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Abstract. Visualization of eye-tracking data is mainly based on fixa-
tions. However, saccade trajectories and their characteristics might con-
tain more information than sole fixation positions. Artists, for example,
can influence the way our eyes traverse a picture by employing compo-
sition methods. Repetitive saccade trajectories and the sequence of eye
movements seem to correlate with this composition. In this work, we
propose two novel methods to visualize saccade patterns during static
stimulus viewing. The first approach, so-called saccade heatmap, uti-
lizes a modified Gaussian density distribution to highlight frequent gaze
paths. The second approach is based on clustering and assigns iden-
tical labels to similar saccades to thus filter for the most relevant gaze
paths. We demonstrate and discuss the strengths and weaknesses of both
approaches by examples of free-viewing paintings and compare them to
other state-of-the-art visualization techniques.

Keywords: Eye-tracking · Image viewing · Perception of art ·
Scanpath · Saccade clustering

1 Introduction

Studies on perception based on eye tracking are most often focused on the allo-
cation and local density of fixations. Attention maps, fixation clustering [20], and
aggregated values (e.g., dwell time on a region of interest (ROI)) are frequently
used tools for such analysis. In fact, fixation-based analysis is motivated by
the way our visual perception works; perception is only possible during fixations
and suppressed during saccades, i.e., high velocity movements of the eyeball [11].
Therefore, saccadic patterns have mostly been studied indirectly, e.g., as transi-
tions between ROIs [8]. Obviously, a large proportion of saccades will occur as
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ROI transitions, e.g., between the faces of people in a painting. However, ROIs
might be ambiguous in an art work. For example, when viewing abstract art,
gaze is supposed to follow artistic composition principles [1] or in medieval art,
by inserting reflective gold leafs in the painting [16]. Yarbus defined composition
as “[...] the means whereby the artist to some extent may compel the viewer to
perceive what is portrayed in the picture” [25]. Especially for abstract paintings,
the definition of meaningful ROIs is questionable and an analysis of saccades and
gaze transitions would be restrained to these ROIs. Benefits from art viewing
analysis are deeper understanding of pictures and human perception, keypoint
extraction from paintings [12], image compression [17] as well as saliency map
creation [6].

This work focuses on the analysis of saccade trajectories. Thus, instead of
asking the question what is looked at, we aim at proving techniques to tackle
the questions how and why our gaze is driven and guided over an artwork in a
particular way.

First, we show how saccade trajectories form patterns that are characteristic
for the stimulus material and enable the artist to guide the viewer’s gaze over the
artwork. Then we introduce two methods to analyze saccade trajectories: (1) a
novel visualization method, a saccadic heatmap, and (2) a clustering technique to
cluster saccades for eye-tracking data of low temporal resolution. Both methods
are compared to ROI transition diagrams and a trajectory clustering approach
(attribute-driven edge bundling [18]). The proposed approaches allow to study
saccadic patterns thoroughly and might contribute to a better understanding of
the influence of image composition on visual scanning.

Both methods are implemented in the Eyetrace [15] software. Eyetrace is
a visualization and analysis tool for static stimulus experiments, such as the
viewing of fine art. It provides a variety of state-of-the-art algorithms for each
processing step: Identification of fixations and saccades (e.g., [13,23]), cluster-
ing of fixation locations, automatic ROI annotation, and scanpath comparison
(e.g., [14]). Eyetrace is available at http://www.ti.uni-tuebingen.de/Eyetrace.
1751.0.html

2 Related Work

In eye-tracking recordings, data samples recorded during fixations outweigh by
far the saccade samples. A first version of Eyetrace already tried to implement
a feature for sampling saccades [9,22].

Dong et al. were among the first to work on simple heatmaps of saccades for
the evaluation of enhanced imagery in cartography [7]. However, most stud-
ies work based on fixation heatmaps; sometimes even heatmaps containing
both fixation and saccade data are employed, especially when no event filter
is applied [3,4]. Popelka and Vožeńılek propose a space-time cube visualization,
where saccades make up a large part of the visualization: as all samples are
connected by a line, saccades result in the longest line segments [19].

Probably the best metaphor for a saccade heatmap is a grassland, where the
grass is trampled down in paths that are frequently walked over. Trails emerge
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and enlarge as they are used more frequently. Similarly, the saccade heatmap
visualizes frequently traversed gaze trails derived from the saccade point in eye-
tracking data. Corresponding to the ROIs emerging from hot spots in the fixation
heatmap, we will explore so-called saccade bundles, i.e., clusters of saccades.

