
Graph-Based Consistent Matching
for Structure-from-Motion

Tianwei Shen, Siyu Zhu, Tian Fang(B), Runze Zhang, and Long Quan

Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Hong Kong, China

{tshenaa,szhu,tianft,rzhangaj,quan}@cse.ust.hk

Abstract. Pairwise image matching of unordered image collections
greatly affects the efficiency and accuracy of Structure-from-Motion
(SfM). Insufficient match pairs may result in disconnected structures or
incomplete components, while costly redundant pairs containing erro-
neous ones may lead to folded and superimposed structures. This paper
presents a graph-based image matching method that tackles the issues
of completeness, efficiency and consistency in a unified framework. Our
approach starts by chaining all but singleton images using a visual-
similarity-based minimum spanning tree. Then the minimum spanning
tree is incrementally expanded to form locally consistent strong triplets.
Finally, a global community-based graph algorithm is introduced to
strengthen the global consistency by reinforcing potentially large con-
nected components. We demonstrate the superior performance of our
method in terms of accuracy and efficiency on both benchmark and Inter-
net datasets. Our method also performs remarkably well on the challeng-
ing datasets of highly ambiguous and duplicated scenes.

Keywords: Structure-from-Motion · Image matching · Loop
consistency

1 Introduction

Image matching is a computationally expensive step in 3D reconstruction, espe-
cially for large-scale unordered image datasets. Due to the large number of
high-dimensional feature descriptors in an image, the naive quadratic matching
scheme imposes a heavy computational burden on large-scale high-resolution
3D reconstruction [35]. Tremendous progress has been achieved either on reduc-
ing the cost of feature matching [19] or image indexing techniques [15,22] to
pre-compute a subset of match candidates. Modern large-scale Structure-from-
Motion (SfM) systems [1,12] usually use vocabulary tree [22] to choose the
visually similar match pairs, which decreases the complexity of pairwise image
matching from O(n2) to O(kn) with respect to the number of images.
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Fig. 1. Pipeline of the matching framework. (a) The minimum spanning tree (MST);
(b) The triplet expansion process; (c) The final match graph after component merg-
ing, with different colors representing different communities; (d) Comparison of the
proposed method with image retrieval techniques (see Sect. 5 for details); (e) The ref-
erence mesh model. (Color figure online)

However, two problems remain to be solved. One major drawback of the
image indexing techniques is that the number of retrieved items k for a query
image is hard to determine. Many previous works have adopted an empirical
similarity threshold or a fixed retrieved number, which ignores the global con-
nectivity of the image collection. Sometimes post-processing steps, such as query
expansion [1,4], are also needed to prevent the missing of true positive matches.
As a result, the actual number of matches is still large to ensure the completeness
and accuracy of 3D reconstruction.

On the other hand, large-scale image datasets often contain ambiguous scenes
due to symmetric and repetitive textured patterns. These repetitive yet distinct
patterns are not only visually similar, but can also pass the two-view geometric
verification and form erroneous epipolar geometry. The false match pairs can col-
lapse the SfM results and lead to folded or superimposed structures. Due to the
existence of ambiguous patterns, adding more yet potentially incorrect pairwise
matches may severely hurts the performance of SfM. Therefore, a sufficient and
consistent subset of matches is superior to a redundant matching set that may
contain false matches, which somewhat contradicts with the principle of mining
as much connectivity as possible. Moreover, since it is difficult to filter out the
wrong epipolar geometry and relative poses during camera pose estimation, a
consistent match graph is crucial to the success of 3D reconstruction.

In this paper, we propose a matching algorithm that efficiently generates a
sparse match graph spanning the whole image dataset, while simultaneously fil-
ters out inconsistent matches which pass the two-view geometric verification. Our
method jointly discovers the connectivity pattern of the scene and achieves a good
trade-off between computational efficiency and sufficient image connectivity in a
consistent manner. The consistency of the matching set is guaranteed by enforcing
loop consistency [33] both locally and globally along the successive steps.

