US reconstruction is the STIC
(Spatio-Temporal Image Correlation) method [4], where autocorrelation is used
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to detect the systolic peaks, the fetal heart rate (HR) is deduced and the frames
are sorted according to their resulting phases. STIC builds on slow, single sweep
US acquisitions (e.g. 150 frames/s, 25o in 10 s, 1500 frames) and works well if
only fetal cardiac motion is present. Yet, additional motion from spontaneous
fetal activity or mother’s breathing creates artifacts [8,9]. Such artifacts cannot
be remedied, as motion affects all consecutive frame positions, which in a sin-
gle sweep have only been acquired once. Hence mothers are asked to hold their
breath and operators may wait for a period of less fetal movement, which pro-
longs examination time. Volumes acquired by non STIC experts showed more
motion artifacts (42 %) than those by experts (16 %) [8]. Reports on correcting
motion for fetal heart 4D US reconstruction have not been encountered.

Image registration has been used to improve reconstructions, but is generally
computationally very expensive. For example, correction of fetal 3D MRIs by
slice-to-volume rigid registration of local patches required 40 min on multiple
GPUs [10]. Correction of adult 3D cardiac MRIs, after gating based on ECG and
breathing belt signals, took 3 h on a 16 workstation cluster [6]. For respiratory
motion, 4D US reconstruction has been based on extracting a gating signal per
slice position by image dimensionality reduction and then matched these signals
across slices [5]. This relies on gathering reliable motion statistics per slice, and
hence might not be robust to severe, non-periodic motion, e.g. drift.

To avoid time-consuming registrations, we follow the approach of selecting
suitable image slices from repeated mechanically-swept US acquisitions. Herein
we focus on the consistency of the 4D reconstruction and the detection of out-
liers due to motion. A large range of selection criteria was first quantitatively
evaluated on simulated US sequences. Then, to have statistical power, only the
baseline and the best method were applied to in-vivo data, and the visual appear-
ances of the reconstructions were scored by 3 researchers and a gynecologist.

2 Material

Simulated Data - To support method development by having a ground truth,
B-mode images were simulated from an in-silicon phantom (see Fig. 1a) based
on [11]. This method uses GPU ray-tracing to simulate US beam propagation and
interactions with given surfaces to accurately simulate typical US attenuation,
reflection, refraction, and shadowing effects. Following the mechanical sweep
protocol of the real data, 3845 frames at an image frequency of fi = 279 frames/s
were simulated. The in-silicon phantom consisted of an ellipsoidal object with
semi-axes of a = [9.911.512.3] mm length. The object changed in size (a± 20 %)
according to a sinusoidal pattern with the simulated HR frequency. Regular HR
was set to 143.08 beats/min (i.e. 117 frames/beat). Irregular HR was modelled by
linearly changing it by 5 % over 1500 frames. Fetal global motion was simulated
by applying a [4 8 3] mm translation and a [4 3 8]o rotation from frame 701 to
1100 and their inverse from frames 1701 to 2200, see Fig. 1c. Simulations included
3 scenarios, namely (Sim1) irregular HR, no global motion, (Sim2) regular HR,
with global motion, and (Sim3) irregular HR, with global motion.
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(a) (b) (c)

Fig. 1. Illustration of (a) the in-silicon phantom geometry with a transducer plane, (b)
a simulated US image and (c) the simulated motion over time.

In-Vivo Data - A total of 10 US sequences of 6 fetus at 19–25 weeks of
gestation (mean ± SD heart semi-axes of [10.99.210.6] ± [3.02.52.3] mm) were
acquired. B-mode images were continuously acquired at fi ∈ [217, 372] frames/s
(i.e. ≈[87,148] frames/beat) during 56–128 motorized forward-backward sweeps,
each covering 25o and consisting of 31 frames (i.e. ≈[18,46] beats/sequence).

3 Method

Reconstruction is based on first estimating the heart rate. Then frames are
selected for reconstruction according to phase, spatial and temporal consistency.