Other methods, such as attribute-driven edge bundling techniques to cluster
general trails, have successfully been applied to eye-tracking data [18]. A visually
appealing and fast implementation can be found in the CUBu software [26] that
can be accessed via Eyetrace [15], if a Nvidia GPU is available. In another app-
roach, so-called saccade plots [5], saccades can be visualized in a more abstract
way. Similar to a ROI transition diagram, saccades are split into x- and y- com-
ponents and visualized, e.g., by arcs that connect different stimulus regions.

3 Eye Tracking Experiments

The proposed methods were applied to eye-tracking data collected during the
viewing of paintings. Two paintings were chosen for this experiment that are at
the center of a controversial methodological discussion in art history for several
decades. In 1961 Kurt Badt argues that in order to interpret a painting one has
to describe the path taken by the eye to go through it. His foremost examples
are Jan Vermeer’s Art of Painting at the Kunsthistorisches Museum, Vienna
and Jacopo Tintoretto’s Last Supper in S. Giorgio Maggiore, Venice [2]. Badt’s
argument was often discussed. But it could not yet be confirmed or falsified with
empirical evidence.

(a) Vermeer, The art (b) Tintoretto, The Last Supper

Fig. 1. Paintings employed in the eye-tracking experiments. (Color figure online)

Experiment 1: The Art of Painting: In the first experiment, nine subjects
viewed Johannes Vermeer’s The art of painting (Fig. 1(a)) on a screen for one
minute. Eye movements were recorded by means of an EyeTribe eye tracker at
30 Hz sampling rate. Fixations and saccades were determined via a Gaussian
mixture model [23,24].
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Experiment 2: The Last Supper (Tintoretto): This data set was recorded
at the University of Vienna and contains eye-tracking data of 40 subjects viewing
the painting shown in Fig. 1(b) for two minutes each. An IViewX RED 120
tracker was used and the painting shown on a 30” display (2560×1600 pixel)
with a distance of 90 cm to the observer. The 20 art historians and 20 novices
were instructed to judge whether they liked the picture to induce a sense for
aesthetics.

4 Saccade Heatmap

Characterizing saccades requires at least two points, the origin and the target
of the saccade. In addition, the representation of a saccade may contain its
direction, amplitude, velocity and a whole trail of samples to show its ballistic
nature. Clustering saccades is in contrast to clustering fixations a challenging
task. Instead of comparing 2D fixation locations to each other, we need to assess
the similarity of whole saccade trajectories. In this context, saccade direction,
amplitude and the position of intra-saccadic measured points might also be rel-
evant. The visualization of saccades without further post-processing might not
be very informative. For example, Despite the relatively short viewing time of
one minute and the small number of subjects, we extracted overall 959 saccades
from the eye-tracking data collected during Experiment 1, Fig. 2. Each saccade is
visualized by an arrow, resulting thus in a visual clutter and overlapping shapes.
Given this visualization, it is pretty hard to derive any pattern; this is probably
an additional reason why saccades are usually excluded from further analysis in
many studies.

(a) Original artwork (b) Raw saccades

Fig. 2. All saccades contained in a recording of nine subjects viewing The Art of
Painting for one minute. Each saccade corresponds to one arrow in the visualization.
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4.1 Construction of a Saccade Heatmap

To process saccadic data, we introduce a novel computational method for saccade
heatmaps. The aim is to visualize the density of saccades, where frequently
traversed areas gradually become hot while other areas stay cold. To achieve
this, we have to (1) define a density function for a saccade, (2) integrate the
density functions over all saccades, and (3) apply some post-processing, such as
weighting. Each of these processing steps is described in detail in the following
paragraph.

Fig. 3. (a) a raw saccade heatmap with Gaussian density functions stretched to cover
the saccade trajectories. (b) thresholded at a minimum density to pronounce the most
important paths. (c) raw heatmap with a small standard deviation for the saccade den-
sity function. As a result the heatmap is less smooth and more precise. (d) the heatmap
was capped at a maximal density. The color resolution available for the remaining
areas is therefore enlarged, but the resolution of the most frequently traveled paths is
decreased. (e) Saccade heatmap with a low standard deviation, capped at a maximum
density and with a minimum density threshold applied.