As our main contribution, we propose the first unified framework, to the best
of our knowledge, that jointly conducts efficient pairwise image matching and
solves the SfM ambiguity problem. This novel matching algorithm significantly
accelerates the matching process without sacrificing the accuracy of SfM models.
Moreover, it is capable of handling extremely ambiguous scenes with loop consis-
tency checking.
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2 Related Work

2.1 Image Retrieval Techniques for 3D Reconstruction

To avoid the costly exhaustive match, image retrieval has been extensively
employed as a pre-processing step for large-scale SfM. Vocabulary tree [22] is
the most widely used technique to rank the database images given a query
image. Several later methods [3,13,23] incorporate geometric cues to improve
the retrieval performance for 3D reconstruction. Query expansion [4] is a pop-
ular technique to increase the recall of retrieval results. Lou et al. [16] employ
relevance feedback and entropy minimization to explore the connectivity between
images as quickly as possible. As an example of exhaustive matching techniques,
preemptive matching proposed by Wu [31] argues that features at a larger pyra-
mid scale tend to be more stable. Therefore, by matching a small subset of
local descriptors in an image, we can decide whether to continue the full puta-
tive feature matching. Recently, Schönberger et al. [25] compare these matching
techniques and propose a learning-based method to predict whether a pair of
images have overlapping regions. Zhou et al. [34] propose a multi-image match-
ing algorithm based on loop consistency [33] and low-rank modeling. Most of
these works have focused on improving the performance of image retrieval in
terms of precision and recall. Little attention has been paid on the actual effect
of increased recall on the final results of SfM. As we have demonstrated in Sect. 5,
in large-scale urban scenes, more matches do not necessarily guarantee a better
reconstruction.

2.2 Optimization of the Viewing Graph

Another line of works is to reduce the geometric computation by optimizing the
match graph (also known as the viewing graph). Snavely et al. [26] propose a
efficient SfM pipeline by computing a skeletal image set that approximates the
accuracy of the full set in terms of covariance. Havlena et al. [9] also relies on
image indexing techniques and selects a minimal connected dominating set of the
image collection. The images in the reduced set form atomic 3D model and are
incrementally merged into a connected model, similar to [10]. Recently, Sweeney
et al. [28] propose a viewing graph optimization method that achieves excellent
accuracy while remaining efficient for the SfM process. It is similar to our work
in that they enforce loop consistency in the viewing graph, while we check loop
consistency in the matching process.

All of the above methods accelerate the reconstruction process but either
start from a time-consuming full match graph, or use vocabulary tree to initialize
the match graph whose candidate number is difficult to choose. Instead, we
concentrate on the optimization of the match graph and come up with an efficient
match graph construction method without altering either incremental or global
SfM pipelines.
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2.3 Ambiguous Structures

Identification and removal of erroneous epipolar geometry is a recent research
focus for SfM. Zach et al. [32] use the supplementary information in the third
view which does not exist in the two-view relation to infer the correctness of
two-view geometry. Their subsequent work [33] exploits loop consistency to infer
incorrect geometric transformations, which forms the basis of our work. How-
ever, this formulation has strong assumptions on the statistical independence of
erroneous matches, thus it will fail on highly ambiguous scenes where similar but
distinct patterns become norms instead of outliers. Roberts et al. [24] sample a
minimal configuration (a spanning tree of the match graph) to infer data associ-
ations based on the missing correspondence cue [32] and the timestamp cue. This
is based on the assumption that the time and sequence information are corre-
lated, which is generally not satisfied in unordered datasets. Jiang et al. [14] also
sample a spanning tree from a relatively complete pairwise match graph, and
iteratively replace problematic edges in a greedy way. Wilson et al. [29] analyse
disambiguation on a visibility graph encoding relations of cameras and points.
This method identifies bad tracks based on the observation that bad tracks in
urban scenes connect two or more clusters of useful tracks. Heinly et al. [11]
use a post-processing step which first splits the camera graph and then leverages
conflicting observations to identify duplicated structures. The set of camera sub-
graphs that are free from conflict are then merged into a correct reconstruction.

Instead, the proposed method solves the ambiguity problem jointly with the
efficient construction of a robust and consistent match graph, without modifying
the SfM pipeline. We argue that the origin of ambiguity comes from a faulty
matching process, thus the early detection of erroneous edges in the match graph
would be beneficial to the later geometric computation. This generic matching
framework is orthogonal to and can be combined with the other disambiguation
methods.

