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Abstract. Despite the effectiveness of convolutional neural networks
(CNNs) for image classification, our understanding of the effect of shape
of convolution kernels on learned representations is limited. In this work,
we explore and employ the relationship between shape of kernels which
define receptive fields (RFs) in CNNs for learning of feature represen-
tations and image classification. For this purpose, we present a feature
visualization method for visualization of pixel-wise classification score
maps of learned features. Motivated by our experimental results, and
observations reported in the literature for modeling of visual systems,
we propose a novel design of shape of kernels for learning of representa-
tions in CNNs.

In the experimental results, the proposed models also outperform the
state-of-the-art methods employed on the CIFAR-10/100 datasets [1] for
image classification. We also achieved an outstanding performance in the
classification task, comparing to a base CNN model that introduces more
parameters and computational time, using the ILSVRC-2012 dataset [2].
Additionally, we examined the region of interest (ROI) of different mod-
els in the classification task and analyzed the robustness of the proposed
method to occluded images. Our results indicate the effectiveness of the
proposed approach.

Keywords: Convolutional neural networks · Deep learning · Convolu-
tion kernel · Kernel design · Image classification

1 Introduction

Following the success of convolutional neural networks (CNNs) for large scale
image classification [2,3], remarkable efforts have been made to deliver state-
of-the-art performance on this task. Along with more complex and elaborate
architectures, lots of techniques concerning parameter initialization, optimiza-
tion and regularization have also been developed to achieve better performance.
Despite the fact that various aspects of CNNs have been investigated, design
of the convolution kernels, which can be considered as one of the fundamental
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problems, has been barely studied. Some studies examined how size of kernels
affects performance [4], leading to a recent trend of stacking small kernels (e.g.
3 × 3) in deep layers of CNNs. However, analysis of the shapes of kernels is
mostly left untouched. Although there seems to be no latitude in designing the
shape of convolution kernels intuitively (especially 3 × 3 kernels), in this work,
we suggest that designing the shapes of kernels is feasible and practical, and we
analyze its effect on the performance.

In the early studies of biological vision [5–7], it was observed that the recep-
tive fields (RFs) of neurons are arranged in an approximately hexagonal lattice.
A recent work reported an interesting result that an irregular lattice with appro-
priately adjusted asymmetric RFs can be accurate in representation of visual
patterns [8]. Intriguingly, hexagonal-shaped filters and lattice structures have
been analyzed and employed for solving various problems in computer vision
and image processing [9,10]. In this work, motivated by these studies, we pro-
pose a method for designing the kernel shapes in CNNs. Specifically, we propose
a method to use an asymmetric shape, which simulates hexagonal lattices, for
convolution kernels (see Figs. 3 and 4), and then deploy kernels with this shape
in different orientations for different layers of CNNs (Sect. 2).

)c()b()a(

Fig. 1. Examples of visualization of ROI (Sect. 3) in two images (a) for CNNs equipped
with kernels with (b) square, and (c) our proposed “quasi-hexagonal” shapes (Sect. 2).
The pixels marked with red color indicate their maximum contribution for classification
scores of the correct classes. For (b), these pixels tend to be concentrated on local,
specific parts of the object, whereas for (c), they distribute more across multiple local
parts of the object. See texts for more details. (Color figure online)

This design of kernel shapes brings multiple advantages. Firstly, as will be
shown in the experimental results (Sect. 4.1), CNNs which employ the proposed
design method are able to achieve comparable or even better classification per-
formance, compared to CNNs which are constructed using the same architectures
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(same depth and output channels for each layer) but employing square (3 × 3)
kernels. Thus, a notable improvement in computational efficiency (a reduction
of 22 % parameters and training time) can be achieved as the proposed kernels
include fewer weights than 3 × 3 kernels. Meanwhile, increasing the number of
output channels of our proposed models (to keep the number of parameters same
as corresponding models with square shape), leads to a further improvement in
performance.