Density Functions: In the computation of fixation heatmaps, the density
around a fixation location is usually modeled by a Gaussian. The mean of the
Gaussian distribution is placed at the center of the fixation location and the
standard deviation adjusted to represent 2–5◦ of the visual angle. Thus, it is
supposed to represent the area of the fovea, the accuracy of the eye-tracker, or
the area of sharp, high-resolution vision.

To compute saccade heatmaps, such a Gaussian with equal spread towards
each direction obviously does not represent saccades very well. But the approach
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can be adapted by stretching the Gaussian along the saccade to cover its origin
and target. More specifically, we apply the following Eqs. 1 and 2 to calculate
the standard deviations of the Gaussian, where dist is the length of the saccade.

In our implementation we used the pixel distance. To guarantee scale invari-
ance, the pixel distance is calculated based on mm distances in the real world.

stddir(dist) =
√

dist · (1 + ln(dist)) (1)

stdorto(dist) =
√

dist (2)

Note that in this case we have a covariance matrix that can be split into
the contribution in the direction of the saccade stddir and its orthogonal vector
stdorto. The orthogonal contribution is chosen much smaller than the contri-
bution along the saccade’s major direction. This way a slim, ellipsoid shape is
produced. We used the natural logarithm of the distance as stretching factor
with e as base of the Gaussian and the idea that eln dist = dist. For the Gaussian
this is not completely correct (the standard deviation is the denominator), but
the effect is as expected. The density function is then rotated and translated to
align with the position and direction of the saccade vector.

g(x, y) =
1

2 ∗ stddir ∗ stdorto ∗ π
∗ e

− 1
2∗( x2

std2
dir

∗ y2

std2orto
)

(3)

Eq. 3 shows the complete Gaussian function, where x and y are the positions
shifted from the saccade center.

Fig. 4. Normal distribution density functions for two saccades. The height and color
of the surface represents the density assigned to the respective position: (a) shows a
short, (b) a long saccade.

Figure 4 visualizes the Gaussian distributions stretched along saccades. We
can observe that the peak density is reached in the middle between the origin
and target of the saccade and that positions along the saccade are not weighted
equally. Furthermore, the start and end point are not contained within the high-
density area. Figure 3(a) and (c) show the saccadic heatmap for two Gaussians
with different standard deviations. In (a) the lines are smoothed and blurred by
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the high standard deviation. In (c) individual saccades are still visible and crisp.
There is no obvious real-world equivalent to the spread of the Gaussian, like
with the fovea for the fixation data. Instead, the parameter depends mainly on
the eye-tracker’s accuracy and the homogeneity of eye movements that the stim-
ulus material invokes. If we want to study fine-grained details, a small standard
deviation needs to be chosen. When general saccadic patterns are of interest, a
larger standard deviation contributes to a faster convergence of the heatmap.
Saccade trajectories are more likely to overlap when the spread is larger.

Fig. 5. Modified normal distribution density function that assigns the same gradient
to each position along the saccade trajectory. (a) low standard deviation, leading to a
crisp saccade representation. (b) larger standard deviation, resulting in a smooth but
blurry heatmap. The width of the Gaussian is based on the user standard deviation.
(c) Contour plot of the three components: two caps for the saccade start and end point,
and a length-variable adapter piece between them.

To achieve an equal weight of the whole saccade trajectory, the central cross-
section of the 2D Gaussian density function is copied along the trajectory (see
Fig. 5). The start and end of the saccade are then modeled as a dissection of the
Gaussian with one half applied to the start, the other to the end of the saccade
(Fig. 5(c)).

Integrating Density Functions: Integration over all saccades in a recording
is simple, as the density functions can be added. Using the modified density
function without further modification would result in an increased number of
saccade overlaps within the smaller ROIs (just as it happens in the example
shown in Fig. 3(a) with the face of the woman): transitions to multiple other
locations originate here, overlap each other, and cause the saccade heatmap to
highlight the overlap region instead of the saccadic trajectory. A simple approach
to avoid this effect is to reduce the length of the saccade (e.g., 10 % at each side).
Endpoints will not accumulate anymore as the small shift assigns a lower weight
to the periphery of the trajectory. Note that this effect is already built-in for the
non-modified Gaussian density approach, since there exists only one maximum
at the center of the saccade as described above.