3.1 Mean Heart Rate (HR) Estimation

We tested two approaches (A1, A2) for automatically estimating HR fh (Hz).
A1 was based on computing the autocorrelation of the intensity profile over
time per pixel, taking their mean and then extracting the power spectrum via
Fourier transform. For A2, the image similarity J(i, j) between frames i and j was
measured using various (dis)similarity measures (correlation coefficient (CC),
mean square difference (MSD), mutual information (MI) and US specific image
similarity measures SK1, SK2, CD1, CD2 [12]). The power spectrum of each row
of J was then extracted via Fourier transform and their mean obtained. For each
method the resulting spectrum was bandpass filtered around the expected HR
(100–200 beats/min) and fh was set to the frequency at its global maxima.

3.2 4D Reconstruction

Figure 2 illustrates the problem of reconstructing P 3D phase images from B
B-mode images continuously acquired at K positions in S sweeps. From the
estimated HR fh, the phase value qb ∈ [0.5,P + 0.5] of the B-mode image Ib
(acquired at time t = b/fi) was estimated from the fractional part of the heart
beats (tfh), i.e. qb = (P − 1)(tfh − �tfh�) + 0.5. The frame from sweep s and
position k is denoted as Iks with associated phase qks . For reconstructing P 3D
phase images, P × K indices (called škp) need to be determined.

Table 1 provides an overview of the tested reconstruction methods. Method
M0 selects frames whose phase qks is closest to the desired phase p [3,4].
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Fig. 2. Problem overview: a sequence of B B-mode images from S sweeps of K positions
need to be reconstructed into P 3D images capturing individual heart-beat phases.

Table 1. Overview of methods M0 to M6. Optimization included phase difference PD,
spatial inconsistency cost SC and temporal inconsistency cost TC.

Name fh Cost Optimization type Reference image Imš

M0 fixed PD global n/a

M1 fixed SC sequential m=1,
√
PD < 0.5, min(s)

M2 fixed SC sequential m=�K/2�, √
PD < 0.5, min(s)

M3 fixed SC sequential m=�K/2�, √
PD < 0.5, max(sumCC)

M4 fixed PD, SC global n/a

M5 opt. PD, SC global n/a

M6 fixed PD, SC, TC TC sequential n/a

Greedy methods M1–M3 first determine for each phase p a reference B-mode
image Imšmp and then sequentially minimize spatial inconsistency, i.e.

šk+1
p = arg min

s∈Sk+1
p

D
(
Ikskp , Ik+1

s

)
for k = {m,m + 1, . . . ,K-1,m-1,m-2, . . . , 1}

(1)
where D is an image dissimilarity measure and Sk

p = {s| |qks − p| < 0.5} is the
set of sweep indices of frames at position k belonging to phase p. For M1, Imšmp is
the first frame at position m = 1, which belongs to phase p i.e. š1p = min S1

p . M2
is the same as M1 apart from using the midframe (m = �K/2�). In M3 the most
typical midframe is used as reference, i.e. the midframe which has the highest
correlation with all other midframes within the phase range S�K/2�

p :

š�K/2�
p = arg max

s∈S�K/2�
p

∑

r∈S�K/2�
p

CC
(
I�K/2�
s , I�K/2�

r

)
. (2)

In M4–M6 different cost functions are globally minimized using dynamic
programming for determining the best P × K frame selection indices škp. M4
balances the phase difference PD against the spatial inconsistency cost SC:

