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Abstract. In this paper, a deep neural network (Behavior-CNN) is pro-
posed to model pedestrian behaviors in crowded scenes, which has many
applications in surveillance. A pedestrian behavior encoding scheme is
designed to provide a general representation of walking paths, which can
be used as the input and output of CNN. The proposed Behavior-CNN
is trained with real-scene crowd data and then thoroughly investigated
from multiple aspects, including the location map and location awareness
property, semantic meanings of learned filters, and the influence of recep-
tive fields on behavior modeling. Multiple applications, including walk-
ing path prediction, destination prediction, and tracking, demonstrate
the effectiveness of Behavior-CNN on pedestrian behavior modeling.

1 Introduction

Pedestrian behavior modeling is gaining increasing attention and can be used for
various applications including behavior prediction [1-4], pedestrian detection and
tracking [5-7], crowd motion analysis [8-11], and abnormal detection [12-14].

Modeling pedestrian behaviors is challenging. Pedestrian decision making is
complex and can be influenced by various factors. The decision making process
of individuals [15], the interactions among moving and stationary pedestrians
[4,16], and historical motion statistics of a scene provide information for pre-
dicting future behaviors of pedestrians. While existing works focused some of
these aspects with simplified rules or energy functions [15,17], our proposed
model takes all these factors into account through a complex deep convolution
neural network (Behavior-CNN) and makes more reliable predictions.

When using deep neural networks to model pedestrian behaviors, the main
difficulty is how to make good use of pedestrian walking information as the input
of networks. A straightforward way was to use dense optical flow maps to describe
motions of a whole frame. However, it introduces ambiguities when merging and
splitting events happen frequently in crowded scenes. As shown in Fig. 1(c),
two separate pedestrians A and B at time ¢ — 1 move to occlude each other at
location C' at time t. The two flow vectors (A — C) and (B — (') describe the
associations between t—1 and ¢t. If the two pedestrians move to locations D and F
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Fig. 1. Prediction results by the proposed Behavior-CNN (a) and the Social Force
Model [15] (b). The input, predicted and ground-truth walking paths are shown as
blue, red, and green dots, respectively. Only some pedestrians’ prediction results are
shown in the figure. (c) Hlustration of association ambiguity in dense flow maps. (Color
figure online)

at t+1 with flow vectors (C' — D) and (C — E), it is obvious that the association
ambiguities between (A, B) and (D, E) cannot be clarified by the flow vectors.
It implies important information loss by using flow maps as the representation
of input. A motion encoding scheme is proposed. The displacement volumes are
used as the input/output of Behavior-CNN to address association ambiguity
across multiple frames and avoid cumulative errors during prediction. As shown
in Fig. 1(a), the input to our system is encoded from previous walking paths of
all the pedestrians in the scene (blue dots) while the output of Behavior-CNN
can recover future walking paths of all these pedestrians (red dots).

The contribution of this paper can be summarized into three-folds. (1) Long-
term pedestrian behaviors is modeled with deep CNN. In-depth investigations on
the proposed Behavior-CNN is conducted on the learned location map and the
location awareness property, semantic meaning of learned filters, and the influ-
ence of receptive fields on behavior modeling. (2) A pedestrian behavior encoding
scheme is proposed to encode pedestrian walking paths into sparse displacement
volumes, which can be directly used as input/output for deep networks without
association ambiguities. (3) The effectiveness of Behavior-CNN is demonstrated
through applications on path prediction, destination prediction, and tracking.

2 Related Work

2.1 Pedestrian Walking Behavior Modeling

There have been a large number of works on modeling motion patterns. Topic
models [18-21] were widely used for modeling crowd flows based on spatio-
temporal dependency. Trajectory clustering was another way of learning motion
patterns [22,23]. These methods only learned general historical motion statistics
of a scene, without modeling the decision making process of each individual.

Katani’s work [24] focus on path planning of a single target based on static
scene structures. It does not model person-to-person interactions and cannot
quickly adapt to varying scene dynamics.