3 Problem Formulation

In this section, we introduce a couple of basic building blocks of the graph-based
matching algorithm and a set of criteria that needs to be satisfied. The inputs of
the method are a set of images I = {Ii} and their corresponding feature points.
The matching method is based on the analysis of the underlying graph encoding
pairwise matches and epipolar geometry. We denote the undirected match graph
as G = (V, E) where each vertex vi ∈ V corresponds to an image Ii ∈ I. Two
vertices vi and vj are connected by an edge eij ∈ E if their corresponding images
have more than SI inliers after epipolar geometric verification. Each edge eij

is associated with the epipolar geometry and relative motion between an image
pair computed using five-point algorithm [21]. The initial edge set E is empty
and we aim to incrementally build the match graph. We ensure that the running
time of all the graph algorithms used in the method is an order of magnitude
lower than the image matching operation.
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Let Tij be an abstract geometric relation associated with the edge eij , e.g.
Tij can be the relative rotation Rij computed from feature correspondences. We
further require that this geometric relation can be chained, denoted by ◦, and
satisfies Tij ◦Tji = I(∀i, j) where I denotes the identity map. Then in a consistent
yet noisy setting, the discrepancy should be small between the identity map and
the chained transformation on a closed loop. We first consider the minimum
configuration of closed loops and give the following definition for the weakly
consistent match graph.

Definition 1 (Weak Consistency). A match graph G = (V, E) is weakly (ε, E)-
consistent, if the pairwise geometric relations Tij , Tjk, Tki of any 3-length loop
(i, j, k) with respect to the edge set E satisfy the following loop consistency constraint

d(Tij ◦ Tjk ◦ Tki, I) ≤ ε
∀(i, j, k), eij ∈ E , ejk ∈ E , eki ∈ E (1)

where the distance function d( ˜T , I) measures the discrepancy between the
chained motion ˜T and the identity map I. The above definition does not capture
all essences of a consistent match graph because some erroneous matches may
only manifest themselves in longer loops. Therefore, we refine this notion by
defining strong consistency :

Definition 2 (Strong Consistency). A match graph G = (V, E) is strongly
(ε, E)-consistent if for any loop (n0, n1, . . . , nm−1) of length m with respect to
the edge set E, the following condition holds

d((
∏m−2

i=0 Tnini+1) ◦ Tnm−1n0 , I) ≤ ε
∀(n0, n1, . . . , nm−1), en0n1 ∈ E , en1n2 ∈ E , . . . , enm−1n0 ∈ E ,

(2)

where
∏

denotes the chaining of a set of geometric transformations with ◦
operator.

To find a consistent match graph, we need to balance the following three
performance criteria:

(1) Completeness. The match graph should span as many as images to guarantee
the completeness of 3D models. This criterion corresponds to minimizing the
number of connected components in G.
(2) Efficiency. The time complexity of the match graph construction should
depend on the underlying connectivity pattern of the image collection.
(3) Consistency. The edges should be both robust meaning that each of them
contains a large number of inlier feature matches, and consistent measured by
ε (the smaller the better) and |E| (the larger the better) in Definitions 1 and 2.
This criterion may contradict with efficiency, hence we need to find a good
trade-off between them.
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Algorithm 1. Online Minimum Spanning Tree
Input: The match graph G = (V, E) with empty edge set E = ∅, the singleton rejection

threshold SR, the match inlier threshold S�
I , an array recording the failure time

ft[] ← 0
Output: A minimum spanning tree or forest of G
1: for v ∈ V do
2: MAKE-SET(v)
3: end for
4: for eij ordered by w(eij), increasing do
5: if UNION-FIND(i) �= UNION-FIND(j) & ft[i] < SR & ft[j] < SR then
6: Verify whether (i, j) is a true match using a strict inlier threshold S�

I

7: if (i, j) matches then
8: UNION(i, j)
9: else

10: ft[i]++; ft[j]++;
11: end if
12: end if
13: end for

4 Graph-Based Consistent Matching

The proposed method can be decomposed into three steps illustrated in Fig. 1:
(a) match graph initialization, (b) graph expansion by strong triplets and (c)
community-based graph reinforcement. The purpose of match graph initialization
is to minimize the number of connected components and discard singleton images
in the match graph (completeness). The expansion and reinforcement steps are
successively applied to efficiently explore the scene structure (efficiency), while
weak and strong consistency are iteratively verified along the process (consis-
tency). The three steps are detailed in the following sections.