Secondly, CNNs which employ our proposed kernels provide improvement in
learning for extraction of discriminative features in a more flexible and robust
manner. This results in better robustness to various types of noise in natural
images that could make classification erroneous, such as occlusions. Figure 1
shows examples of visualization of features extracted using fully-trained CNNs
equipped with and without our proposed kernels, which are obtained by the
method introduced in Sect. 3. These depict the image pixels that have the max-
imum contribution to the classification score of the correct class (shown in red).
It is observed that for CNNs equipped with our proposed kernels, they tend to
be less concentrated on local regions and rather distributed across a number
of sub-regions, as compared to CNNs with standard square kernels. This prop-
erty prevents erroneous classification due to occlusions, as will be shown in the
experimental results. This also helps to explain the fact that the CNNs equipped
with our proposed kernels perform on par with the CNNs equipped with square
kernels despite having less number of parameters. The contributions of the paper
are summarized as follows:

1. We propose a method to design convolution kernels in deep layers of CNNs,
which is inspired by hexagonal lattice structures employed for solving various
problems of computer vision and image processing.

2. We examine classification performance of CNNs equipped with our kernels,
and compare the results with state-of-the-art CNNs equipped with square
kernels using benchmark datasets, namely ImageNet and CIFAR 10/100. The
experimental results show that the proposed method is superior to the state-
of-the-art CNN models in terms of computational time and/or classification
performance.

3. We introduce a method for visualization of features to qualitatively ana-
lyze the effect of kernel design on classification. Additionally, we analyze the
robustness of CNNs equipped with and without our kernel design to occlusion
by measuring their classification accuracy when some regions on input images
are occluded.

2 Our Approach

We propose a method for designing shape of convolution kernels which will be
employed for image classification. The proposed method enables us to reduce the
computational time of training CNNs providing more compact representations,
while preserving the classification performance.
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Fig. 2. (a) Visualization of a subset of kernels KS
a,l ∈ R

K×K , where K is the size of
kernel, at the first convolution layer l = 1 of AlexNet [3] trained on ImageNet. (b) An
average kernel K̂S = 1

A

∑A
a=1 |KS

a,l| is depicted at the top-left part. Each bar in the
histogram shows a cumulative distribution of values over each channel, c.

In CNNs [3,4,11], an input image (or feature map) I ∈ R
W×H×C is convolved

with a series of square shaped kernels KS ∈ R
K×K×C through its hierarchy. The

convolution operation KS ∗ I can be considered as sampling of the image I, and
extraction of discriminative information with learned representations. Figure 2
shows a subset of learned kernels KS , and the kernel K̂S averaged over all
the kernels employed at the first layer of AlexNet [3]. Distribution of values
of K̂S shows that most of the weights at the corner take values close to zero,
thus making less contribution for representing features at the higher layers. If a
computationally efficient and compressed model is desired, additional methods
need to be employed, such as pruning these diluted parameters during fine-
tuning [12].

(a) A kernel KH(Dp,q) ⊂
N9[Ii,j ] (square grid).

(b) The kernel KH(Dp,q)
(hexagonal grid).

(c) KH(Dp,q) with Dp,q ∈
{(−1, 0), (1, 0), (0,−1), (0, 1)}

Fig. 3. (a) Our proposed kernel. (b) It can approximate a hexagonal kernel by shifting
through direction D. (c) A set of kernel candidates which are denoted as design pattens
“U”,“R”, “D”, “L” from left to right.
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(a) (b)

Fig. 4. (a) Employment of the proposed method in CNNs by stacking small size “quasi-
hexagonal” kernels. (b) The kernels employed at different layers of a two-layer CNN
will induce the same pattern of RFs on images observed in (a), if only the kernels
designed with the same patterns are used, independent of order of their employment.