Agent-based models [12,15,17,25,26] could model the decision making
process of individuals and their interactions, and were used for simulation, pre-
diction, and abnormal detection. However, historical motion statistics of scenes



Pedestrian Behavior Understanding and Prediction 265

were not well utilized. Moreover, most agent-based methods used predefined
rules. How to design the rules and whether the rules were proper to describe the
complex pedestrian behaviors in a particular scene could not be guaranteed.

2.2 Deep Learning

Deep CNNs have shown impressive performance on various vision tasks [27],
such as image classification [28], object detection [21,29,30], object tracking
[31], and image segmentation [32,33]. However, no deep model has been specially
designed for pedestrian behavior modeling. The main difficulty arises from how to
design the network input and output, which properly encode pedestrian behavior
information and are also suitable for the CNN.

The motion patterns of a whole frame were represented by dense optical flow
maps for tasks such as motion segmentation [34], action recognition [35], and
crowd scene understanding [36]. As discussed in Sect. 1, ambiguity exists when
associating dense optical flows across multiple frames. Someone tried to learn
motions directly from video input for human action recognition [37] and video
classification [38]. It is not an efficient way of describing pedestrian walking
behaviors from raw videos. Some methods used dynamic texture to model video
motion [39,40]. They could only capture incremental motion information cross
frames, but not long-term motion of pedestrian behaviors. Trajectories were
most widely used for pedestrian behavior understanding in non-deep-learning
approaches. However, it is not clear how to make them suitable as the input and
output of CNN, as they are of variable lengths and observed in different periods.

3 Pedestrian Behavior Modeling and Prediction

The overall framework is shown in Fig. 2. The input to our system is pedestrian
walking paths in previous frames (colored curves in Fig.2(a)). They could be
obtained by simple trackers such as KLT [41]. They are then encoded into a
displacement volume (Fig.2(b)) with the proposed walking behavior encoding
scheme. Behavior-CNN in Fig.2(c) takes the encoded displacement volume as

decoding
I:> Behavior|
CNN

Past frames

()

()

Fig. 2. System flowchart. (a) Pedestrian walking paths in previous frames. Three exam-
ples are shown in different colors. Rectangles indicate current locations of pedestrians.
(b) The displacement volume encoded from pedestrians’ past walking paths in (a).
(c) Behavior-CNN. (d) The predicted displacement volume by Behavior-CNN. (e) Pre-
dicted future pedestrian walking paths decoded from (d).
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input and predict an output displacement volume (Fig.2(d)) for all the pedes-
trians simultaneously. A behavior decoding scheme then translates the output
displacement volume to future walking paths of all individuals (Fig.2(e)).

The pedestrian walking behavior encoding scheme is introduced in Sect. 3.1,
and Behavior-CNN is discussed in Sect. 3.2. The walking behavior decoding is
the inverse process of the encoding. The loss function and training schemes are
introduced in Sect. 3.3.

3.1 Pedestrian Walking Behavior Encoding

The walking paths are encoded as displacement volumes and used as input /output
for Behavior-CNN. The gap between walking path information and feature repre-
sentations can be bridged without ambiguity by the proposed encoding scheme.

The encoding process is illustrated in Fig. 3. Let p1,...,pny be N pedestrians
in a scene, tq, ..., ty; be M uniformly sampled time points to be used as input for
behavior encoding, and tj; be the current time point. The normalized spatial
location of p; (i € [1,N]) at time point ¢, (m € [1, M]) is denoted as 1" =
[zI"/ X,y /Y], where 2" € [1,X], y* € [1,Y] are the spatial coordinates of
p; at time t,,,, and [X,Y] is the spatial size of the input frames. The locations
are grid based and thus discrete. A 2M-dimensional displacement vector d; =
MM M -2 M MM MT € R?M s used to describe pedestrian
p;’s walking path in the past M frames with respect to ¢ty (Fig.3(b)).