4.1 Match Graph Initialization

Criterion (1) can be separately accomplished by quickly chaining the views in an
image collection. To achieve this goal, we try to find a minimum spanning tree
of the match graph. This seems impossible since we do not have the connectivity
information before computing feature correspondences and epipolar geometry.
However, similarity scores and rank information given by the vocabulary tree
parameterizes a priori match graph. We can modify Kruskal’s algorithm to get
an online version of minimum spanning tree algorithm for the ongoing match
graph.

If the image collection contains singleton views or separated scenes, the ini-
tialization process may be unreasonably long since it needs to explore every
possible edge to join the singleton image. To increase the stability of the tree
structure and cope with singleton images, we consider the mutually-connected
edge weight. We query the i-th image with respect to the other images in the
dataset and get the rank list Ranki. The rank of image j in Ranki is denoted as
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Ranki(j). The edge weight w(eij) of node i and node j is defined as the quadratic

mean of Ranki(j) and Rankj(i), namely w(eij) =
√

Rank2
i (j)+Rank2

j (i)

2 . Since
quadratic mean is greater or equal to other mean metrics, such as arithmetic
mean (x1+x2

2 ) or harmonic mean (
√

x1x2), it can be viewed as a worst-case met-
ric to penalize more severely on the edge weight if either of Ranki(j) or Rankj(i)
is large.

The algorithm first orders the edge set by weights in increasing order and then
probes (feature correspondences and geometric verification) the most probable
pair that can join two disjoint sets using the union-find data structure. If it
succeeds, the two disjoint sets are merged; otherwise it proceeds to the next best
probable edge that connects two components. If an image has been involved
in SR failed tests, it is regarded as a singleton image and discarded from the
dataset.

The tree match graph seems to be fragile since it contains no loop for con-
sistency checking. To get the most robust initial match pairs, a stricter inlier
threshold S�

I (= 40) is applied in the match verification. It is assumed that in
self-similar environments true positive matches have larger similarity responses
compared to false positive ones, even for highly ambiguous scenes (as shown in
Fig. 4(a)). Therefore, the tree edges are consistent in nature due to the greedy
property of the online minimum spanning tree algorithm. Since our aim is to
get a consistent matching set that generates accurate and complete SfM models,
we assume that the matching algorithm in the following sections operates on a
connected component of the image collection. This online minimum spanning
tree algorithm is described in Algorithm 1.

Fig. 2. Illustration of the tree expansion step up to third-order strong triplets. (a)
The minimum spanning tree; (b) First-order strong triplets are selected by traversing
the minimum spanning tree and checking loop consistency of two adjacent edges. The
dashed red lines represents either unmatched image pairs or inconsistent weak triplets,
while the solid red lines are verified edges; (c) Second-order strong triplets (marked
by solid green lines) built upon the first-order ones; (d) The partial match graph after
the expansion step. The community structures are further utilized for checking strong
consistency. (Color figure Online)
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4.2 Graph Expansion by Strong Triplets

We now consider the trade-off between efficiency and consistency. Intuitively,
strong consistency (Definition 2) is much harder to satisfy because the enu-
meration of all loops in a graph costs exponential time. Weak consistency
(Definition 1) would be relatively easy to achieve, although the time complexity
of verifying all 3-length loops is O(n3) in the worst cases, which is unacceptable
for large-scale datasets. Therefore, we aim to exactly satisfy weak consistency
with respect to the match graph and approximately guarantee strong consistency
on this graph.

We refer to 3-length loops as strong triplets, which differs from weak triplets
that do not form closed loops. The number of strong triplets depends on the
structure of the scene dataset, which is agnostic to the matching algorithm. To
get a consistent match graph, ideally we want as many strong triplets as possible.
Since the adjacent match pairs are the most likely to compose strong triplets,
we propose a greedy tree expansion method to grow the match graph from weak
triplets.

