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Abstract. We present a continuous model for structural brain connec-
tivity based on the Poisson point process. The model treats each stream-
line curve in a tractography as an observed event in connectome space,
here a product space of cortical white matter boundaries. We approxi-
mate the model parameter via kernel density estimation. To deal with
the heavy computational burden, we develop a fast parameter estima-
tion method by pre-computing associated Legendre products of the data,
leveraging properties of the spherical heat kernel. We show how our app-
roach can be used to assess the quality of cortical parcellations with
respect to connectivty. We further present empirical results that suggest
the “discrete” connectomes derived from our model have substantially
higher test-retest reliability compared to standard methods.
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1 Introduction

In recent years, the study of structural and functional brain connectivity has
expanded rapidly. Following the rise of diffusion and functional MRI, connec-
tomics has unlocked a wealth of knowledge to be explored. Almost synonymous
with the connectome is the network-theory based representation of the brain.
In much of the recent literature, the quantitative analysis of connectomes has
focused on region-to-region connectivity. This paradigm equates physical brain
regions with nodes in a graph, and uses observed structural measurements or
functional correlations as a proxy for edge strengths between nodes.

Critical to this representation of connectivity is the delineation of brain
regions, the parcellation. Multiple studies have shown that the choice of parcel-
lation influences the graph statistics of both structural and functional networks
[15,17,18]. It remains an open question which of the proposed parcellations is
the optimal representation, or even if such a parcellation exists [14].

It is thus useful to construct a more general framework for cortical connectiv-
ity, one in which any particular parcellation of the cortex may be expressed and
its connectivity matrix derived, and one in which the variability of connectivity
measures can be modeled and assessed statistically. It is also important that
this framework allow comparisons between parcellations, and representations in
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this framework must be both analytically and computationally tractable. Since
several brain parcellations at the macroscopic scale are possible, a representation
of connectivity that is independent of parcellation is particularly appealing.

In this paper, we develop such a general framework for a parcellation inde-
pendent connectivity representation, building on the work of [8]. We describe a
continuous point process model for the generation of an observed tract1 (stream-
line) intersections with the cortical surface, from which we may recover a dis-
tribution of edge strengths for any pair of cortical regions, as measured by the
inter-region tract count. Our model is an intensity function over the product
space of the cortical surface with itself, assigning to every pair of points on the
surface a point connectivity. We describe an efficient method to estimate the
parameter of the model, as well as a method to recover the region-to-region edge
strength. We then demonstrate the estimation of the model on a Test-Retest
dataset. We provide reproducibility estimates for our method and the standard
direct count methods [10] for comparison. We also compare the representational
power of common cortical parcellations with respect to a variety of measures.

2 Continuous Connectivity Model

The key theoretical component of our work is the use of point process theory
to describe estimated cortical tract projections. A point process is a random
process where any realization consists of a collection of discrete points on a
measurable space. The most basic of these processes is the Poisson process, in
which events occur independently at a specific asymptotic intensity (rate) λ over
the chosen domain [12]. λ completely characterizes each particular process, and
is often defined as a function λ : Domain → R

+, which allows the process to
vary in intensity by location. The expected count of any sub-region (subset) of
the domain is its total intensity, the integral of λ over the sub-region. In this
paper, our domain is the connectivity space of the cortex, the set of all pairs of
points on the surface, and the events are estimated tract intersections with the
cortical surface.

2.1 Model Definition

Let Ω be union of two disjoint subspaces each diffeomorphic to the 2-sphere
representing the white matter boundaries in each hemisphere. Further consider
the space Ω × Ω, which here represents all possible end point pairs for tracts
that reach the white matter boundary. We treat the observation of such tracts as
events generated by an inhomogeneous (symmetric) Poisson process on Ω × Ω;
in our case, for every event (x, y) we have a symmetric event (y, x).