The input of CNN is constructed as a 3D displacement volume D €
RXXYX2ZM hased on d;. For each pedestrian p;, all the 20 channels of D at
p;’s current location (J:fw ,yZM ) are assigned with the displacement vector d;.
D(xM, yM ) = d; + 17, where 17 represents an all-one vector. All the remain-
ing entries of D are set as zeros. The elements in d; is within the range of (-1, 1).
By adding 1, d; is transformed to be in the range of (0,2) before being assigned
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Fig. 3. Illustration of the pedestrian walking behavior encoding scheme. (a) Pedestrian
walking paths in the previous M time points, t1, ..., tar. Two pedestrians, ¢ (red) and
Jj (green) are shown as examples. (b) Spatial locations of each person at these time
points, I7* and 17* for m € [1, M]. (c) Computed 2M-dimensional displacement vector
d; and d; for pedestrians 7 and j. (d) Encoded displacement volume D combined from
displacement vectors of all pedestrians in the scene. (Color figure online)
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to D so that pedestrians with no movements (1 displacement value in D) can
now be distinguished from background locations (0 displacement value in D).

With the proposed encoding process, pedestrian walking path information
are well aligned to the current location of this pedestrian (17 in Fig.3(c)). All
the pedestrians in the scene and their spatial relationships are preserved in D.
Importantly, such encoding and its inverse decoding schemes avoid association
ambiguity when describing pedestrian walking paths.

3.2 Behavior-CNN

Behavior-CNN takes the displacement volume D € RX*XY*2M a5 input, and
predict future displacement volume (D* € RX*Y*2M") a5 gutput. t1, ...,y are
M previous time points, and tps41, ..., tar+ 0+ are M* future time points to pre-
dict. As shown in Fig. 4, Behavior-CNN contains three bottom convolution layers
(Fig. 4(b)), one max-pooling layer and an element-wise addition layer (Fig. 4(c)),
three top convolution layers (Fig.4(d)), and one deconvolution layer (Fig.4(e)).
convl-5 are followed by ReLU nonlinearity layers.

Three bottom convolution layers, convl, conv2, and conv3, are to be con-
volved with input data of size X x Y x 2M. convl contains 64 filters of size
3 x 3 x 2M, while both conv2 and conv3 contain 64 filters of size 3 x 3 x 64.
Zeros are padded to each convolution input in order to guarantee feature maps
of these layers be of the same spatial size with the input. The three bottom
convolution layers are followed by max pooling layers max-pool with stride 2.
The output size of max-pool is X/2 x Y/2 x 64. In this way, the receptive field
of the network can be doubled. Large receptive field is necessary for the task
of pedestrian walking behavior modeling because each individual’s behavior are
significantly influenced by his/her neighbors. A learnable location bias map of
size X/2xY/2 is channel-wisely added to each of the pooled feature maps. Every
spatial location has one independent bias value shared across channels. With the
location bias map, location information of the scene can be automatically learned
by the proposed Behavior-CNN. As for the three top convolution layers, conv4
and convb contain 64 filters of size 3 x 3 x 64, while convé contains 2M* filters
of size 3 X 3 x 64 to output the predicted displacement volume. Zeros are also

! convl conv2 conv3 Location | | convé convs convé
| 6afiters 64 filters 64 filters biasmap | | 64fiters 64fiters 10 filters
| 3x3x2M  3x3x64  3x3x64 X/2x Y/2 || 3364  3x3x64  3x3x2
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Fig. 4. Behavior-CNN architecture. (a) An input displacement volume D. (b) Three
bottom convolution layers. (¢) A max-pooling layer and an element-wise addition layer
that adds a learnable bias to each location of the feature maps. (d) Three top convo-
lution layers. (e¢) A deconvolution layer. (f) An output displacement volume D*.



268 S. Yi et al.

padded to each convolution input to keep the output spatial size unchanged.
Some high-level walking path information and complex walking behaviors of
pedestrians are expected to be encoded in the output volume of conv6. Finally,
a deconvolution layer is used to upsample the output prediction of convé to the
same spatial size as the input displacement volume, i.e. D* € RXXY x2M"

3.3 Loss Function and Training Schemes

During the training stage, the loss function of Behavior-CNN is defined as the
averaged squared Lo distance between the predicted displacement volume D*
and the ground truth output displacement volume D* on all the valid (non-
zero) entries of D*.