Čfh = min
skp∈S

P∑
p=1

⎛
⎜⎜⎜⎝

K∑
k=1

(
qkskp − p

)2

︸ ︷︷ ︸
PDk

p

+α

K−1∑
k=1

D
(
Ikskp , Ik+1

sk+1
p

)
︸ ︷︷ ︸

SCk
p

⎞
⎟⎟⎟⎠ (3)
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where weight α =
∑

k αk/K was automatically determined by αk = |PDk/SCk|
with PDk denoting the mean of PDk

p for the R = 10 closest observations to
p and SCk being the mean of SCk

p for the R most similar spatial neighbours.
M5 is the same as M4 apart from also allowing variations in the estimated
HR fh through an additional grid search over 1/f ∈ [1/fh ± 0.05] s to minimize
Čf = minfh∈f Čfh . M6 extends Eq. (3) by adding a term for temporal consistency
(TC):

Čfh= min
skp∈S

P∑
p=1

(
K∑

k=1

PDk
p + α

K−1∑
k=1

SCk
p + β

K∑
k=1

TCk
p

)
(4)

where TCk
p = D(Ikskp , Ik

sk[(p−1)modP ]
), β =

∑
k |PD

k

p/(TC
k

pK)| and TC
k

p denotes

the mean of TCk
p for the R most similar temporal neighbours. Equation (4) was

sequentially optimized until convergence after reconstructing a phase via Eq. (3).

Outlier Removal (OR) - Having observed on simulated and real data that
motion leads to low CC values when comparing images (see Fig. 3), we also
tested all method after removing low correlating sweeps. For this we created the
CC matrix J for the midframes, determined the midframe with the lowest mean
correlation to all others, and discarded the associated sweep. This was continued
until the lowest mean correlation was >0.5 or only 50 % of sweeps were left.

Sim3

#2

Fig. 3. (left) Example CC matrix J of midframes from Sim3 and for in-vivo sequence
#2. (middle, right) Power spectra from (middle) J and (right) autocorrelation method.

4 Experiments and Results

4.1 Mean Heart Rate (HR) Estimation

HR ground truth for in-vivo data was estimated from M-mode traces by counting
the number of heart cycles between the first and the last visible extrema.
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Table 2. Ground truth (GT) heart rate (in beats/min) and difference (GT-estimation)
for estimation methods using (A1) autocorrelation or (A2) image similarities.

Method/sequence Sim1 Sim2 Sim3 In-vivo1 In-vivo2 In-vivo3 In-vivo4

GT 143.08 143.08 143.08 148.06 154.29 159.34 147.86

A1 0.00 0.00 0.00 −0.75 0.34 0.60 0.46

A2 CC 0.00 0.00 4.62 −0.75 −2.03 0.60 0.46

A2 MSD 0.00 0.00 0.00 −0.75 16.92 0.60 0.46

A2 SK1 0.00 −4.62 −4.62 −0.75 −2.03 0.60 0.46

A2 MI,SK2,CD1,CD2 0.00 0.00 0.00 −0.75 −2.03 0.60 0.46

Table 2 lists the errors in automatic HR estimation for the 3 simulations
and 4 in-vivo sequences. Errors were below 0.6 % for autocorrelation (A1),
and below 3.5 % for the image similarity measures (A2) apart from MSD for
in-vivo sequence #2 (11.0 %). Hence we used A1 for estimating HR for all 4D
reconstructions.

4.2 4D Reconstruction of Simulated Data

The performance for the simulations was quantified by combined motion errors.
For this, phase errors were converted to motion errors by assigning to each phase
value the corresponding mean change in semi axis length (±2.25 mm).

Table 3 lists the mean absolute error for the most complex simulation (Sim3)
when applying methods M0–M6 using one of 3 image dissimilarity measures
D, and including outlier removal (OR�) or not (OR×). Highest accuracy was

Table 3. (top-left) Table with mean absolute errors (in mm) for simulation Sim3. The
lowest errors are marked in bold. (top-right) Visualization of table results. (bottom)
Visualization of results for all simulations and their mean (Sim123).