2.1 Designing Shape of Convolution Kernels

In this work, we address the aforementioned problems by designing shapes of
kernels on a two-dimensional coordinate system. For each channel of a given
image I, we associate each pixel Ii,j ∈ I at each coordinate (i, j) with a lattice
point (i.e., a point with integer coordinates) in a square grid (Fig. 3a) [13,14].
If two lattice points in the grid are distinct and each (i, j) differs from the
corresponding coordinate of the other by at most 1, then they are called 8-
adjacent [13,14]. An 8-neighbor of a lattice point Ii,j ∈ I is a point that is
8-adjacent to Ii,j . We define N9[Ii,j ] as a set consisting of a pixel Ii,j ∈ I, and its
8 nearest neighbors (Fig. 3a). A shape of a quasi-hexagonal kernel KH(Dp,q) ⊂
N9[Ii,j ] is defined as

KH(Dp,q) = {N9[Ii,j ] ∩ N9[Ii+p,j+q] ∪ Ii−p,j−q} (1)

where Dp,q ∈ D is a random variable used as an indicator function
employed for designing of shape of KH(Dp,q), and takes values from D =
{(−1, 0), (1, 0), (0,−1), (0, 1)} (see Fig. 3c). Then, convolution of the proposed
quasi-hexagonal kernel KH(Dp,q) on a neighborhood centered at a pixel located
at (x, y) on an image I is defined as

Ix,y ∗ KH(Dp,q) =
∑

s,t

KH
s,t(Dp,q)Ix−s,y−t. (2)

2.2 Properties of Receptive Fields and Quasi-Hexagonal Kernels

Aiming at more flexible representation of shapes of natural objects which may
diverge from a fixed square shape, we stack “quasi-hexagonal” kernels designed
with different shapes, as shown in Fig. 4. For each convolution layers, we ran-
domly select Dp,q ∈ D according to a uniform distribution to design kernels.
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Random selection of design patterns of kernels is feasible because the shapes of
RFs will not change, independent of the order of employment of kernels if only
the kernels designed with the same patterns are used by the corresponding units
(see Fig. 4b). Therefore, if a CNN model is deep enough, then RFs with a more
stable shape will be induced at the last layer, compared to the RFs of middle
layer units.

We carry out a Monte Carlo simulation to examine this property using dif-
ferent kernel arrangements. Given an image I ∈ R

W×H , we first define a sto-
chastic matrix M ∈ R

W×H . The elements of the matrix are random variables
Mi,j ∈ [0, 1] whose values represent the probability that a pixel Ii,j ∈ I is covered
by an RF. Next, we define M̂ �

∑
k Mk

S as an average of RFs for a set of kernel
arrangements {Mk

S}K
k=1. Then, the difference between Mk

S and the average M̂
is computed using

d(M̂,Mk
S) = ‖M̂ − Mk

S‖2F /(WH), (3)

where ‖ · ‖2F is the squared Frobenius norm [15]. Note that, we obtain a better
approximation to the average RF as the distance decreases. The average μd and
standard deviation σd given in Fig. 5. show that a better approximation to the
average RF is obtained, if kernels used at different layers are integrated at higher
depth.

3 Visualization of Regions of Interest

We propose a method to visualize the features detected in RFs and the ROI of
the image. Following the feature visualization approach suggested in [16], our
proposed method provides a saliency map by back-propagating the classification
score for a given image and a class. Given a CNN consisting of L layers, the
score vector for an input image I ∈ R

H×W×C is defined as

S = F1(W1, F2(W2, . . . , FL(I,WL))), (4)

(a) Depth = 3,
μd = 0.075, σd = 0.037.

(b) Depth = 5,
μd = 0.061, σd = 0.030.

(c) Depth = 7,
μd = 0.053, σd = 0.026.

(d) Depth = 9,
μd = 0.046, σd = 0.023.

Fig. 5. In (a), (b), (c) and (d), the figures given in left and right show an average
shape of kernels emerged from 5000 different shape configurations, and a shape of a
kernel designed using a single shape configuration, respectively. It can be seen that the
average and variance of d decreases as the kernels are computed at deeper layers. In
other words, at deeper layers of CNNs, randomly generated configurations of shapes of
kernels can provide better approximations to average shapes of kernels.
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where WL is the weights of the kernel KL at Lth layer, and SC is the Cth element
of S representing the classification score for the Cth class. At the lth layer, we
compute a feature map Ml for each unit ul

i,j,k ∈ Ml, which takes values from
its receptive field R(ul

i,j,k), and generate a new feature map M̂l in which all the
units except ul

i,j,k are set to be 0. Then, we feed M̂l to the tail of the CNN to
calculate its score vector as