Loss = <= 111" = D) o M &

where o is the Hadamard product operator, and M is a binary mask. M is 1 for
the entries where D* is non-zero, while M is 0 for the entries where D* is zero.
>~ M counts the total number of non-zeros entries of M for normalization.

The training samples of pedestrian walking paths can be obtained in multiple
possible ways. Two strategies are tested in this paper. The annotated pedestrian
locations are first used for both model training and evaluation to investigate the
properties of the learned Behavior-CNN. Moreover, in order to handle real-world
scenarios, our model is also trained with keypoint tracking results by the KLT
tracker [41] while the human annotations are only used for evaluation.

Due to the high sparsity of input data, the network may converge to a bad
local minimum if all the parameters are trained together from random initial-
ization. Thus a layer-by-layer training strategy is adopted. A simpler network
with three convolution layers is first randomly initialized and trained until con-
vergence. Afterwards, the trained convolution layers are used as the bottom lay-
ers of Behavior-CNN (conv1-3). The following layers (max-pool, eltwise-add,
conv4-6, deconv) are then appended and parameters of the newly added layers
are trained from random initialization. Lastly, all the layers are jointly fine-tuned.

Stochastic gradient descent is adopted for training and the model converged
at around 10k iterations. Optimal model is chosen based on a validation set
which is a subset of the training samples.

4 Data and Evaluation Metric

Behavior-CNN is evaluated mainly on two datasets. Dataset I is the Pedestrian
Walking Route Dataset proposed in [1]. It is 4,000s in length and 12,684 pedes-
trians are annotated. Dataset II is collected and annotated by us. We follow the
same annotation strategy on Dataset II as in [1]. The complete trajectories of
797 pedestrians from the time point he/she enters the scene to the time he/she
leaves are annotated every 20 frames.
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To prepare training and testing samples, M + M™* frames at time t1, ..., tars,
tar41s .-, tar+ar+ are uniformly sampled from input videos, and resized to the size
of 256 x 256 (X =Y = 256). The first M frames at time ¢y, ...,tys are encoded
to the input displacement volumes D as introduced in Sect. 3.1, which are the
input of the Behavior-CNN. The following M* frames at time tp;41, ..., tar4 s
are encoded to the output displacement volume D* as the ground truth.

The encoding of D* is similar to that of D. A 2M*-dimensional displacement
vector d; € R?M " is used to capture the future path of pedestrian p; with respect
to the current time point ty;, df = [IM —1MFL M _M+2 M MF+MT)
where 17" is the normalized spatial location of pedestrian p; at time t,, (m €
[M 4+ 1, M + M*]). D* € RXYX2M" are constructed by assigning df to D,
D*(zM yM ;) = d; +17. With such encoding, future walking path information
of each individual is also aligned to the pedestrian current location at time ¢,;.

By setting different M and M*, Behavior-CNN can make prediction at dif-
ferent time scales. In our current implementation, M and M* are both set to 5,
i.e. five time points are uniformly sampled as input and five future locations of
each pedestrian are predicted. The sample interval is 20 frames (0.8s) for both
input and output. That is to say, based on the output result, our model predicts
the pedestrian paths in the coming 4s. Longer-term behaviors can be predicted
by recurrently using output again as new input of Behavior-CNN (detailed in
Sect. 6.2). With larger M values and more computation cost, performance should
be slightly improved because more information is given.

4990 short clips are uniformly segmented from Dataset I and one sample can
be obtained from each clip. For Dataset II, 550 samples are generated. The first
90 % samples are used for training while the remaining for test on both datasets.

Mean squared error (MSE) is adopted as the evaluation metric for the task of
pedestrian walking path prediction. The average Lo distance between normalized
predicted pedestrian locations and normalized ground-truth pedestrian locations
of all the N pedestrians at all the M* predicted time points are computed.