Figure 6 shows the practical consequences of using either the modified density
function (top row) or the non-modified density function (bottom row). When the
modified density distribution is applied, frequent traversals between the painter,
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(a) Repeated (b) Length (c) Duration

(d) Streched (e) Length (f) Duration

(a) Repeated (b) Length (c) Duration

(d) Streched (e) Length (f) Duration

(a) Repeated (b) Length (c) Duration

(d) Streched (e) Length (f) Duration

Fig. 6. (a,b,c) In the top row, the modified density function is applied. (a) unweighted
heatmap. (b) heatmap weighted by the length of the saccade highlights longer tra-
jectories. (c) heatmap weighted by the duration of the enclosing fixations. (d,e,f) the
bottom row employ the non-modified, stretched Gaussian density.

the woman and the mask are highlighted (first column). But there are also
unwanted effects of saccadic overlay within the ROI regions of the faces (those are
in fact the overall hottest areas). The stretched normal distribution compensates
for this effect: hottest regions in this map are located in-between the face regions.
However, the trail of gaze is not clearly visible. Especially the triangle between
the two faces and the chandelier is not visible anymore.

A relevant drawback of the current implementation is that saccades sum up
with each other independently of their direction. Theoretically, it would be pos-
sible to calculate separate heatmaps for saccades towards different directions.
These heatmaps could then be merged by adding up only those heatmaps that
stem from saccades with a similar direction. Heatmaps from different directions
be then merged non-additively by taking the maximum of both maps. The imple-
mentation of these features is in scope of our future work.

Weighting and Post-processing: Just as the contribution of a fixation to a
heatmap can be weighted by the fixation duration, the contribution of a saccade
towards the saccade heatmap can be scaled. Figure 6(b) and (e) are weighted
using the length of the saccade. Longer saccades contribute more towards the
final heatmap, emphasizing the long-distance gaze transitions. For (e) and (f)
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saccades were weighted using the duration of both adjacent fixations. In these
weighted heatmaps we can observe that the scaled normal distributions highlight
the relevant gaze trails with only a minor overlap effect in the ROI regions when
compared to the modified distribution.

Heatmaps of both, fixations and saccades, often suffer from the effect of one
location that is so frequently looked at (or traversed), such that all other areas
are covered by the large effect. This means that most of the color space is required
to represent one spot and the remainder of the image has to be visualized with
only a limited diversity of available colors. To cope with this effect, a parameter
to cap the heatmap at some user defined maximum density is implemented. On
the cost of resolution at the high density areas, low density effects can be studied
in more detail. Figure 3 shows the saccadic heatmap with capped maximum and
a minimum density threshold that cuts off non-relevant areas.

5 Saccade Clustering

This section introduces a new method for hierarchical clustering of saccades. In
case of saccade clustering, we want to summarize most frequent gaze trails in the
recording (similar to warm regions in the heatmap representing frequent gaze
trails in the recording). Contrary to heatmaps we are working with the actual
data that is not derived and generalized representation such as a probability
distributions. This allows for a quantification and filtering of the results.

As for fixation clustering, we are then able to combine data from multiple
recordings and subjects in order to reach a convergent gaze trail. Thereby, the
most important, most repetitive elements are extracted from the recording. This
process can be described as a denoising process that deletes individual variation
from the data and highlights only the most common sequences.

When compared to visualization methods, clustering has several advantages:
Each saccade can be uniquely assigned to one saccade bundle. These bundles
can be quantified and compared to each other. Filtering and bundle selection
can be applied (for example a visualization can select and display only the three
most important gaze trails).

Clustering Algorithm: A hierarchical clustering [10] of a set of objects can
be displayed as a binary tree. Each node represents one object of the set and the
distance between two nodes represents the dissimilarity between the two objects.
Constructing such a hierarchy tree consists of two steps. First calculating the
dissimilarity between two nodes and second a linkage method for the dissimilarity
between groups of nodes. Popular linkage criteria are maximum (or complete)
linkage, minimum (or single) linkage and average linkage. Basically, maximum
linkage will return the largest distance between any two elements contained in
the two clusters, minimum linkage the smallest distance and average linkage the
mean of all distances between any two nodes in the clusters.

For the definition of a distance metric between saccades we will consider
both the orientation and the Euclidean distance between start and end points
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Fig. 7. Saccade clustering workflow. On the right side the raw data and clusters after
the angular clustering as well as the subsequent distance clustering step are shown.
Saccades of the same cluster are colored the same.

of the saccades. Data obtained from many or long recordings can easily contain
some thousands saccades. As the dissimilarity calculation needs to be performed
pairwise (resulting in a runtime of O(n2)), computational efficiency is an issue.