S(ul
i,j,k) = Fl+1(Wl+1, Fl+2(Wl+2, . . . , FL(M̂l,WL))). (5)

Thereby, we obtain a score map S
l for all the units of Ml, from which we choose

top N most contributed units, i.e. the units with the N -highest scores. Then, we
back-propagate their score SC(ul

i,j,k) for the correct (target) class label towards
the forepart of the CNN to rank the contribution of each pixel p ∈ I to the score
as

S
l(C, ul

i,j,k) = F−1
1 (W1, F−1

2 (W2, . . . , F−1
l (SC(ul

i,j,k),Wl))), (6)

where S
l(C, ul

i,j,k) is a score map that has the same dimension with the image
I, and that records the contribution of each pixel p ∈ I to the Cth class. Here
we choose the top Ω unit {ul

ω}Ω
ω=1 with the highest score SC , where ul

ω is the
ωth unit employed at the lth layer. Then, we compute the incorporated saliency
map LC,l ∈ R

H×W extracted at the lth layer, for the Cth class as follows

LC,l =
∑

ω

|Sl(C, ul
ω)|, (7)

where | · | is the absolute value function. Finally, the ROI of defined by a set of
merged RFs, {R(ul

ω)}Ω
ω=1 is depicted as a non-zero region in LC,l.

4 Experiments

In Sect. 4.1, we examine classification performance of CNNs implementing pro-
posed methods using two benchmark datasets, CIFAR-10/100 [1] and ILSVRC-
2012 (a subset of ImageNet [2]). We first analyze the relationship between shape
of kernels, ROI and localization of feature detections on images. Then, we exam-
ine the robustness of CNNs for classification of occluded images. Implementation
details of the algorithms, and additional results are provided in the supplemen-
tal material. We implemented CNN models using the Caffe framework [17], the
implementation detail is given in supplemental material1.

4.1 Classification Performance

Experiments on CIFAR Datasets. A list of CNN models used in experi-
ments is given in Table 1a. We used the ConvPool-CNN-C model proposed in
[18] as our base model (BASE-A). We employed our method in three different

1 https://github.com/minogame/caffe-qhconv.

https://github.com/minogame/caffe-qhconv
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Table 1. CNN configurations. The convolution layer parameters are denoted as
<duplication> × conv<kernel> − <number of channels >. A rectified linear unit
(ReLU) is followed after each convolution layer. ReLU and dropout layer are not shown
for brevity. All the conv-3 × 3/QH/FK layers are set to be stride 1 equipped with pad 1.

models: (i) QH-A retains the structure of the BASE-A by just implementing ker-
nels using the proposed methods, (ii) QH-B models a larger number of feature
maps compared to QH-A such that QH-B and BASE-A have the same number
of parameters, (iii) QH-C is a larger model which is used for examination of
generalization properties (over/under-fitting) of the proposed QH-models. Fol-
lowing [18] we implement dropout on the input image and at each max pooling
layer. We also utilized most of the hyper-parameters suggested in [18] for training
the models.

Since our proposed kernels have fewer parameters compared to 3 × 3 square
shaped kernels, by retaining the same structure as BASE-A, QH-A may bene-
fit from the regularization effects brought by less numbers of total parameters
that prevent over-fitting. In order to analyze this regularization property of the
proposed method, we implemented a reference model, called BASE-REF with
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Table 2. Comparison of classification errors using CIFAR-10 dataset (Single models
trained without data augmentation).

Model BASE-A BASE-A-AD BASE-REF QH-A QH-A-AD QH-EXT

Testing Error(%) 9.02 8.71 9.89 9.10 8.79 9.40

conv-FK (fragmented kernel) layer, which has 3×3 convolution kernels, and the
values of two randomly selected parameters are set to 0 (to keep the number
of effective parameters same with quasi-hexagonal kernels). In another reference
model (QH-EXT), shape patterns of kernels (Sect. 2) are chosen to be the same
(< R, . . . , R > in this implementation). Moreover, we introduced two additional
variants of models using (i) different kernel sizes for max pooling (-pool4), and
(ii) an additional dropout layer before global average pooling (-AD).