)

N M*
1 -
MSE = N Z Z ||]£VI+77L _ lz{\/f+m||2 5 100%’ (2)
i=1 m=1
where TZMﬂn = [LBZMer/X, ylMer/Y] is the normalized location of p; at time

tar+m With respect to the size of the scene.

5 Investigations on Behavior-CNN

In-depth investigations are conducted on Behavior-CNN. It reveals underlying
properties of the proposed deep behavior model. Human annotated pedestrian
walking paths are used to train the models in this section.

5.1 Bias Map and Location Awareness Property of Behavior-CNN

For a specific scene, different locations generally have different traffic patterns
because of scene structures. The proposed bias map helps capture such infor-
mation. Experiments are conducted to investigate the effect of the location
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Table 1. (a) Prediction results with/without the location bias map. (b) Prediction
results of different flipping strategies.

Investigations on MSE Dataset I | Dataset II

(a) Location bias map | With 2.421% |2.348%
Without 2.703% |2.628%

(b) Flipping strategies | No flipping 2421 % |2.348%
Horizontal flipping 2470% |2.592%
Vertical flipping 2.468% |2.585%
Horizontal and vertical flipping | 2.502% | 2.668 %

bias map. The errors of the proposed method with/without the bias map are
listed in Table 1(a). Without the bias map, prediction errors increase for both
datasets.

One more experiment is conducted to validate the location awareness of
Behavior-CNN. Given the trained model (with location bias map) fixed, test-
ing samples are flipped horizontally and/or vertically, and the results of differ-
ent flipping strategies are reported in Table 1(b). If the prediction of our model
has location invariance, flipping all the pedestrian paths at all the locations in
the same way will not make difference on prediction errors. However, Table 1(b)
shows that prediction error increases if testing samples are flipped, which indi-
cates different locations have different dependence on moving directions.

With the learned location bias map, our Behavior-CNN can distinguish differ-
ent locations of the scene based on the motion patterns of small regions (receptive
field size of the Behavior-CNN). In Fig. 5(b), the scene is segmented into 8 by 8
grids. For each grid, the distributions of the walking directions of all the train-
ing samples, together with the distributions of the walking directions of all the
predicted paths by Behavior-CNN are computed. Two example grids are shown
in Fig. 5(a) and (c). Three types of walking patterns, moving up, down, and left,
are observed frequently for the “crossing” grid (Fig. 5(a)). Two types of walking
patterns, moving up and moving down, are common patterns in the “corridor”
grid (Fig.5(c)). Strong correlations are observed between the predicted walking
pattern and the training walking pattern. The correlation for the crossing grid
(Fig.5(a)) is 0.88 while the correlation for the corridor grid (Fig.5(c)) is 0.91.
With the location bias map, our learned model is able to capture the location
information and scene layout from the input pedestrian walking paths, such as
the patterns shown in Fig. 5(a) and (c).

Based on location awareness, our model can successfully infer scene structures
from local motion patterns in input and the learned location bias map. The pedes-
trian spatial distributions of training samples, which reflect scene layout, and
our model’s predictions are shown in Fig.5(d). Strong correlations are observed
between them, which demonstrates that our model can capture the scene layout
information. From the prediction distribution, some impossible locations such as
scene obstacles can be automatically distinguished by Behavior-CNN.
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Fig. 5. Investigation on location awareness of Behavior-CNN. (a—c) Behavior-CNN
can capture different motion patterns for different regions of the scene. The scene is
segmented into 8 by 8 grids in (b). The motion patterns of training samples and pre-
diction results of the “crossing” grid (green) is shown in (a) and those of the “corridor”
grid (red) are shown in (c). Warmer color indicates higher frequency of corresponding
motion as indicated in (b). (d) Strong correlation can also be observed between the
spatial distributions of the training samples, which reflect scene structures and the
existence of obstacles, and the spatial distributions of predictions. (Color figure online)

5.2 Learned Feature Filters of Behavior-CNN

From feature maps generated by filters in different layers, strong correlations
between specific walking patterns and filter response maps can be well observed.
Generally speaking, the three bottom convolution layers (conv1-3) take all the
pedestrian behaviors as input and gradually classify them into finer and finer
categories according to various criteria. In top layers, the influences of all different
categories are combined together to generate the prediction.