After connecting different views with a spanning tree, we get a weakly-
connected match graph. Two adjacent edges with a common vertex induce a
weak triplet and once the two end points get connected it becomes a strong
triplet. The detection of all weak triplets can be done efficiently by traversing
two steps starting from each node. The first-order strong triplets are formed by
traversing the minimum spanning tree, while the second-order strong triplets
are built upon the first-order ones and the tree, so on and so forth. The gain of
exploring local connectivity diminishes as the triplet expansion process iterates.
Therefore, the match graph is expanded up to the third-order strong triplets
mainly for the efficiency concern. Figure 2 illustrates the match graph expan-
sion process. Specifically, the pairwise rotation Rij is used as the surrogate for
the abstract relative geometric relation Tij in Definitions 1 and 2. The distance
function d( ˜R, I) between the chained rotation ˜R and I is defined as the rotation
angle of ˜R as d( ˜R, I) = θ( ˜R) = arccos(Tr(

˜R)−1
2 ).

Different from the methods in [18,33] that uses explicit Bayesian inference to
remove inconsistent matches after getting a complete match graph, we generate
a consistent match graph in a bottom-up way, thus preventing the interference
of good and bad matches. However, since this step only addresses local loops
consistency with length 3, the error may accumulate along the longer sequence
and cause motion drifts in the SfM model. We further address this issue in the
next section.

4.3 Community-Based Graph Reinforcement

The expanded match graph robustly estimates the local structures of scenes
and generates a consistent matching set enforced by strong triplets. Although
this simplified match graph suffices to generate a consistent reconstruction, it has
two major drawbacks. First, in this match graph, only strong triplets get verified
and the consistency of longer loops (strong consistency) is neglected. Second, this
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Algorithm 2. Component Merging Algorithm
Input: The intermediate match graph after triplet expansion Gt = (V, Et),

community-wise match number SC , loop discrepancy threshold θ
Output: The final match graph Gf = (V, Ef )
1: Compute structures on Gt and split V into m communities {V1, . . . , Vm}
2: Create the candidate matching set Φ
3: Rank Φ in decreasing order by edge weights
4: Reserve the first Scm(m−1)

2
elements of Φ to get Φ′

5: for each image pair (i, j) ∈ Φ′ do
6: Match (i, j) and compute the relative rotation Rij

7: Find the shortest path of length l between (i, j) using Breath-First-Search
algorithm

8: Compute the chained rotation Rc and the discrepancy angle θc =
arccos(Tr(Rc)−1

2
)

9: if θc < θ/
√

l then
10: Et = Et ∪ (i, j)
11: end if
12: end for
13: Iterate 1-12 if the stopping criterion does not satisfy
14: Ef = Et

match graph, without closed-loop structures at a global scale, does not reflect
the genuine pose graph of the dataset. Because this matching algorithm starts
with a tree structure, the match graph after the triplet completion stage would
roughly preserve this skeletal structure.

To tackle the above weaknesses, we propose a component merging algo-
rithm inspired by techniques in community detection. Community detection [7]
is widely used in the analysis of complex networks. It aims to divide a graph
into groups with denser connections inside and sparser connections outside. This
allows us to attain a coarse-grained description of the match graph and detect
higher-level connectivity. The intra-connectivity within groups is strong enough
since it contains consistent strong triplets, while the inter-connectivity in longer
loops is left to be detected and verified.

Let Aij be an element of the adjacent matrix of a general graph where Aij = 1
if i and j are connected and Aij = 0 otherwise. The degree di of a node i is the
number of other nodes that connects to it, denoted as di =

∑

j Aij . If the graph
is randomized without a significant community structure, the probability of an
edge existing between node i and node j is didj

2m , where m = 1
2

∑

ij Aij is the total
number of edges in G. Suppose that the match graph is structured such that
the node i belongs to a community Vp and the node j belongs to a community
Vq, then the modularity [20] Q measures the difference of the fraction of intra-
community connections between a graph and the random graph:

Q =
1

2m

∑

ij

(Aij − didj

2m
)δ(Vp, Vq) (3)
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Table 1. Reconstruction accuracy of three small datasets [27] with ground-truth. The
absolute camera location errors cerr and camera rotation errors Rerr are measured in
meters and degrees respectively. The #matches for our method is showed as the number
of consistent matches / the number of total attempted matches.