1 It is critical to distinguish between white matter fibers (fascicles) and observed
“tracts.” Here, “tracts” denotes the 3d-curves recovered from Diffusion Weighted
Imaging via tractography algorithms.
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Assuming that each event is independent of all other events except for its
symmetric event (i.e., each tract is recovered independently), we model con-
nectivity as a intensity function λ : Ω × Ω → R

+, such that for any regions
E1, E2 ⊂ Ω, the number of events is Poisson distributed with parameter

C(E1, E2) =
∫∫

E1,E2

λ(x, y)dxdy. (1)

Due to properties of the Poisson distribution, the expected number of tracts is
exactly C(E1, E2). For any collection of regions {Ei}N

i=1 = P , we can compute a
weighted graph G(P, λ) by computing each C(Ei, Ej) for pairs (Ei, Ej) ∈ P ×P .
Each node in this graph represents a region, and each weighted edge represents
the pairwise connectivity of the pair of nodes (regions) it connects. We call P a
parcellation of Ω if

⋃
i Ei = Ω and

⋂
i Ei has measure 0 ({Ei} is almost disjoint).

2.2 Recovery of the Intensity Function

A sufficient statistic for Poisson process models is the intensity function λ(x, y).
Estimation of the function is non-trivial, and has been the subject of much
study in the spatial statistics community [3]. We choose to use a non-parametric
Kernel Density Estimation (KDE) approach due to an efficient closed form for
bandwidth estimation described below. This process is self-tuning up to a choice
of desiderata for the bandwidth parameter.

We first inflate each surface to a sphere and register them using a spheri-
cal registration (See Sect. 3.1); however this entire method can be undertaken
without group registration. We treat each hemisphere as disjoint from the other,
allowing us to treat Ω × Ω as the product of spheres (S1 ∪ S2) × (S1 ∪ S2).
Throughout the rest of the paper D denotes a dataset containing observed tract
endpoints (x, y)i, and λ̂ denotes our estimation of λ.

The unit normalized spherical heat kernel is a natural choice of kernel for S2.
We use its truncated spherical harmonic representation [1], defined as follows for
any two unit vectors p and q on the 2-sphere:

Kσ(p, q) =
H∑
h

2h + 1
4π

exp{−h(h + 1)σ}P 0
h (p · q)

Here, P 0
h is the hth degree associated Legendre polynomial of order 0. Note

that the non-zero order polynomials have coefficient zero due to the radial
symmetry of the spherical heat kernel [1]. However, since we are estimating
a function on Ω × Ω, we use the product of two heat kernels as our KDE
kernel κ. For any two points p and q, the kernel value associated to a end
point pair (x, y) is κ((p, q)|(x, y)) = Kσ(x, p)Kσ(y, q). It is easy to show that∫

Ω×Ω
Kσ(x, p)Kσ(y, q)dpdq = 1.

The spherical heat kernel has a single shape parameter σ which corre-
sponds to its bandwidth. While in general tuning this parameter requires the
re-estimation of λ̂ at every iteration, by rewriting our kernel we can memoize
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part of the computation so that we only need to store the sum of the outer prod-
ucts of the harmonics. Writing out κ((p, q)|D) =

∑
(xi,yi)∈D Kσ(xi, p)Kσ(yi, q),

we have the following:

κ((p, q)|D) =
H∑
h

H∑
k

[ (
2h + 1

4π

) (
2k + 1

4π

)
exp{−σ(h2 + h + k2 + k)}

︸ ︷︷ ︸
Independent of D, evaluated every iteration

×
∑

(xi,yi)∈D

P 0
h (xi · p)P 0

k (yi · q)

︸ ︷︷ ︸
Independent of σ, evaluated once

]

Thus, evaluations of the kernel at any point (p, q) can be done quickly for
sequences of values of σ. We then are left with the choice of loss function. Denot-
ing the true intensity function λ, the estimated intensity λ̂, and the leave-one-
out estimate λ̂i (leaving out observation i), Integrated Squared Error (ISE) is
defined:

ISE(σ|D) =
∫

Ω×Ω

(λ̂(x, y|σ) − λ(x, y))2dxdy

≈
∫

λ̂(x, y|σ)2dxdy − 2
|D|

∑
(xi,yi)∈D

λ̂i(xi, yi) + Constant.