Saccade clustering is computed in a two-step approach as depicted in Fig. 7:
in a first clustering step the orientation between saccades is used as similarity
measure, afterwards a second clustering step based on the Euclidean distance
between the saccades is performed, but only within the previously found clusters.

Runtime can be reduced by filtering short saccades that are unlikely to con-
tribute much to driving gaze over the picture and by scanpath simplification,
i.e., merging of temporally sequential saccades into the same direction.

Given a saccade with start point A = (xa, ya) and end point B = (xb, yb),
the angle between (−π;π] in relation to the positive x-axis plane is calculated
as:

�(A,B) = atan2(yb − ya, xb − xa) (4)

The angular difference between saccades S1 and S2 can then be computed
as:

d(S1, S2) =

{
|�(S1) − �(S2)|, if |angle(S1) − angle(S2)| ≤ π

2π − |�(S1) − �(S2)|, otherwise
(5)

The above equation can easily be adjusted for direction independence such
that the saccades S1 = (A,B) and S2 = (B,A) are considered equal.

For the second clustering step, the spatial distance between two saccades
S1 = (A,B) and S2 = (C,D) is calculated as the minimal distance of any of the
start and end points to the line from start to end of the other saccade:

d(S1, S2) = min(d(A, (CD)), d(B,CD), d(C,AB), d(D,AB)) (6)
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The distance between a point A and a line segment BC is defined as the
Euclidean distance between A and the closest point on the line segment BC.

The construction of the clustering tree with the currently implemented
method requires O(n3), cutting the hierarchy tree can be done in O(n). The
computational bottleneck is therefore the computation of the first clustering
tree that includes many saccades. Due to the hierarchical clustering parameters
can be adjusted easily and fast, allowing to choose between average cluster size
and within-cluster similarity.

This ability to choose the detail-level after the computationally expensive
part of the algorithm makes the method comfortable to use.

ROI Transitions: Figure 8 shows the transitions between ROIs. The depicted
ROIs were calculated as cumulative clusters, i.e., clusters with the highest density
of fixations shared by all participants. We distinguish between direct transitions,
i.e., a saccade that connects two ROIs, and indirect transitions. Indirect transi-
tions contain at least two saccades. The first saccade starts from a ROI but does
not land in another ROI. We consider the following saccades until a ROI is hit.
The indirect transition is then counted as a transition from the start ROI of the
first saccade to the target ROI of the last saccade in this chain. This was already
implemented in the first version of EyeTrace [9,22]. We added the capability to
analyze indirect transitions.

6 Application of the Proposed Techniques to Art Viewing

The above approaches were applied to eye-tracking data of both free-viewing
experiments introduced previously. For both eye-tracking datasets, the orienta-
tion clustering step was performed with maximum linkage criterion and direction

(a) Direct (b) Low threshold (c) Indirect

Fig. 8. Transitions between fixation clusters visualized by orange ellipses. (a) shows
direct saccades that transition from one cluster to another. (b) shows the same clusters
but includes also indirect transitions. In this visualization, the line width represents
the transition frequency. Blue lines represent transitions that go from the left to the
right, whereas green transitions stand for transitions in the opposite direction. (Color
figure online)
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dependency, whereas the distance-based clustering step with minimum linkage.
Cutoff values were determined by successively easing the restrictiveness of the
cutoff (i.e., increasing the cutoff threshold), until relatively many saccades were
contained in the clusters. This parameter is necessarily subjective, as the homo-
geneity of saccades depends on the stimulus. While we are increasing the thresh-
old, we are moving from very detailed saccade bundles towards a more general,
coarser summary.

Results on Experiment 1: Figure 9(b) visualizes the clustering result for
Experiment 1. Remarkably, saccade clustering reveals that the eye movements
of the observers were driven by the social cue in the painting. The painter and
the woman in this painting are displayed in a way that their gaze target can be
estimated by the viewer. We can observe that the most frequent gaze trails com-
puted by our clustering approach follow these social cues between the painter,
the woman, and the plaster mask. We can further observe that the composition
line of the painting that connects the mask, woman, and chandelier has a strong
effect on gaze behavior.

(a) Sac. heatmap (b) Sac. clusters (c) ROI transitions (d) Cubu bundling

Fig. 9. Comparison of the different approaches proposed in this paper (a,b,c) and one
state-of-the-art visualization technique (d). In (b) the modified Gaussian (Fig. 5) with
std = 5.5 and an absolute maxima of 25 overlapping saccades was applied.