fountain-P11 Herz-Jesu-P25 Castle-P30

#matches cerr Rerr #matches cerr Rerr #matches cerr Rerr

Ours 52/55 0.019 0.414 155/231 0.030 0.399 112/283 0.220 0.476

Full 55 0.016 0.407 300 0.028 0.389 435 0.167 0.513

match

Table 2. Running time and re-projection error for different methods. The meaning
of the first row: Dataset, the name of the scene; #views, the number of cameras;
#Rviews, the number of successfully registered cameras, with F meaning that the
reconstruction fails; #UM/#TM, the number of useful matches which pass geometric
verification and loop consistency verification / the number of total attempted matches;
M+GV, the running time of matching and geometric verification; GO, the running
time of graph operations including loop consistency verification, community detection,
etc.; Total time, the total running time of the proposed matching algorithm; Speedup,
the speedup factor of our matching algorithm w.r.t Voc100 ; ReprojError, mean re-
projection error (in pixels) of resulted SfM models; The running time of vocabulary
tree is not documented since both methods depend on it. The matching time of Voc25
is not recorded as well since it has roughly the same number of matches as that of the
graph-based matching method.

Dataset #views
#Rviews #matches Running Time ReprojError

Ours Voc25 Voc100
Ours

Voc25 Voc100
Ours

Voc100 Speedup Ours Voc25 Voc100
#UM #TM M+GV GO Total time

SportsArena 157 151 F F 529 2621 2654 9554 8.8 min 0.1 min 8.9 min 29.4 min 3.3x 0.736 F F
TempleOfHeaven 341 341 F F 2795 2901 4483 18466 14.2 min 0.2 min 14.4 min 68.0 min 4.7x 0.544 F F

NotreDame 699 675 685 687 11765 15729 12142 45280 0.98 hrs 0.7 min 0.99 hrs 2.76 hrs 2.8x 0.654 0.705 0.672
TreviFountain 1906 1906 1906 1906 27182 30187 33821 124925 1.87 hrs 2.1min 1.90 hrs 7.10 hrs 3.9x 0.568 0.693 0.602
Colosseum 2006 1980 1999 2006 26723 32653 35130 143439 2.72 hrs 2.3 min 2.76 hrs 11.23 hrs 4.1x 0.466 0.615 0.489

where δ(i, j) = 1 if i = j and 0 otherwise. If every node is itself a community, the
modularity is zero. In practice, a value larger than 0.3 indicates that the graph
has a significant community structure. After the triplet expansion step, the com-
munity structure on the match graph manifests the sparse connections between
communities that may yields incomplete SfM models due to insufficient tracks
and wide baseline. In this case, even though the match graph is connected as a
whole, SfM may still fail into separated models. We aim to find the community
structure of the match graph and reinforce intra-community connectivity visual
similarity cues.

To avoid defeating the purpose of speeding up the pairwise matching, we
choose a fast greedy approach to estimate the community structure [5]. This
hierarchical algorithm starts with each node being a sole community and iter-
atively joins separate communities whose amalgamation results in the largest
increase in Q. Specifically, we use the weighted graph with the edge weight being



Graph-Based Consistent Matching for Structure-from-Motion 149

the number of fundamental matrix inliers Finlier between an image pair, which
helps identify weak connections. Therefore, Aij of the match graph in Eq. 3 is
defined as

Aij =
{

Finlier i and j are connected
0 otherwise (4)

The match graph is merged into a single community after n − 1 such joins. The
modularity Q has a single peak over the generation of the dendrogram [5] which
indicates the most significant community structure. We take the vertex parti-
tion when the modularity reaches the peak. Hence the number of communities
depends upon the connectivity pattern of the match graph.

After getting the community structure of the intermediate match graph,
image pairs across groups constitutes a candidate list Φ = {(i, j)|i ∈ Vp, j ∈
Vq, p = [1, . . . , m], q = [1, . . . ,m], p �= q} for matching and geometric verifica-
tion. For a match graph with n nodes, if the community detection algorithm
generates m groups of roughly equal size, the scale of the candidate matching
set is O(( n

m )2), which is still quadratic in the number of images. To reduce the
cost of matching, we rank the candidate list by quadratic mean of Ranki(j) and
Rankj(i), and only match the most probable SC community-wise pairs. Thus
the candidate list is pruned to a smaller matching set Φ′ of size SCm(m−1)

2 , which
only depends on the number of communities. This component merging process
is iterative and stops if the number of communities does not change.