Hall and Marron [9] suggest tuning bandwidth parameters using ISE. In practice,
we find that replacing each leave-one-out estimate with its logarithm log λ̂i(xi, yi)
yields more consistent and stable results.

2.3 Selecting a Parcellation

Given an estimated intensity λ̂ and two or more parcellations P1, P2, . . . , we
would like to know which parcellation and associated graph G(P, λ̂) best repre-
sents the underlying connectivity function. There are at least two perspectives
to consider.

Approximation Error: Because each Pi covers Ω (and Pi × Pi = Ω × Ω),
each G(P1, λ̂) can be viewed as a piece-wise function g : Ω × Ω → R

+, where
g(x, y) = 1

|Ei||Ej |C(Ei, Ej) such that x ∈ Ei and y ∈ Ej . In other words, g is
the constant approximation to λ over every pair of regions. A natural measure
of error is another form of Integrated Squared Error:

Err(λ̂,G(P1, λ̂)) =
∫∫

Ω×Ω

(g(x, y) − λ(x, y))2dxdy. (2)

This is analogous to squared loss (�2-loss).

Likelihood: An alternative viewpoint leverages the point process model to mea-
sure a likelihood:

log L(P ) =
∑

Ei,Ej∈P

log Poisson(|{(x, y)i ∈ D : x ∈ Ei, y ∈ Ej}|; C(Ei, Ej)). (3)
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Here, the independence assumption plays a critical role, allowing pairs of regions
to be evaluated separately. Unfortunately this is biased toward parcellations with
more, smaller regions, as the Poisson distribution has tied variance and mean
in one parameter. A popular likelihood-based option that somewhat counterbal-
ances this is Akaike’s Information Criterion (AIC),

AIC(P ) = −2 log L(P ) +
( |P |

2

)
log |D|. (4)

AIC balances accuracy with parsimony, penalizing overly parameterized models -
in our case, parcellations with too many regions.

3 Application to CoRR Test-Retest Data

We demonstrate the use of our framework on a test-retest dataset. We measure
connectome reproducibility using Intraclass Correlation (ICC) [13], and compare
three parcellations using multiple criteria (See Eqs. 2, 3, and 4).

3.1 Procedure, Connectome Generation, and Evaluation

Our data are comprised of 29 subjects from the Institute of Psychology, Chinese
Academy of Sciences sub-dataset of the larger Consortium for Reliability and
Reproducibility (CoRR) dataset [19]. T1-weighted (T1w) and diffusion weighted
(DWI) images were obtained on 3T Siemens TrioTim using an 8-channel head
coil and 60 directions. Each subject was scanned twice, roughly two weeks apart.

T1w images were processed with Freesufer’s [4] recon-all pipeline to obtain a
triangle mesh of the grey-white matter boundary registered to a shared spherical
space [5], as well as corresponding vertex labels per subject for three atlas-based
cortical parcellations, the Destrieux atlas [6], the Desikan-Killiany (DK) atlas [2],
and the Desikan-Killiany-Tourville (DKT31) atlas [11]. Probabilistic streamline
tractography was conducted using the DWI in 2 mm isotropic MNI 152 space,
using Dipy’s [7] implementation of constrained spherical deconvolution (CSD)
[16] with a harmonic order of 6. As per Dipy’s ACT, we retained only tracts
longer than 5 mm with endpoints in likely grey matter.

We provide the mean ICC score computed both with and without entries
that are zero for all subjects. When estimating λ̂ the kernels are divided by
the number of tracks, and we use a sphere with unit surface area instead of
unit radius for ease of computation. We threshold each of the kernel integrated
connectomes at 10−5, which is approximately one half of one unit track density.
We then compute three measures of parcellation representation accuracy, namely
ISE, Negative Log Likelihood, and AIC scores.