Results given in Table 2 show that the proposed QH-A has comparable per-
formance to the base CNN models that employ square shape kernels, despite a
smaller number of parameters. Meanwhile, a significant decrement in accuracy
appears in the BASE-REF model that employs the same number of parame-
ters as QH-A, which suggests that our proposed model works not only by the
employment of a regularization effect but by the utilization of a smaller num-
ber of parameters. The inferior performance for QH-EXT model indicates the
effectiveness of randomly selecting kernels described in Sect. 2. Moreover, it can
also be observed that the implementation of additional dropout and larger size
pooling method improves the classification performance of both BASE-A and
proposed QH-A in a similar magnitude. Then, the experimental observation
implies a general compatibility between the square kernels and the proposed
kernels (Table 3).

Table 3. Comparison of classification error of models using CIFAR-10/100 datasets
(Single models trained without data augmentation).

Model Testing Error (%) Numbers of Params.

CIFAR-10 CIFAR-100

NIN [19] 10.41 35.68 ≈1M

DSN [20] 9.69 34.57 ≈1M

ALL-CNN [18] 9.08 33.71 ≈1.4M

RCNN [21] 8.69 31.75 ≈1.9M

Spectral pool [22] 8.6 31.6 −
FMP [23] − 31.2 ≈12M

BASE-A-AD 8.71 31.2 ≈1.4M

QH-B-AD 8.54 30.54 ≈1.4M

QH-C-AD 8.42 29.77 ≈2.4M
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Additionally, we compare the proposed methods with state-of-the-art meth-
ods for CIFAR-10 and CIFAR-100 datasets. For CIFAR-100, we used the same
models implemented for CIFAR-10 with the same hyper-parameters. The results
given in Table 4 show that our base model with an additional dropout (BASE-A-
AD) provides comparable classification performance for CIFAR-10, and outper-
forms the state-of-the-art models for CIFAR-100. Moreover, our proposed models
(QH-B-AD and QH-C-AD) improve the classification accuracy by adopting more
feature maps.

Experiments on ImageNet. We use an up-scale model of BASE-A model for
CIFAR-10/100 as our base model, which stacks 11 convolution layers with kernels
that have regular 3× 3 square shape, that are followed by a 1× 1 convolution
layer and a global average pooling layer. Then, we modified the base model
with three different types of kernels: (i) our proposed quasi-hexagonal kernels
(denoted as conv-QH layer), (ii) reference kernels where we remove an element
located at a corner and one of its adjacent elements located at edge of a standard
3 × 3 square shape kernel (conv-UB), (iii) reference kernels where we remove an
element from a corner and an element from a diagonal corner of a standard 3× 3
square shape kernel (conv-DIA). Notice that unlike the fragmented kernels we
employed in the last experiment, these two reference kernels can also be used
to generate aforementioned shapes of RFs. However, unlike the proposed quasi-
hexagonal kernels, we cannot assure that these kernels can be used to simulate
hexagonal processing. Configurations of the CNN models are given in Table 1b.
Dropout [24] is used on an input image at the first layer (with dropout ratio
0.2), and after the last conv-3× 3 layer. We employ a simple method for fixing
the size of train and test samples to 256 × 256 [4], and a patch of 224 × 224
is cropped and fed into network during training. Additional data augmentation
methods, such as random color shift [3], are not employed for fast convergence.

Classification results are given in Table 4. The results show that the perfor-
mance of reference models is slightly better than that of the base model. Notice
that since the base model is relatively over-fitted (top5 accuracy for training
sets is ≥97 %), these two reference models are more likely to be benefited from
the regularization effect brought by less number of parameters. Meanwhile, our
proposed QH-BASE outperformed all the reference models, implying the validity
of the proposed quasi-hexagonal kernels in approximating hexagonal processing.
Detailed analyses concerning compactness of models are provided in the next
section.