The issue with strong consistency is taken care of during the graph reinforce-
ment stage. Intuitively it can be only achieved approximately since verifying all
loops is computationally intractable. As is observed in several previous stud-
ies [6,18], random errors accumulated in the longer loops affect the effectiveness
of loop consistency checking. As a result, the verification process further sim-
plifies to checking the strong consistency with respect to the shortest loop that
contains the new edge. For an image pair (Ii, Ij), we use breath-first-search algo-
rithm to find the shortest path in the match graph. Together with the direct link
between Ii and Ij , they form the shortest loop. The loop consistency of this cycle
is verified with a discrepancy threshold weighted by the cycle length [6]. The full
component merging algorithm is given in Algorithm 2.

5 Experiments

Implementation. We used SiftGPU [30] to extract and match SIFT [17] fea-
tures. To compute similarity scores and rank information, we implemented a
multi-threaded version of the vocabulary tree algorithm [22] to ensure the cost
of image retrieval is significantly lower than that of the matching process. The
vocabulary tree has a depth of 6 and a branching factor of 8 with tf-idf weighting
and min-distance metric. We used 7-point algorithms embedded in RANSAC [8]
to compute the fundamental matrix of image pairs for geometric verification.
We obtained the SfM models using a standard incremental SfM pipeline using
[2] as the underlying bundle adjustment solver. All experiments were running on
a multi-core PC with Intel(R) Core(TM) i7-4770K processors and 32 GB main
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Fig. 3. Per-camera absolute location errors of (a) fountain-P11 (b) Herz-Jesu-P25 (c)
Castle-P30 and the corresponding per-camera orientation errors (d)(e)(f). Our method
achieves the same level of accuracy as that of the full match, despite the fact that the
number of matches is much smaller than the full match.

Fig. 4. Disambiguation performance of different methods on the highly ambiguous
TempleOfHeaven dataset. (a) The true-positive feature correspondences (top: the front-
front match) and the false-positive feature correspondences (bottom: the front-back
match) of TempleOfHeaven. After geometric verification using fundamental matrix,
the erroneous false-positive match has much fewer inliers (246) than that of the true-
positive match (2349); (b) The match graph of our method; (c) The SfM models using
Voc100 as input; (d) The SfM models using [33] applied on Voc100 as input; (e) The
correct SfM model using the consistent matching method.

memory. We used the same set of parameters for all experiments with pairwise
inlier number SI = 20, singleton rejection threshold SR = 20, community-wise
match number SC = 30 and loop discrepancy threshold θc = 2◦.

Datasets. We tested the algorithm on three types of datasets, namely the bench-
mark datasets, the Internet datasets, and the ambiguous datasets. First, the
datasets fountain-P11, Herz-Jesu-P25, and Castle-P30 were obtained from the
well-known benchmark datasets [27] with the ground-truth camera calibrations.
Further, we tested the scalability and efficiency of the method on relatively large
Internet datasets from [1], namely NotreDame, TreviFountain and Colosseum.
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Fig. 5. 3D Reconstruction models and their corresponding match graphs for Rome16 K
[1] datasets. From left to right: Colosseum, TreviFountain, NotreDame. The correspond-
ing match graphs show the community partition using different colors. (Color figure
online)

Finally, we show our method has superior performance on ambiguous datasets
which are Cup, Books, Desk, ForbiddenCity, Indoor. We also introduce two more
highly ambiguous datasets, namely SportsArena (Fig. 1) and TempleOfHeaven
(Fig. 4).

Accuracy Evaluation. We conducted experiments on multi-view benchmark
datasets [27] to evaluate accuracy. We fix the SfM pipeline and use the full match-
ing and the graph-based matching results as inputs respectively. The reconstruc-
tion accuracy is measured by the error of absolute camera location cerr and the
absolute error of camera orientation Rerr, in meters and degrees respectively. We
do not conduct comparison with image retrieval techniques because the datasets
are too small and candidate lists for vocabulary tree are hard to choose. The
experiment results (see Table 1 and Fig. 3) show that the graph-based method
is adaptive to the complexity of the datasets and achieves the same level of
accuracy as that of the full match.