For bottom convolution layers, different pedestrians are roughly classified by
filters based on their walking behaviors. Examples are shown in Fig. 6(a—c). Two
feature maps generated from filter #33 and filter #59 of convl are shown in
Fig.6(a). The high-response pedestrians in the two feature maps are visualized
in Fig. 6(b). It is observed that most pedestrians with high response to filter #33
move down-leftwards, while pedestrians with high response to filter #59 move
upwards. In this way, the input pedestrian paths can be classified into some
rough categories by the filters in convl. We computed the correlations between
the feature maps by the two filters (Fig.6(a)) and the locations of all moving
down-leftwards/upwards pedestrians at different training iterations. As shown
by the correlation curves in Fig. 6(c), the two filters gradually learned to capture
these specific motion patterns during training.

Some high-response pedestrians by filters of conv2 and conv3 are shown in
Fig. 6(d—e). These filters generally classify pedestrians into finer and more specific
categories compared with those of convl. In Fig.6(d), down-leftward/upward
pedestrians in Fig.6(a) are further classified based on spatial locations, such as
the left-bottom corner and the left-up corner. In Fig. 6(e), pedestrians are more
meticulously classified based on precise moving directions.
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Fig. 6. Investigations on learned filters. (a) Two feature maps generated by filter #33
and filter #59 of convl. (b) Input pedestrian walking paths with high responses on
the feature maps in (a). Red dots indicate current locations. Filter #33 corresponds
to moving down-leftwards while filter #59 corresponds to moving upwards. (c) Cor-
relation values between the feature maps in (a) and the location maps of all down-
leftwards/upward pedestrians in the scene at different training iterations. (d—e) Some
high response pedestrians by filters of conv2-3. (f) Stationary pedestrians captured by
the feature map of filter #19 in conv4. (Color figure online)

For filters in higher-level layers, they generally encode more complex behav-
iors. As shown by one example in Fig. 6(f), stationary pedestrians are assigned
with high-responses by the filter #19 of conv4, which demonstrates that sta-
tionary crowds could influence other pedestrians’ walking patterns.

5.3 Receptive Fields

We observe that pedestrian walking behaviors are significantly influenced by
nearby pedestrians. By increasing the size of the receptive field, the sensing
range of the network can be increased and the predictions are more reliable. The
current receptive field size is around 10 % of the scene, which is large enough to
capture the pedestrians and activities within their nearby regions.

Two alternative net structures are designed to decrease the receptive field
size. (a) The filter size of all layers is changed from 3 x 3 to 1 x 1. In order to
keep the same parameter size, the numbers of filters are all increased by 9 times
in the meanwhile. (b) The proposed net structure (3conv+pool+3conv+deconv)
is simplified to 3conv+pool+3conv and 3conv+3conv by removing some layers.
The alternatives are used to demonstrate the power of large receptive field size
when predicting future pedestrian walking behaviors.

The results of different net structures are shown in Table2. With the same
model complexity, the prediction error increases for the 1 x 1 filters compared
with the 3x 3 filters. Moreover, the better performance of the 3conv+pool+3conv
structure compared with the 3conv+3conv structure also demonstrates the effec-
tiveness of large receptive field introduced by the pooling layer.
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Table 2. Prediction results (MSE) of different net structures on Dataset I.

3x 3 (ours) | 1x1
3conv+pool+3conv+deconv (ours) | 2.421 % 2.555%
3conv+pool+3conv 2.431% 2571 %
3conv+3conv 2.468 % 2.858 %

6 Experiments

6.1 Pedestrian Walking Path Prediction

The prediction results of the proposed Behavior-CNN are evaluated quantita-
tively and qualitatively for both Dataset I and Dataset II. For each of the dataset,
two trained models were evaluated. One was trained with the human annotated
pedestrian locations and the other one was trained with KLT trajectories. The
trajectories are not verified and may contain mistakes. All the models are eval-
uated using the annotated ground truth pedestrian walking paths. Due to the
insufficient training samples of Dataset II, the models trained on Dataset I were
used as the initial points to train the models for Dataset II.!