Table 4. Comparison of classification accuracy using validation set of ILSVRC-2012.

Model BASE QH-BASE REF-A-BASE REF-B-BASE

top-1/5 val. error (%) 31.2/12.3 29.2/11.1 31.4/12.4 31.2/12.2
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Table 5. Comparison of number of parameters and computational time of different
models.

Model Num. of params. Training time (500 samples) Difference in accuracy

BASE ≈57.3M 51610.5 ms −
QH-BASE ≈44.6M 38815.9 ms +1.2 %

BASE-A ≈1.4M 1492 ms −
QH-A ≈1.1M 1227.4 ms −0.08 %

QH-B ≈1.4M 1449.9 ms +0.17 %

Analysis of Relationship Between Compactness of Models and Classi-
fication Performance. In this section, we analyze the compactness of learned
models for ImageNet and CIFAR-10 datasets. We provide a comparison of the
number of parameters and computational time of the models in Table 5. The
results show that, in the experimental analyses for the CIFAR-10 dataset, QH-A
model has a comparable performance to the base model with fewer parameters
and computational time. If we keep the same number of parameters (QH-B), then
classification accuracy improves for similar computational time. Meanwhile, in
the experimental analyses for the ImageNet dataset, our proposed model shows
significant improvement in both model size and computational time.

We conducted another set of experiments to analyze the relationship between
the classification performance and the number of training samples using CIFAR-
10 dataset. The results given in Table 6 show that the QH-A-AD model provides a
comparable performance with the base model, and the QH-B-AD model provides
a better classification accuracy compared to the base model, as the number of
training samples decreases. In an extreme case where only 1000 training samples
is selected, QH-A-AD and QH-B-AD outperform the base model by 0.7 % and
3.1 %, respectively, which indicates the effectiveness of the proposed method.

Table 6. Comparison of classification error between models BASE-A-AD, QH-A-AD
and QH-B-AD with different number of training samples on CIFAR-10 dataset.

Model Classification Error (%)

Number of training samples

20K 10K 5K 2K 1K

BASE-AD 12.6 16.8 21.8 31.0 44.9

QH-A-AD 12.7 16.6 21.1 31.3 44.2

QH-B-AD 12.4 16.3 20.7 30.9 41.8
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4.2 Visualization of Regions of Interest

Figure 6 shows some examples of visualizations depicted using our method pro-
posed in Sect. 3. Saliency maps are normalized and image contrast is slightly
raised to improve visualization of images. We observed that for most of these
correctly classified testing images, both the BASE model equipped with square
kernels and the proposed QH-BASE model equipped with quasi-hexagonal ker-
nels are able to present an ROI that roughly specify the location and some basic
shape of the target objects, and vise versa. Since the ROI is directly determined
by RFs of neurons with strong reactions toward special features, this observation
suggests that the relevance between learned representations and target objects
is crucial for recognition and classification using large-scale datasets of natural
images such as ImageNet.

However, some obvious difference between the ROI of the base model and the
proposed model can be observed: (i) ROI of the base model usually involves more
background than that of the proposed model. That is, compared to these pixels
with strong contributions, the percentage of these pixels that are not essentially
contributing to the classification score, is generally higher in the base model. (ii)
Features learned using the square kernels are more like to be detected within
clusters on special parts of the objects. The accumulation of the features located
in these clusters results in a superior contribution, compared to the features
that are scattered on the images. For instance, in the base model, more neurons
have their RFs located in the heads of hare and parrots, thus the heads obtain
higher classification scores than other parts of body. (iii) As a result of (ii), some
duplicated important features (e.g., the supporting parts of cart and seats of
coach) are overlooked in these top reacted high-level neurons in the base model.
Meanwhile, our proposed model with quasi-hexagonal kernels is more likely to
obtain discriminative features that are spatially distributed on the whole object.
In order to further analyze the results obtained by employing the square kernel
and the proposed kernels for object recognition, we provide a set of experiments
using occluded images in the next section.