3.2 Results and Discussion

Table 1 shows a surprisingly low mean ICC scores for regular count matrices. This
may be because ICC normalizes each measure by its s2 statistic, meaning that
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Table 1. This table shows mean ICC scores for each connectome generation method.
The count method - the standard approach - defines edge strength by the fiber endpoint
count. The integrated intensity method is our proposed method; in general it returns a
dense matrix. However, many of the values are extremely low, and so we include results
thresholding the matrix, with and without elements that are zero for all subjects.
Highest ICC scores for each atlas are bolded.

Type DK Destrieux DKT31

Number of regions 68 148 62

Count ICC 0.2093 0.1722 0.2266

Integrated intensity ICC (no threshold) 0.5069 0.5144 0.4374

Integrated intensity ICC (no zeros) 0.5130 0.5341 0.3781

Integrated intensity ICC 0.7606 0.9026 0.6102

entries in the adjacency matrices that should be zero but that are subject to a
small amount of noise – a few erroneous tracks – have very low ICC. Our method
in effect smooths tracts endpoints into a density; end points near the region
boundaries are in effect shared with the adjacent regions. Thus, even without
thresholding we dampen noise effects as measured by ICC. With thresholding,
our method’s performance is further improved, handily beating the counting
method with respect to ICC score. It is important to note that for many graph
statistics, changing graph topology can greatly affect the measured value [18].
While it is important to have consistent non-zero measurements, the difference
between zero and small but non-zero in the graph context is also non-trivial. The
consistency of zero-valued measurements is thus very important in connectomics.

Table 2 suggests that all three measures, while clearly different, are consistent
in their selection at least with respect to these three parcellations. It is somewhat
surprising that the Destrieux atlas has quite low likelihood criteria, but this may
be due to the (quadratically) larger number of region pairs. Both likelihood based

Table 2. This table shows the means over all subjects of three measures of parcellation
“goodness”. The retest versions are the mean of the measure using the parcellation’s
regional connectivity matrix (or the count matrix) from one scan, and the estimated
intensity function from the other scan.

Type DK Destrieux DKT31

ISE 1.8526 × 10−5 2.1005 × 10−5 2.1258 × 10−5

Negative LogLik 85062.5 355769.4 88444.5

AIC score 174680.95 733294.8 185253.5

Retest ISE 1.0517 × 10−5 1.0257 × 10−5 1.1262 × 10−5

Retest negative LogLik 85256.0 357292.9 88434.9

Retest AIC score 175068.1 736341.9 185234.3
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Fig. 1. A visualization of the ICC scores for connectivity to Brodmann Area 45
(Destrieux region 14) for the Count connectomes (left) and the proposed Integrated
Intensity connectomes (right). Blue denotes a higher score.

Fig. 2. A visualization of the marginal connectivity M(x) =
∫
Ei

λ̂(x, y)dy for the Left

Post-central Gyrus region of the DK atlas (Region 57). The region is shown in blue on
the inset. Red denotes higher connectivity regions with the blue region.

retest statistics also choose the DK parcellation, while ISE chooses the Destrieux
parcellation by a small margin. It should be noted that these results must be
conditioned on the use of a probabilistic CSD tractography model. Different
models may lead to different intensity functions and resulting matrices. The
biases and merits the different models and methods (e.g. gray matter dilation
for fiber counting vs streamline projection) remain important open questions
(Figs 1 and 2).

4 Conclusion

We have presented a general framework for structural brain connectivity. This
framework provides a representation for cortical connectivity that is independent
of the choice of regions, and thus may be used to compare the accuracy of
a given set of regions’ connectivity matrix. We provide one possible estimation
method for this representation, leveraging spherical harmonics for fast parameter
estimation. We have demonstrated this framework’s viability, as well as provided
a preliminary comparison of regions using several measures of accuracy.

The results presented here lead us to conjecture that our connectome esti-
mates are more reliable compared to standard fiber counting, though we stress
that a much larger study is required for strong conclusions to be made. Fur-
ther adaptations of our method are possible, such as using FA-weighted fiber
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counting. Our future work will explore these options, conduct tests on larger
datasets, and investigate the relative differences between tracking methods and
parcellations more rigorously.
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