Three baselines and three state-of-the-art methods [2,15,17] on pedestrian
behavior prediction were compared. The constant velocity and constant accel-
eration regressors were used as the first two baselines to predict future walking
path of each pedestrian. Moreover, the same displacement vectors were used as
features and a second-order SVM regressor was used for prediction. Existing
computer vision methods in comparison include the Social Force Model (SFM)
[15] where pedestrian walking paths were predicted as its simulation results, the
Linear Trajectory Avoidance model (LTA) [17] where pedestrian walking paths
were predicted based on energy minimization, and Temporal Information Model
(TIM) [2] where pedestrian walking paths were predicted as the minimal paths.

MSE introduced in Sect.4 was evaluated and the results are reported in
Table 3. Behavior-CNN achieves the best performance among all the compar-
isons. This is because the learned feature representations of Behavior-CNN
are much more powerful and can capture complex pedestrian behaviors. The
model trained with annotations (2.421 %) performs only slightly better than
that trained with KLT (2.517%) on Dataset I, which also demonstrates the
robustness of the proposed method to KLT errors.

Several examples of prediction results are visualized in Fig. 7. Behavior-CNN
can successfully predict some complex walking patterns, such as change of walk-
ing directions, slowing down, speeding up (Pedestrian A in Fig.7(a)). It also
learns the scene layout, which cannot be learned by the other two methods from

! The model trained solely with annotations on Dataset I generates a 4.18 % error if
directly testing on Dataset II, which is still better than the comparisons. However,
with bias map removed, the error decreases to 3.42 %. It indicates that the bias map
hinders model transfer ability to a certain degree.
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Table 3. Prediction results (MSE) of different methods trained on the annotated
pedestrian walking paths or the KLT trajectories on Dataset I and Dataset II.

Dataset 1 Dataset II Dataset I | Dataset 11

(Annotation) | (Annotation) | (KLT) (KLT)
Behavior-CNN 2.421% 2.348 % 2517% |3.816%
Constant velocity 6.091 % 6.468 % 5.864% |5.635%
Constant acceleration | 9.899 % 9.428 % 6.619% | 7.656%
SVM regression 4.639% 4.276 % 5.063% |5.327%
SFM [15] 4.280 % 5.921 % 4.447% | 5.044%
LTA [17] 4.723 % 4.571 % 4.346 % | 4.639%
TIM [2] 4.075 % 4.141 % 4.790% 1 4.790 %

(a) Behavior-CNN  (b) Constant velocity — (c¢) LTA [17]

Fig. 7. Prediction results by (a) Behavior-CNN, (b) the constant-velocity model, and
(c) the LTA model, with KLT trajectories as input on both datasets. The KLT trajecto-
ries are used to train the model. Input previous locations, ground truth future locations,
and predicted future locations are marked by blue, green and red dots, respectively.
(Color figure online)

training samples. Taking Pedestrian B in Fig.7 as an example, our prediction
avoids scene obstacles while the predictions by the other two methods indicate
the pedestrian walking into a concrete wall.

In order to validate prediction robustness, the proposed method is also eval-
uated on five more datasets, i.e. ETH [17], Hotel [17], ZARAO1 [42], ZARAO02
[42], and UCY [42]. Following the same experimental setup and evaluation crite-
ria as [43], leave-one-out validation is adopted and average displacement errors
of our proposed method on the five datasets are 0.35, 0.18, 0.20, 0.23, and 0.25,
while [43] achieves 0.50, 0.11, 0.22, 0.25, and 0.27.