In addition, Fig. 9 displays the spectrum of visualizations for saccades that
is currently available in the Eyetrace software, where (a) visualizes the result of
the saccade heatmap computation and (b) the result of the saccade clustering
technique. Besides the different look, their main distinction lies in the amount
of simplification that is performed. More specifically, the ROI transition graph
as visualized in (c) builds upon the identification of ROIs (e.g., via mean-shift
clustering of fixations). Its major advantage is that scanpath transitions instead
of direct saccades between ROIs can be considered. Scanpath transitions may
contain saccades to non-ROI areas in-between two ROIs and do not require a
saccade directly from one ROI to another ROI.

The most recent and impressive example of clustering is attribute-driven edge
bundling [18,26]. Edge bundling performs the mean-shift algorithm on both,
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saccadic start and end points as well as samples distributed equally along the
saccadic trajectory. Therefore, clustered trajectories get an organic look, as if
the exact ballistic eye movement was measured with an extremely high sampling
rate and accuracy.

The edge bundling approach shown in (d) consists of various different steps
(clustering of fixations, clustering of the trajectories, relaxation, color choice,...).
Each step is associated with a set of parameters that require adjustment. The
parameters were adjusted to emphasize the same effect that was also found by
the other methods and we can clearly observe the primary gaze trajectories along
the faces and towards the chandelier. When looking at the results it is important
to keep in mind that the displayed data represents a considerable simplification
and that the suggested level of detail is in fact not contained in the data. The
samples along the saccade trajectory are interpolated. Contrary to the approach
suggested here, the whole saccadic trail can be clustered - if a recording at a
high enough frame rate is available. The proposed clustering approach uses only
the start and end point of each saccade and can therefore also be run on the
CPU while edge bundling requires the massive parallelization of a GPU.

Results on Experiment 2: Tintoretto was the first painter who represented
the table of the Last Supper from the side, hence foreshortening it in the depth
of the space. The main composition lines, as they have been described by Badt
on the left (Apostes) and right (cat, servant, sideboard) lead into the depth of
the space. Most saccade trajectories measured in Experiment 2 are along those
composition lines with almost no transitions across the table. Also gaze escapes
towards the light source in the top left corner mainly via the woman in-between
the central image area and the light. The empirical experiment confirms the
assumption of a correlation between composition lines (as generally analyzed by
art historians) and eye movements of beholders. However, in this specific example
the experiment falsifies Kurt Badt’s analysis in one crucial point: His central
assumption is that the viewer starting on the lower left corner will be refrained
from following with his eyes the apostles along the table, and will instead follow
the high-lighted leg of the left apostle, the dog and cat up to the servant and the
right foreground. In the experiment, this connection was extremely rare (Fig. 10).

(a) original artwork (b) saccade heatmap (c) saccade bundles

Fig. 10. (a) The last supper by Tintoretto. (b) the saccade heatmap using the modified
Gaussian (Fig. 5) with std = 5.5 and an absolute maxima of 100 overlapping saccades.
(c) saccade clusters where the color represents the cluster membership.
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This could be stated by using ROI transitions already before [21], but it becomes
much more evident with our new visualization techniques. By employed our new
visualization techniques, eye-tracking becomes an easier to use and very powerful
tool to verify art historical theories about composition of pictures. This tools are
useful for figurative paintings as those chosen in the present experiments. We
expect them to be even more pertinent for abstract art and representational art
without figures and or very salient objects (such as landscapes).

Conclusion: We introduced two novel computational techniques to process
saccades: (1) the saccade heatmap and (2) a completely data-driven method for
saccade clustering. Both methods were applied to two art viewing experiments
alongside ROI transition diagrams and edge bundling. As they work without a
definition of regions of interest, our methods are relatively easy to apply. In our
future work, the method to compute saccade heatmaps will be adjusted for a
sense of saccade direction in order to reduce the effect of overlapping saccades
towards different directions.
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10. Härdle, W.K., Simar, L.: Applied Multivariate Statistical Analysis, vol. 22007.
Springer, Heidelberg (2007)

11. Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H.,
Van de Weijer, J.: Eye Tracking: A Comprehensive Guide to Methods and
Measures. Oxford University Press, Oxford (2011)

12. Icoglu, O., Gunsel, B., Sariel, S.: Classification and indexing of paintings based on
art movements. In: 2004 12th European Signal Processing Conference, pp. 749–752.
IEEE (2004)



Novel Methods for Analysis and Visualization of Saccade Trajectories 797
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