D OR M0 M1 M2 M3 M4 M5 M6
CC × 2.59 1.68 0.50 0.58 0.88 6.04 0.93
CD2 × 2.59 0.92 0.36 0.47 2.14 4.49 0.39
MI × 2.59 1.81 0.64 0.77 3.95 5.59 1.57
CC � 0.71 0.57 0.50 0.59 0.54 1.25 0.55
CD2 � 0.71 0.62 0.36 0.47 0.68 1.51 0.36
MI � 0.71 0.88 0.64 0.77 0.61 1.59 1.03
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a b c d

Fig. 4. Orthogonal example slices from reconstruction of simulation Sim3 for (a)
ground truth and methods (b) M0, (c) M2-CD2-OR� and (d) M6-CD2-OR�.

achieved by M2 based on CD2 with or without OR (M2-CD2) and by M6-CD2-
OR�. The result overview shows that without motion (Sim1), the errors were
low and OR had no impact. For simulations with motion, additional optimiza-
tion of the heart rate (M5) was counter-productive, while OR generally helped.
For the motion scenario with regular heart rate, lowest errors were achieved with
M6-CD2 (×: 0.12, �: 0.11 mm) followed by M2-CD2 (0.29 mm). When consid-
ering the 3 simulations, M2-CD2 (0.31 mm) and M6-CD2 (×: 0.26, �: 0.23 mm)
still provided the lowest errors. The mean runtime of M0, M2, or M6 with OR
was 12 s, 191 s, or 285 s, respectively, when reconstructing Sim3 on a single CPU
using non-optimized Matlab� code. Prior OR reduced the image data by 31 %
and the runtime of M2 (M6) by 58 (59)%. Figure 4 shows example reconstruc-
tions for Sim3. Artifacts can be observed for M0 across the combined frames.
Reconstructions by the best OR� methods are both very similar to the ground
truth. Due to its lower runtime, we selected M2-CD2-OR� for the in-vivo eval-
uation.

4.3 4D Reconstruction of In-Vivo Data

The reconstructed 4D US images were visually inspected using the vv image
viewer [13]. Four raters were asked to compare the image quality provided by 2
methods for 10 cases and to rate them in a Likert scale as A either (score 1: ‘much
better’, 2: ‘better’, 3: ‘equal’, 4: ‘worse’, or 5: ‘much worse’) than B. The mean
score when comparing M2-CD2-OR� against M0 was 2.1 (close to ‘better’). The
distribution of the 5 categories was 1: 20.0 %, 2: 57.5 %, 3: 15.0 %, 4: 7.5 % and
5: 0 %. The mean score of the 4 raters ranged from 1.8 to 2.4, with the clinician’s
result being closest to the mean (2.2). The median score (2: ‘better’) was sta-
tistically significantly different from score 3 (‘equal’) at the <0.0001 level using
the Wilcoxon signed rank test. Raters observed reduced artifacts across frames
and fewer motion artifacts. Figure 5 shows sample reconstructions. Misalignment
artifacts are clearly reduced by M2-CD2-OR�.
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a b c d

Fig. 5. Example of a representative in-vivo reconstruction (mean score 1.75) for (a,b)
M0 and (c,d) M2-CD2-OR� for (a,c) phase 2 and (b,d) difference phase 3 - phase 2.

5 Discussion and Conclusion

We developed a fast reconstruction method, which improved reconstructions of
4D fetal heart US images noticeable in comparison to neglecting the presence
of fetal motion. Based on evaluations on simulated data, the proposed outlier
removal was found beneficial. The most successful methods were M6 by optimiz-
ing phase, spatial and temporal consistency, and M2 by using the first midframe
within a phase and iteratively selecting the most similar neighbouring slice.

The developed framework is suitable for continuous, long acquisitions. Dis-
similarity calculation of neighbouring slices (97 % of M3 runtime) is easily paral-
lelizable. A real-time implementation can also use the outlier removal criterion to
process midframes immediately for providing real-time feedback on acquisition
quality. The out-of-plane image resolution can be improved by denser sampling
(slower speed) of the sweep. Given the relatively low number of rejected outliers
in this study, reconstruction of more phases should also be possible, if needed.
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