6.2 Application I: Pedestrian Destination Prediction

Behavior-CNN is able to predict the walking paths of all the pedestrians in the
scene for in the next 4s (M* = 5). However, by decoding the output displacement
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(a) Behavior-CNN (b) SFM [15] (c) Entrance/exit regions

Fig. 8. (a-b) Long-term path prediction results in Dataset I using Behavior-CNN and
Social Force Model [15]. Behavior-CNN is recurrently forward-propagated three times
and locations at 15 future time points are predicted. Input previous locations, ground-
truth future locations, and predicted future locations are marked by blue, green, and
red dots. (c) Ten entrance/exit regions labeled in Dataset I [1]. (Color figure online)

Table 4. Top-N accuracies of destination prediction on Dataset I.

Top 1| Top2 | Top3
Behavior-CNN | 53% | 72% |84 %

EMM [1] 48% 69% |83%
MDA 8] 43% |- -
UVP [44] 45% - -

volume and re-encoding the prediction results, the predicted walking paths can
be fed back into Behavior-CNN as input. In this way, long-term walking paths
can be recurrently predicted. The prediction results of several pedestrians by
Behavior-CNN and the Social Force Model [15] are shown in Fig.8(a) and (b).
Behavior-CNN can predict reasonable long-term walking paths.

The long-term prediction results can be used for destination prediction. The
destination is determined as the nearest exit to the predicted future walking path.
Prediction performance was evaluated on Dataset I, where ten entrance/exit
regions are labeled [1] as shown in Fig. 8(c). The top-N accuracy (ground truth
is within the top-N predictions) was adopted for evaluation.

Three existing methods were used as comparisons, i.e., the energy map mod-
eling approach (EMM) [1] where destinations were predicted by minimizing
energy function, MDA [8] where predictions were made based on trajectory prop-
erties, and an unsupervised visual prediction approach (UVP) [44] where desti-
nations were predicted as the nearest exit to the predicted trajectories. In order
to make fair comparisons, all the methods use previous 5 frames (4s in length) as
input. Estimation results are reported in Table4. Our method performs better
as it can better predict long-term motion patterns.

6.3 Application II: Predictions as Tracking Prior

Based on predicted pedestrian walking paths, Behavior-CNN can provide prior
information to improve tracking. The KLT tracker, whose trajectories are often
fragmented or early terminated, is used as a baseline tracking algorithm to
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Table 5. Results of pedestrian tracking on Dataset I

Methods KLT+Behavior-CNN | KLT+RFT [45] | KLT
Error (Lo distance) | 83.79 228.33 411.71

Fig. 9. Improved pedestrian tracking results by Behavior-CNN (red dots) and RFT [45]
(blue dots). Ground truth trajectories are shown as green dots. Successfully tracked
pedestrians of the proposed method and mis-tracked pedestrians by the RFT method
are marked by the red and blue rectangles. (Color figure online)

be improved. A tracking association strategy is adopted when a key point fails
to be tracked. Given successfully tracked locations (up to the failing time) as
input, M* = 5 future locations (4s) can be predicted by Behavior-CNN. Then
the tracklet that best matches prediction is selected to be connected with the frag-
mented tracklet. In this way, long-term trajectories could be formed by connecting
fragmented ones and tracking performance can be improved. Another association
strategy in [45] was also used for comparison (RFT). Trajectories are connected
based on the local location and speed information when tracking fails.

The average Lo distance between ground truth walking paths and tracking
results of 1000 pedestrians in Dataset I were used for evaluation. The results of
both strategies, together with the results of the baseline KLT tracking are listed
in Table 5. The proposed association strategy significantly decreases the tracking
error compared with RFT [45]. From the examples in Fig. 9, our method could
successfully generate correct and complete trajectories, while the association by
the RFT method made wrong associations and lost the tracking targets.

7 Conclusion

Behavior-CNN is proposed to model pedestrian behaviors. A behavior encoding
scheme is adopted to encode pedestrian behavior into sparse displacement vol-
umes which can be directly used as network input. Behavior-CNN is thoroughly
investigated in terms of the learned location map and the location awareness
property, semantic meanings of learned filters, and influence of receptive fields.
The effectiveness is demonstrated through multiple applications, including walk-
ing path prediction, destination prediction, and improving tracking.
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