4.3 Occlusion and Spatially Distributed Representations

The analyses given in the last section imply that the base CNN models equipped
with the square kernel could be vulnerable to recognition of objects in occluded
scenes, which is a very common scenario in computer vision tasks. In order to
analyze the robustness of the methods to partial occlusion of images, we prepare
a set of locally occluded images using the following methods. (i) We randomly
select 1249 images that are correctly classified by both the base and proposed
models using the validation set of ILSVRC-2012 [2]. (ii) We select Top1 or Top5
elements with highest classification score at the last maxpool layers of a selected
model2 and calculate the ROI defined by their RFs, as we described in Sect. 3.

2 In addition to the BASE and the QH-BASE models, we also employ a “third-party”
model, namely VGG [4], to generate the occluded images.
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Origin BASE QH-BASE

Fig. 6. Examples of visualization of ROI. A ROI demonstrates a union of RFs of the
top 40 activated neurons at the last max pooling layer. The pixels marked with red color
indicate their contribution to classification score, representing the activated features
located at them. Borderlines of ROI are represented using yellow frames. Top 5 class
predictions provided by the models are also given, and the correct (target) class is
given using orange color. (Color figure online)

(iii) Within the ROI, we choose 1–10% of pixels that provide the most contribu-
tion, and then occlude each of the selected pixels with a small circular occlusion
mask (with radius r = 5 pixels), which is filled by black (Bla.) or randomly
generated colors (Mot.) drawn from a uniform distribution. In total, we gener-
ate 120 different occlusion datasets (149880 different occluded images in total),
Table 7 shows the classification accuracy on the occluded images. The results
show that our proposed quasi-hexagonal kernel model reveal better robustness
in this object recognition under targeted occlusion task compared to square ker-
nel model. Some sample images are shown in Fig. 7.



64 Z. Sun et al.

Table 7. Performances on the occlusion datasets. Each column shows the classifica-
tion accuracy (%) of test models in different occlusion conditions. In the first row,
BASE/QH-BASE/VGG indicate the models used for generating occlusion, Top1/Top5
indicate the numbers of selected neurons that control the size of occluded region,
Bla./Mot. indicate the patterns of occlusion.

Model BASE QH-BASE 0VGG Average accuracy

Top1 Top5 Top1 Top5 Top1 Top5

Bla. Mot. Bla. Mot. Bla. Mot. Bla. Mot. Bla. Mot. Bla. Mot.

BASE 58.8 61.2 34.6 40.9 61.3 63.5 36.3 42.7 61.7 63.8 44.1 48.3 51.5

QH-BASE 67.1 67.8 43.8 47.6 67.0 66.9 42.2 45.4 68.6 69.1 52.3 54.6 57.7

Occluded Image BASE QH-BASE

Fig. 7. Analysis of robustness of different models to occlusion. We use the same pro-
posed method to select neurons and visualize their RFs for each model (see Sect. 3).
The comparison between the ROI shown in Fig. 6 suggests that the proposed model
overcomes the occlusion by detecting features that are spatially distributed on tar-
get objects. It can also be seen that, the classification accuracy of the base model is
decreased although the ROI of the base model seems to be more adaptive to the shape
of objects. This also suggests that the involvement of background may make the CNNs
hard to discriminate background from useful features.



Design of Kernels in Convolutional Neural Networks for Image Classification 65

5 Conclusion

In this work, we analyze the effects of shapes of convolution kernels on feature
representations learned in CNNs and classification performance. We first propose
a method to design the shape of kernels in CNNs. We then propose a feature
visualization method for visualization of pixel-wise classification score maps of
learned features. It is observed that the compact representations obtained using
the proposed kernels are beneficial for the classification accuracy. In the exper-
imental analyses, we obtained outstanding performance using ImageNet and
CIFAR datasets. Moreover, our proposed methods enable us to implement CNNs
with less number of parameters and computational time compared to the base-
line CNN models. Additionally, the proposed method improves the robustness of
the base-line models to occlusion for classification of partially occluded images.
These results confirm the effectiveness of the proposed method for designing
of the shape of convolution kernels in CNNs for image classification. In future
work, we plan to apply the proposed method to perform other tasks such as
object detection and segmentation.
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