Scalability and Efficiency. Next, we tested the scalability and time efficiency
of the method on Internet datasets [1]. For comparison the matching set contain-
ing top-100 candidates per image, denoted as Voc100, is retrieved and matched.
We ensure that this fixed number is enough for reconstruction and all failure
cases of Voc100 are not caused by insufficient matches. A smaller matching
set Voc25, composed of top-25 candidates per image, is also retrieved and com-
pared. The aim is to test the effectiveness of the proposed method. Voc25 roughly
contains the same number of matches as the consistent matching set but does
not necessarily guarantee complete SfM results. We measure the re-projection
error of SfM results with different matching inputs. The comparison result (see
Table 2) shows that the graph-based matching algorithm significantly accelerates
the matching process, with speedup factors ranging from 3.3 for SportArena, to
4.7 for TempleOfHeaven compared with Voc100. The overhead introduced by
various graph operations is negligible compared to the cost of pairwise image
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Fig. 6. Experiment results on ambiguous datasets from previous works [14,24]. From
left to right: the first two columns - two views of an ambiguous scene; 3rd column - the
SfM model using full match; 4th column - the SfM model using consistent matching;
5th column - the match graph after triplet expansion; 6th column - the match graph
after component merging (different colors represents different communities). From top
to bottom: (a) Cup (b) Books (c) Desk (d) ForbiddenCity (e) Indoor. (Color figure
online)

matching, as is shown in the GO column of Table 2. The re-projection error
of the SfM models with the consistent matching set is systematically smaller.
We also found that the community-based graph reinforcement step is crucial in
the success of large-scale reconstructions since the local consistency achieved by
triplet expansion fails to detect the community-level connectivity. Please refer
to the supplementary materials for more details.

Redundancy and Disambiguation. We then used ambiguous datasets to
demonstrate how erroneous matches can ruin the final SfM result. Temple-
OfHeaven dataset is composed of 341 rotationally symmetric images, which is
a failure case of Jiang et al. [14]. In this extremely symmetric dataset, even the
front views and the back views would match and form a reasonable epipolar
geometry (see Fig. 4(a)).

The 3D reconstruction with Voc100 and Voc25 of the TempleOfHeaven
dataset both yielded folded structures. The same went for the SportsArena
dataset, in which Voc100 generated a 3D reconstruction with superimposed
structures (see Fig. 1) and the reconstruction of Voc25 contained erroneous reg-
istrations of camera poses. All these cases failed because the methods mentioned
above ignore the structure of the scene and lack geometric consistency checking.
In contrast, the proposed matching method progressively explores the connectiv-
ity from the local to the whole and check consistency along the path. Figure 4(b)
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Fig. 7. A failure case. (a) Two views from a self-similar scene; (b) The SfM model
using full match; (c) The SfM model using the consistent matching algorithm; (d) The
correct SfM model solely using the skeletal tree match graph as input.

visualizes the final match graph which greatly resembles the actual scene. We also
tried the iterative version [18] of removing erroneous match pairs using Bayesian
inference proposed by Zach et al. [33] on TempleOfHeaven. Although it removed
3575 out of 18466 match pairs, the obtained matching set still failed to render a
correct reconstruction. We also applied this method on Internet datasets to filter
the matches. But it was generally infeasible for large-scale datasets since a single
iteration would take more than 8 h on Voc100 of the TreviFountain dataset, due
to the fact that the inference on Bayesian networks is generally NP-hard.

We further tested our matching algorithm on several ambiguous datasets from
previous works [14,24] and the results are showed in Fig. 6. Solely by optimiz-
ing the input match graph, our consistent matching yields efficient and correct
camera pose registrations compared with the exhaustive matching method.

Limitations. The current loop consistency checking is solely based on pair-
wise rotation, making it difficult to detect the inconsistency in datasets with
pure translation motion, such as Street dataset (see Fig. 7). Thus it is possible
to extend our algorithm to check the chained pose consistency, namely using
displacements on a fixed scale as the surrogate relative transformation to verify
loop consistency.

6 Conclusions

In this paper, we present a unified image matching framework using greedy graph
expansion and community detection to discover both local and inter-community
consistent match pairs. Our method significantly reduces the number of image
pairs for matching without degrading the quality of subsequent SfM pipeline,
and improves the robustness of SfM in scenes with ambiguous structures.

Our approach provides a sufficient and consistent image matching set as the
input of SfM. This matching framework does not assume knowing any global
motion information, nor incorporate translation or other scale-dependent con-
straints into the loop consistency checking. Hence, our future work is to combine
the components in SfM, e.g. track selection and global pose registration, to fur-
ther optimize 3D reconstruction.
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